当前位置:首页 » 挖矿知识 » 神经网络模型挖矿

神经网络模型挖矿

发布时间: 2022-08-06 07:38:36

❶ 请简述一下神经网络的PDB模型

资料1.人工神经网络理论基础
包括:
(1) PDP(Parallel Distribated Processing)模式
(2) 容限理论
(3) 网络拓扑
(4) 混沌理论
1、PDP模式
PDP模式是一种认知心理的平行分布式模式。认知是信息处理过程,并且是知觉、注意、记忆、学习、表象、思维、概念形式、问题求解、语言、情绪、个性差异等等有机联系的处理过程。PDP模式是一种接近人类思维推论的模式。人脑中知识的表达是采用分布式的表达结构,人脑的控制是实行分布式的控制方式。相互作用、相互限制是PDP模式的基本思想,平行分布是PDP模式的基本构架。
PDP模式的实施,需要一种合理的表示方法,其中一种表示方法便是人工神经网络表示法。即采用类似于大脑神经网络的体系结构,在这种基本体系结构下,使人工神经网络经过学习训练,能适应多种知识体系。
参考:http://gamejedi.cn/bbs/dispbbs.asp?boardid=7&id=924&star=1&page=2

资料2.神经网络模型

信息加工模型有助于理论家把其理论假设进一步细致化、具体化。然而正如我们在第一节所讨论过的,遵循联结主义传统的学者对比提出了反对意见,认为这一模型假设认知过程是继时性流动,而事实并非总是如此,(参见Rumelhart, Hinton,和 McClelland, 1986),至少有一些认知过程更可能是同时发生的。比如说司机开车时可同时与人讲话。一种用得越来越多的模型是神经网络模型(或称并行分布模型)。这类模型认为不同的认知过程可以同时发生,这一假设与人们的主观感觉相一致:许多东西同时出现在脑海中。这一假设还与我们已知的大脑神经的操作相一致。

神经网络模型假设有一系列相互连接的加工单元,而且这些单元的激活水平是不同的。根据不同的传播规则,激活从一个单元传播到与之相连的其它单元。
参考:http://jpkc.ecnu.e.cn/jxcg/931045/stu/ygg02/gg021/gg02102/gg02102c.htm
3.

❷ 神经网络是什么

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

(2)神经网络模型挖矿扩展阅读:

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

1、生物原型

从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2、建立模型

根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3、算法

在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

❸ 神经网络挖掘模型与logistic回归挖掘模型的不同点有哪些

逻辑回归有点像线性回归,但是它是当因变量不是数字时使用。比如说因变量是布尔变量(如是/否响应),这时候就需要逻辑回归。它称为回归,但实际上是是根据回归进行分类,它将因变量分类为两个类中的任何一个。

网页链接

如上所述,逻辑回归用于预测二进制输出。例如,如果信用卡公司打算建立一个模型来决定是否向客户发放信用卡,它将模拟客户是否需要这张或者能够承担这张信用卡 。

它给出了事件发生概率的对数,以记录未发生事件的概率。最后,它根据任一类的较高概率对变量进行分类。

而神经网络(Neutral Network)是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。神经网络是人脑的抽象计算模型,我们知道人脑中有数以百亿个神经元(人脑处理信息的微单元),这些神经元之间相互连接,是的人的大脑产生精密的逻辑思维。而数据挖掘中的“神经网络”也是由大量并行分布的人工神经元(微处理单元)组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。

神经网络就像是一个爱学习的孩子,您教她的知识她是不会忘记而且会学以致用的。我们把学习集(Learning Set)中的每个输入加到神经网络中,并告诉神经网络输出应该是什么分类。在全部学习集都运行完成之后,神经网络就根据这些例子总结出她自己的想法,到底她是怎么归纳的就是一个黑盒了。之后我们就可以把测试集(Testing Set)中的测试例子用神经网络来分别作测试,如果测试通过(比如80%或90%的正确率),那么神经网络就构建成功了。我们之后就可以用这个神经网络来判断事务的分类了。

具体来说,”神经网络“是一组互相连接的输入/输出单元,其中每个连接都会与一个券种相关联。在学习阶段,通过调整这些连接的权重,就能够预测输入观测值的正确类标号。因此可以理解为人工神经网络是由大量神经网络元通过丰富完善的连接、抽样、简化和模拟而形成的一种信息处理系统。

