raft下海挖矿
❶ 什么是utxo区块链
区块链的核心技术是什么?简单来说,区块链是一个提供了拜占庭容错、并保证了最终一致性的分布式数据库;从数据结构上看,它是基于时间序列的链式数据块结构;从节点拓扑上看,它所有的节点互为冗余备份;从操作上看,它提供了基于密码学的公私钥管理体系来管理账户。
或许以上概念过于抽象,我来举个例子,你就好理解了。
你可以想象有100台计算机分布在世界各地,这100台机器之间的网络是广域网,并且,这100台机器的拥有者互相不信任。
那么,我们采用什么样的算法(共识机制)才能够为它提供一个可信任的环境,并且使得:
节点之间的数据交换过程不可篡改,并且已生成的历史记录不可被篡改;
每个节点的数据会同步到最新数据,并且会验证最新数据的有效性;
基于少数服从多数的原则,整体节点维护的数据可以客观反映交换历史。
区块链就是为了解决上述问题而产生的技术方案。
二、区块链的核心技术组成
无论是公链还是联盟链,至少需要四个模块组成:P2P网络协议、分布式一致性算法(共识机制)、加密签名算法、账户与存储模型。
1、P2P网络协议
P2P网络协议是所有区块链的最底层模块,负责交易数据的网络传输和广播、节点发现和维护。
通常我们所用的都是比特币P2P网络协议模块,它遵循一定的交互原则。比如:初次连接到其他节点会被要求按照握手协议来确认状态,在握手之后开始请求Peer节点的地址数据以及区块数据。
这套P2P交互协议也具有自己的指令集合,指令体现在在消息头(MessageHeader)的命令(command)域中,这些命令为上层提供了节点发现、节点获取、区块头获取、区块获取等功能,这些功能都是非常底层、非常基础的功能。如果你想要深入了解,可以参考比特币开发者指南中的PeerDiscovery的章节。
2、分布式一致性算法
在经典分布式计算领域,我们有Raft和Paxos算法家族代表的非拜占庭容错算法,以及具有拜占庭容错特性的PBFT共识算法。
如果从技术演化的角度来看,我们可以得出一个图,其中,区块链技术把原来的分布式算法进行了经济学上的拓展。
在图中我们可以看到,计算机应用在最开始多为单点应用,高可用方便采用的是冷灾备,后来发展到异地多活,这些异地多活可能采用的是负载均衡和路由技术,随着分布式系统技术的发展,我们过渡到了Paxos和Raft为主的分布式系统。
而在区块链领域,多采用PoW工作量证明算法、PoS权益证明算法,以及DPoS代理权益证明算法,以上三种是业界主流的共识算法,这些算法与经典分布式一致性算法不同的是,它们融入了经济学博弈的概念,下面我分别简单介绍这三种共识算法。
PoW:通常是指在给定的约束下,求解一个特定难度的数学问题,谁解的速度快,谁就能获得记账权(出块)权利。这个求解过程往往会转换成计算问题,所以在比拼速度的情况下,也就变成了谁的计算方法更优,以及谁的设备性能更好。
PoS:这是一种股权证明机制,它的基本概念是你产生区块的难度应该与你在网络里所占的股权(所有权占比)成比例,它实现的核心思路是:使用你所锁定代币的币龄(CoinAge)以及一个小的工作量证明,去计算一个目标值,当满足目标值时,你将可能获取记账权。
DPoS:简单来理解就是将PoS共识算法中的记账者转换为指定节点数组成的小圈子,而不是所有人都可以参与记账。这个圈子可能是21个节点,也有可能是101个节点,这一点取决于设计,只有这个圈子中的节点才能获得记账权。这将会极大地提高系统的吞吐量,因为更少的节点也就意味着网络和节点的可控。
3、加密签名算法
在区块链领域,应用得最多的是哈希算法。哈希算法具有抗碰撞性、原像不可逆、难题友好性等特征。
其中,难题友好性正是众多PoW币种赖以存在的基础,在比特币中,SHA256算法被用作工作量证明的计算方法,也就是我们所说的挖矿算法。
而在莱特币身上,我们也会看到Scrypt算法,