❹ 神经网络到底能干什么

神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

神经网络的研究可以分为理论研究和应用研究两大方面。
理论研究可分为以下两类:
1、利用神经生理与认知科学研究人类思维以及智能机理。
2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。
应用研究可分为以下两类:
1、神经网络的软件模拟和硬件实现的研究。
2、神经网络在各个领域中应用的研究。

❺ 神经网络算法原理

4.2.1 概述

人工神经网络的研究与计算机的研究几乎是同步发展的。1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。

神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的著作,并且现在仍是全球非线性科学研究的热点之一。

神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。

人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid 函数构成的模型(图 4-3)。

储层特征研究与预测

以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。

❻ 300505川金诺有矿山多少

300505川金诺有矿山8个。矿山是指在一定的开采边界内开采矿石的独立生产经营单位。矿山主要包括一个或多个采矿车间或坑口、矿山、露天矿等和一些辅助车间,大多数矿山还包括选矿场。矿山包括煤矿、金属矿山、非金属矿山、建材矿山和化工矿山。矿山规模(也称生产能力)通常以年产量或日产量表示。年产量是指矿山每年生产的矿石量。按产量大小分为大、中、小三种。矿山规模的大小应与矿山经济合理的使用寿命相适应。只有这样,才能节省基建费用,降低成本。在矿山生产过程中,挖矿作业既是消耗人力物力最多、占用资金最多、降低挖矿成本的潜力最大的环节。降低采矿成本的主要途径是提高劳动生产率和产品质量,减少材料消耗。
拓展资料:
1、 加拿大制定了2050年要实现的长期规划
将加拿大北部偏远地区的一座矿山实现为无人矿山,通过萨德伯里所有矿山设备的卫星作业,实现机械自动破碎、自动切割开采;芬兰矿业也在1992年公布了自己的智能采矿技术方案,涉及采矿实时过程控制、资源实时管理、矿山信息网络建设、新型机械应用和自动控制等28个课题;瑞典还制定了“grountecknik 2000”战略计划,进军矿山自动化领域。中国矿业大学等单位也先后在矿山机器人、矿山地理信息系统三维地球科学模拟等方面开展了技术开发和应用研究。矿山虚拟现实、矿山GPS定位等。
2、 澳大利亚联邦科学与工业组织制定了一项为期三年的煤炭勘探和开采研究计划
投资3100万美元,重点开展资源评估、采矿工艺创新六个方面的18个专项项目。矿井瓦斯控制利用、自动化、安全和精细物料控制。其中,地质评估和急救响应是最具特色的两个。地质评价:开发基于3D区块模型的软件,对矿山或矿区的地层环境沉积环境进行评价;多种异构数据微震监测。数据、中子伽马采样数据等通过交互式 3D和 4D软件包在 3D 中可视化;并通过有限元/有限差分模型真实模拟开采后的岩体变形。应急响应:开发了人身安全定位和监控系统。该系统由控制器、监控设备、网络信标和矿机异频雷达收发器组成。具有无线通讯能力,即在瓦斯爆炸等井下灾害发生后,仍可报告井下矿工的位置和安全状态。
3、 应用实时矿山勘察、GPS实时导航与远程控制、GIS管理与辅助决策
3DGM,建立世界部分大型露天矿包括中国平朔矿区和霍林河矿区矿床模型并可在办公室生成采矿计划,并与采场设备联动,形成动态管理和远程控制指挥系统。此外,专家系统、神经网络、模糊逻辑、自适应模式识别和遗传算法、GPS技术、并行计算技术、射频识别技术和岩石力学问题的全局优化方法和遥感技术等人工智能技术也得到了广泛应用。应用于智能矿山地质勘探与调查、智能矿山设计、智能矿山开采、规划与控制、矿山灾害遥感预测等研究领域。
4、 采矿方法:
根据矿石开采过程中采场管理方式的不同,非煤矿山的开采方式可分为四类:露天采场开采法的特点是在开采过程中,采空区主要由临时或永久性残柱支撑。采空区总是空的。一般在矿石和围岩非常稳定的情况下采用。崩落开采法的特点是在开采矿石时有计划地用崩落矿体的上覆岩层和上下围岩充填采空区,以控制矿区地压。一般在矿体围岩不稳定,允许地表坍塌的情况下采用。充填开采法的特点是在开采过程中,采空区由充填材料支撑。该方法能有效维护采空区,对围岩稳定性要求不高,但生产成本较高。主要用于矿值高、充填物充足、地表无沉降和地质条件特别复杂的采矿条件。

❼ 人工神经网络的网络模型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:
网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

❽ 神经网络ART1模型

一、ART1模型概述

自适应共振理论(Adaptive Resonance Theory)简称ART,是于1976年由美国Boston大学S.Grossberg提出来的。

这一理论的显著特点是,充分利用了生物神经细胞之间自兴奋与侧抑制的动力学原理,让输入模式通过网络双向连接权的识别与比较,最后达到共振来完成对自身的记忆,并以同样的方法实现网络的回想。当提供给网络回想的是一个网络中记忆的、或是与已记忆的模式十分相似的模式时,网络将会把这个模式回想出来,提出正确的分类。如果提供给网络回想的是一个网络中不存在的模式,则网络将在不影响已有记忆的前提下,将这一模式记忆下来,并将分配一个新的分类单元作为这一记忆模式的分类标志。

S.Grossberg和G.A.Carpenter经过多年研究和不断发展,至今已提出了ART1,ART2和ART3三种网络结构。

ART1网络处理双极型(或二进制)数据,即观察矢量的分量是二值的,它只取0或1。

二、ART1模型原理

ART1网络是两层结构,分输入层(比较层)和输出层(识别层)。从输入层到输出层由前馈连接权连接,从输出层到输入层由反馈连接权连接。

设网络输入层有N个神经元,网络输出层有M个神经元,二值输入模式和输出向量分别为:Xp=(

,…,

),Yp=(

,…,

),p=1,2,…,P,其中P为输入学习模式的个数。设前馈连接权和反馈连接权矩阵分别为W=(wnm)N×M,T=(tnm)N×M,n=1,2,…,N,m=1,2,…,M。

ART1网络的学习及工作过程,是通过反复地将输入学习模式由输入层向输出层自下而上的识别和由输出层向输入层自上而下的比较过程来实现的。当这种自下而上的识别和自上而下的比较达到共振,即输出向量可以正确反映输入学习模式的分类,且网络原有记忆没有受到不良影响时,网络对一个输入学习模式的记忆分类则告完成。

ART1网络的学习及工作过程,可以分为初始化阶段、识别阶段、比较阶段和探寻阶段。

1.初始化阶段

ART1网络需要初始化的参数主要有3个:

即W=(wnm)N×M,T=(tnm)N×M和ρ。

反馈连接权T=(tnm)N×M在网络的整个学习过程中取0或1二值形式。这一参数实际上反映了输入层和输出层之间反馈比较的范围或强度。由于网络在初始化前没有任何记忆,相当于一张白纸,即没有选择比较的余的。因此可将T的元素全部设置为1,即

tnm=1,n=1,2,…,N,m=1,2,…,M。(1)

这意味着网络在初始状态时,输入层和输出层之间将进行全范围比较,随着学习过程的深入,再按一定规则选择比较范围。

前馈连接权W=(wnm)N×M在网络学习结束后,承担着对学习模式的记忆任务。在对W初始化时,应该给所有学习模式提供一个平等竞争的机会,然后通过对输入模式的竞争,按一定规则调整W。W的初始值按下式设置:

中国矿产资源评价新技术与评价新模型

ρ称为网络的警戒参数,其取值范围为0<ρ≤1。

2.识别阶段

ART1网络的学习识别阶段发生在输入学习模式由输入层向输出层的传递过程中。在这一阶段,首先将一个输入学习模式Xp=(

,…,

)提供给网络的输入层,然后把作为输入学习模式的存储媒介的前馈连接权W=(wnm)N×M与表示对这一输入学习模式分类结果的输出层的各个神经元进行比较,以寻找代表正确分类结果的神经元g。这一比较与寻找过程是通过寻找输出层神经元最大加权输入值,即神经元之间的竞争过程实现的,如下式所示:

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

至此,网络的识别过程只是告一段落,并没有最后结束。此时,神经元m=g是否真正有资格代表对输入学习模式Xp的正确分类,还有待于下面的比较和寻找阶段来进一步确定。一般情况下需要对代表同一输入学习模式的分类结果的神经元进行反复识别。

3.比较阶段

ART1网络的比较阶段的主要职能是完成以下检查任务,每当给已学习结束的网络提供一个供识别的输入模式时,首先检查一下这个模式是否是已学习过的模式,如果是,则让网络回想出这个模式的分类结果;如果不是,则对这个模式加以记忆,并分配一个还没有利用过的输出层神经元来代表这个模式的分类结果。

具体过程如下:把由输出层每个神经元反馈到输入层的各个神经元的反馈连接权向量Tm=(t1m,t2m,…,tNm),m=1,2,…,M作为对已学习的输入模式的一条条记录,即让向量Tm=(t1m,t2m,…,tNm)与输出层第m个神经元所代表的某一学习输入模式Xp=(

,…,

)完全相等。

当需要网络对某个输入模式进行回想时,这个输入模式经过识别阶段,竞争到神经元g作为自己的分类结果后,要检查神经元g反馈回来的向量Tg是否与输入模式相等。如果相等,则说明这是一个已记忆过的模式,神经元g代表了这个模式的分类结果,识别与比较产生了共振,网络不需要再经过寻找阶段,直接进入下一个输入模式的识别阶段;如果不相符,则放弃神经元g的分类结果,进入寻找阶段。

在比较阶段,当用向量Tg与输入模式XP进行比较时,允许二者之间有一定的差距,差距的大小由警戒参数ρ决定。

首先计算

中国矿产资源评价新技术与评价新模型

Cg表示向量Tg与输入模式XP的拟合度。

在式中,

(tng*xn)表示向量Tg=(t1g,t2g,…,tNg)与输入模式Xp=(

,…,

)的逻辑“与”。

当Tg=XP时,Cg=1。

当Cg≥ρ时,说明拟合度大于要求,没有超过警戒线。

以上两种情况均可以承认识别结果。

当Cg≠1且Cg>ρ时,按式(6)式(7)将前馈连接权Wg=(w1g,w2g,…,wNg)和反馈连接权Tg=(t1g,t2g,…,tNg)向着与XP更接近的方向调整。

中国矿产资源评价新技术与评价新模型

tng(t+1)=tng(t)*xn,n=1,2,…,N。(7)

当Cg<ρ时,说明拟合度小于要求,超过警戒线,则拒绝识别结果,将神经元g重新复位为0,并将这个神经元排除在下次识别范围之外,网络转入寻找阶段。

4.寻找阶段

寻找阶段是网络在比较阶段拒绝识别结果之后转入的一个反复探寻的阶段,在这一阶段中,网络将在余下的输出层神经元中搜索输入模式Xp的恰当分类。只要在输出向量Yp=(

,…

)中含有与这一输入模式Xp相对应、或在警戒线以内相对应的分类单元,则网络可以得到与记忆模式相符的分类结果。如果在已记忆的分类结果中找不到与现在输入的模式相对应的分类,但在输出向量中还有未曾使用过的单元,则可以给这个输入模式分配一个新的分类单元。在以上两种情况下,网络的寻找过程总能获得成功,也就是说共振终将发生。

三、总体算法

设网络输入层有N个神经元,网络输出层有M个神经元,二值输入模式和输出向量分别为:Xp=(

,…,

),Yp=(

,…,

)p=1,2,…,p,其中p为输入学习模式的个数。设前馈连接权和反馈连接权矩阵分别为W=(wnm)N×M,T=(tnm)N×M,n=1,2,…,N,m=1,2,…,M。

(1)网络初始化

tnm(0)=1,

中国矿产资源评价新技术与评价新模型

n=1,2,…,N,m=1,2,…,M。

0<ρ≤1。

(2)将输入模式Xp=(

,…,

)提供给网络的输入层

(3)计算输出层各神经元输入加权和

中国矿产资源评价新技术与评价新模型

(4)选择XP的最佳分类结果

中国矿产资源评价新技术与评价新模型

令神经元g的输出为1。

(5)计算

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

判断

中国矿产资源评价新技术与评价新模型

当式(8)成立,转到(7),否则,转到(6)。

(6)取消识别结果,将输出层神经元g的输出值复位为0,并将这一神经元排除在下一次识别的范围之外,返回步骤(4)。当所有已利用过的神经元都无法满足式(8),则选择一个新的神经元作为分类结果,转到步骤(7)。

(7)承认识别结果,并按下式调整连接权

中国矿产资源评价新技术与评价新模型

tng(t+1)=tng(t)*xn,n=1,2,…,N。

(8)将步骤(6)复位的所有神经元重新加入识别范围之内,返回步骤(2)对下一模式进行识别。

(9)输出分类识别结果。

(10)结束。

四、实例

实例为ART1神经网络模型在柴北缘-东昆仑造山型金矿预测的应用。

1.建立综合预测模型

柴北缘—东昆仑地区位于青海省的西部,是中央造山带的西部成员——秦祁昆褶皱系的一部分,是典型的复合造山带(殷鸿福等,1998)。根据柴北缘—东昆仑地区地质概括以及造山型金矿成矿特点,选择与成矿相关密切的专题数据,建立柴北缘—东昆仑地区的综合信息找矿模型:

1)金矿重砂异常数据是金矿的重要找矿标志。

2)金矿水化异常数据是金矿的重要找矿标志。

3)金矿的化探异常数据控制金矿床的分布。

4)金矿的空间分布与通过该区的深大断裂有关。

5)研究区内断裂密集程度控制金矿的产出。

6)重力构造的存在与否是金矿存在的一个标志。

7)磁力构造线的存在也是金矿存在的一个重要标志。

8)研究区地质复杂程度也对金矿的产出具有重要的作用。

9)研究区存在的矿(化)点是一个重要的标志。

2.划分预测单元

预测工作是在单元上进行的,预测工作的结果是与单元有着较为直接的联系,在找矿模型指导下,以最大限度地反映成矿信息和预测单元面积最小为原则,通过对研究区内地质、地球物理、地球化学等的综合资料分析,对可能的成矿地段圈定了预测单元。采用网格化单元作为本次研究的预测单元,网格单元的大小是,40×40,将研究区划分成774个预测单元。

3.变量选择(表8-6)

4.ART1模型预测结果

ART1神经网络模型算法中,给定不同的阈值,将改变预测分类的结果。本次实验选取得阈值为ρ=0.41,系统根据此阈值进行计算获得计算结果,并通过将不同的分类结果赋予不同的颜色,最终获得ART模型预测单元的分类结果。分类的结果是形成29个类别。分类结果用不同的颜色表示,其具体结果地显示见图8-5。图形中颜色只代表类别号,不代表分类的好坏。将矿点专题图层叠加以后,可以看出,颜色为灰色的单元与矿的关系更为密切。

表8-6 预测变量标志的选择表

图8-5 东昆仑—柴北缘地区基于ARTL模型的金矿分类结果图

❾ 神经网络Kohonen模型

一、Kohonen模型概述

1981年芬兰赫尔辛基大学Kohonen教授提出了一个比较完整的,分类性能较好的自组织特征影射(Self-Organizing Feature Map)人工神经网络(简称SOM网络)方案。这种网络也称为Kohonen特征影射网络。

这种网络模拟大脑神经系统自组织特征影射功能,它是一种竞争式学习网络,在学习中能无监督地进行自组织学习。

二、Hohonen模型原理

1.概述

SOM网络由输入层和竞争层组成。输入层神经元数为N,竞争层由M=R×C神经元组成,构成一个二维平面阵列或一个一维阵列(R=1)。输入层和竞争层之间实现全互连接。

SOM网络的基本思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并对那些与获胜神经元有关的各连接权朝着更有利于它竞争的方向调整,这一获胜神经元就表示对输入模式的分类。

SOM算法是一种无教师示教的聚类方法,它能将任意输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。即在无教师的情况下,通过对输入模式的自组织学习,在竞争层将分类结果表示出来。此外,网络通过对输入模式的反复学习,可以使连接权矢量空间分布密度与输入模式的概率分布趋于一致,即连接权矢量空间分布能反映输入模式的统计特征。

2.网络权值初始化

因为网络输入很可能出现在中间区,因此,如果竞争层的初始权值选择在输入空间的中间区,则其学习效果会更加有效。

3.邻域距离矩阵

SOM网络中的神经元可以按任何方式排列,这种排列可以用表示同一层神经元间的Manhattan距离的邻域距离矩阵D来描述,而两神经元的Manhattan距离是指神经元坐标相减后的矢量中,其元素绝对值之和。

4.Kohonen竞争学习规则

设SOM网络的输入模式为Xp=(

,…,

),p=1,2.…,P。竞争层神经元的输出值为Yj(j=1,2,…,M),竞争层神经元j与输入层神经元之间的连接权矢量为

Wj=(wj1,wj2,…,wjN),j=1,2,…,M。

Kohonen网络自组织学习过程包括两个部分:一是选择最佳匹配神经元,二是权矢量自适应变化的更新过程。

确定输入模式Xp与连接权矢量Wj的最佳匹配的评价函数是两个矢量的欧氏距离最小,即

,j=1,2,…,M,]]

g,确定获胜神经元g。

dg=mjin(dj),j=1,2,…,M。

求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的输出。

中国矿产资源评价新技术与评价新模型

dgm为邻域距离矩阵D的元素,为竞争层中获胜神经元g与竞争层中其它神经元的距离。

求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的权值修正值。

中国矿产资源评价新技术与评价新模型

式中:i=1,2,…,N;

lr为学习速率;

t为学习循环次数。

Δwjt(t+1)的其余元素赋值为0。

进行连接权的调整

wji(t+1)=wji(t)+Δwji(t+1)。

5.权值学习中学习速率及邻域距离的更新

(1)SOM网络的学习过程分为两个阶段

第一阶段为粗学习与粗调整阶段。在这一阶段内,连接权矢量朝着输入模式的方向进行调整,神经元的权值按照期望的方向在适应神经元位置的输入空间建立次序,大致确定输入模式在竞争层中所对应的影射位置。一旦各输入模式在竞争层有了相对的影射位置后,则转入精学习与细调整阶段,即第二阶段。在这一阶段内,网络学习集中在对较小的范围内的连接权进行调整,神经元的权值按照期望的方向在输入空间伸展,直到保留到他们在粗调整阶段所建立的拓扑次序。

学习速率应随着学习的进行不断减小。

(2)邻域的作用与更新

在SOM网络中,脑神经细胞接受外界信息的刺激产生兴奋与抑制的变化规律是通过邻域的作用来体现的邻域规定了与获胜神经元g连接的权向量Wg进行同样调整的其他神经元的范围。在学习的最初阶段,邻域的范围较大,随着学习的深入进行,邻域的范围逐渐缩小。

(3)学习速率及邻域距离的更新

在粗调整阶段,

学习参数初始化

最大学习循环次数 MAX_STEP1=1000,

粗调整阶段学习速率初值 LR1=1.4,

细调整阶段学习速率初值 LR2=0.02,

最大邻域距离 MAX_ND1=Dmax,

Dmax为邻域距离矩阵D的最大元素值。

粗调阶段

学习循环次数step≤MAX_STEP1,

学习速率lr从LR1调整到LR2,

邻域距离nd 从MAX_ND1调整到1,

求更新系数r,

r=1-step/MAX_STEP1,

邻域距离nd更新,

nd=1.00001+(MAX_ND1-1)×r。

学习速率lr更新,

lr=LR2+(LR1-LR2)×r。

在细调整阶段,

学习参数初始化,

最大学习循环次数 MAX_STEP2=2000,

学习速率初值 LR2=0.02,

最大邻域距离 MAX_ND2=1。

细调阶段

MAX_STEP1<step≤MAX_STEP1+MAX_STEP2,

学习速率lr慢慢从LR2减少,

邻域距离nd设为1,

邻域距离nd更新,

nd=MAX_ND2+0.00001。

学习速率lr更新,

lr=LR2×(MAX_STEP1/step)。

6.网络的回想——预测

SOM网络经学习后按照下式进行回想:

中国矿产资源评价新技术与评价新模型

Yj=0,j=1,2,…,M,(j≠g)。

将需要分类的输入模式提供给网络的输入层,按照上述方法寻找出竞争层中连接权矢量与输入模式最接近的神经元,此时神经元有最大的激活值1,而其它神经元被抑制而取0值。这时神经元的状态即表示对输入模式的分类。

三、总体算法

1.SOM权值学习总体算法

(1)输入参数X[N][P]。

(2)构造权值矩阵W[M][N]。

1)由X[N][P]求Xmid[N],

2)由Xmid[N]构造权值W[M][N]。

(3)构造竞争层。

1)求竞争层神经元数M,

2)求邻域距离矩阵D[M][M],

3)求矩阵D[M][M]元素的最大值Dmax。

(4)学习参数初始化。

(5)学习权值W[M][N]。

1)学习参数学习速率lr,邻域距离nd更新,分两阶段:

(i)粗调阶段更新;

(ii)细调阶段更新。

2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。

(i)求X[N][p]与W[m][N]的欧氏距离dm;

(ii)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。

3)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其在邻域距离nd内的神经元的输出Y[m][p]。

4)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其

在邻域距离nd内的神经元的权值修正值ΔW[m][N],

从而得到输入模式X[N][p]产生的权值修正值ΔW[M][N]。

5)权值修正W[M][N]=W[M][N]+ΔW[M][N]。

6)学习结束条件:

(i)学习循环到MAX_STEP次;

(ii)学习速率lr达到用户指定的LR_MIN;

(iii)学习时间time达到用户指定的TIME_LIM。

(6)输出。

1)学习得到的权值矩阵W[M][N];

2)邻域距离矩阵D[M][M]。

(7)结束。

2.SOM预测总体算法

(1)输入需分类数据X[N][P],邻域距离矩阵D[M][M]。

(2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。

1)求X[N][p]与W[m][N]的欧氏距离dm;

2)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。

(3)求获胜神经元win[p]在竞争层排列的行列位置。

(4)输出与输入数据适应的获胜神经元win[p]在竞争层排列的行列位置,作为分类结果。

(5)结束。

四、总体算法流程图

Kohonen总体算法流程图见附图4。

五、数据流图

Kohonen数据流图见附图4。

六、无模式识别总体算法

假定有N个样品,每个样品测量M个变量,则有原始数据矩阵:

X=(xij)N×M,i=1,2,…,N,j=1,2,…,M。

(1)原始数据预处理

X=(xij)N×M处理为Z=(zij)N×M

分3种处理方法:

1)衬度;

2)标准化;

3)归一化。

程序默认用归一化处理。

(2)构造Kohonen网

竞争层与输入层之间的神经元的连接权值构成矩阵WQ×M

WQ×M初始化。

(3)进入Kohonen网学习分类循环,用epoch记录循环次数,epoch=1。

(4)在每个epoch循环中,对每个样品n(n=1,2,…,N)进行分类。从1个样品n=1开始。

(5)首先计算输入层的样品n的输入数据znm(m=1,2,…,M)与竞争层Q个神经元对应权值wqm的距离。

(6)寻找输入层的样品n与竞争层Q个神经元的最小距离,距离最小的神经元Win[n]为获胜神经元,将样品n归入获胜神经元Win[n]所代表的类型中,从而实现对样品n的分类。

(7)对样品集中的每一个样品进行分类:

n=n+1。

(如果n≤N,转到5。否则,转到8。)

(8)求分类后各神经元所对应的样品的变量的重心,用对应的样品的变量的中位数作为重心,用对应的样品的变量的重心来更新各神经元的连接权值。

(9)epoch=epoch+1;

一次学习分类循环结束。

(10)如果满足下列两个条件之一,分类循环结束,转到11;

否则,分类循环继续进行,转到4。

1)全部样品都固定在某个神经元上,不再改变了;

2)学习分类循环达到最大迭代次数。

(11)输出:

1)N个样品共分成多少类,每类多少样品,记录每类的样品编号;

2)如果某类中样品个数超过1个,则输出某类的样品原始数据的每个变量的均值、最小值、最大值和均方差;

3)如果某类中样品个数为1个,则输出某类的样品原始数据的各变量值;

4)输出原始数据每个变量(j=1,2,…,M)的均值,最小值,最大值和均方差。

(12)结束。

七、无模式识别总体算法流程图

Kohonen无模式总体算法流程图见附图5。

❿ 神经网络BP模型

一、BP模型概述

误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:

1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;

2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;

3)分类:把输入模式以所定义的合适方式进行分类;

4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理

下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义

P对学习模式(xp,dp),p=1,2,…,P;

输入模式矩阵X[N][P]=(x1,x2,…,xP);

目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构

输入层神经元节点数S0=N,i=1,2,…,S0;

隐含层神经元节点数S1,j=1,2,…,S1;

神经元激活函数f1[S1];

权值矩阵W1[S1][S0];

偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;

神经元激活函数f2[S2];

权值矩阵W2[S2][S1];

偏差向量b2[S2]。

学习参数

目标误差ϵ;

初始权更新值Δ0

最大权更新值Δmax

权更新值增大倍数η+

权更新值减小倍数η-

2.误差函数定义

对第p个输入模式的误差的计算公式为

中国矿产资源评价新技术与评价新模型

y2kp为BP网的计算输出。

3.BP网络学习公式推导

BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式

输入层

y0i=xi,i=1,2,…,S0;

隐含层

中国矿产资源评价新技术与评价新模型

y1j=f1(z1j),

j=1,2,…,S1;

输出层

中国矿产资源评价新技术与评价新模型

y2k=f2(z2k),

k=1,2,…,S2。

输出节点的误差公式

中国矿产资源评价新技术与评价新模型

对输出层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设输出层节点误差为

δ2k=(dk-y2k)·f2′(z2k),

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

对隐含层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设隐含层节点误差为

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb

1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”

确定

中国矿产资源评价新技术与评价新模型

其中

表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。

中国矿产资源评价新技术与评价新模型

RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的

各自的更新值

,它独自确定权更新值的大小。这是基于符号相关的自适应过程,它基

于在误差函数E上的局部梯度信息,按照以下的学习规则更新

中国矿产资源评价新技术与评价新模型

其中0<η-<1<η+

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值

应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η被设置到固定值

η+=1.2,

η-=0.5,

这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax

当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为

Δmax=50.0。

在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如

Δmax=1.0。

我们可能达到误差减小的平滑性能。

5.计算修正权值W、偏差b

第t次学习,权值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和

中国矿产资源评价新技术与评价新模型

每次学习平均误差

中国矿产资源评价新技术与评价新模型

当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测

在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f

线性函数

f(x)=x,

f′(x)=1,

f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。

一般用于输出层,可使网络输出任何值。

S型函数S(x)

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的输入范围(-∞,+∞),输出范围(0,

]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。

双曲正切S型函数

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{0,1}。

f′(x)=0。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{-1,1}。

f′(x)=0。

斜坡函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[0,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[-1,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法

1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法

(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];

(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f( )都是双曲正切S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f( )都是S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f( )为其他函数的情形

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化

1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];

2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];

3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法

函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)输入参数

P对模式(xp,dp),p=1,2,…,P;

三层BP网络结构;

学习参数。

(2)学习初始化

1)

2)各层W,b的梯度值

初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE

(4)进入学习循环

epoch=1

(5)判断每次学习误差是否达到目标误差要求

如果MSE<ϵ,

则,跳出epoch循环,

转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值

(7)求第epoch次学习各层W,b的梯度值

1)求各层误差反向传播值δ;

2)求第p次各层W,b的梯度值

3)求p=1,2,…,P次模式产生的W,b的梯度值

的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值

设为第epoch次学习产生的各层W,b的梯度值

(9)求各层W,b的更新

1)求权更新值Δij更新;

2)求W,b的权更新值

3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,转到(5);

否则,转到(12)。

(12)输出处理

1)如果MSE<ε,

则学习达到目标误差要求,输出W1,b1,W2,b2

2)如果MSE≥ε,

则学习没有达到目标误差要求,再次学习。

(13)结束

3.三层BP网络(含输入层,隐含层,输出层)预测总体算法

首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP( )。

1)输入参数:

P个需预测的输入数据向量xp,p=1,2,…,P;

三层BP网络结构;

学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。

四、总体算法流程图

BP网络总体算法流程图见附图2。

五、数据流图

BP网数据流图见附图1。

六、实例

实例一 全国铜矿化探异常数据BP 模型分类

1.全国铜矿化探异常数据准备

在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备

根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。

3.测试数据准备

全国化探数据作为测试数据集。

4.BP网络结构

隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。

表8-1 模型数据表

续表

5.计算结果图

如图8-2、图8-3。

图8-2

图8-3 全国铜矿矿床类型BP模型分类示意图

实例二 全国金矿矿石量品位数据BP 模型分类

1.模型数据准备

根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备

模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。

3.BP网络结构

输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2 模型数据

4.计算结果

结果见表8-3、8-4。

表8-3 训练学习结果

表8-4 预测结果(部分)

续表

热点内容
数字货币交易所为什么都要手持 发布:2024-11-19 11:19:49 浏览:267
币圈山寨币能不能搞 发布:2024-11-19 11:17:13 浏览:215
波场TRX202011月18日 发布:2024-11-19 11:12:18 浏览:936
比特币历史价格2015年 发布:2024-11-19 10:31:57 浏览:782
比特币中国地区三大交易所地址 发布:2024-11-19 10:14:35 浏览:750
简单地说区块链是什么 发布:2024-11-19 10:02:46 浏览:892
比特币算力合约哪家好 发布:2024-11-19 09:58:41 浏览:400
区块链数字生命管理平台 发布:2024-11-19 09:52:27 浏览:591
比特币冷钱包生成网站 发布:2024-11-19 09:28:53 浏览:295
币印矿池账户在哪 发布:2024-11-19 08:53:21 浏览:949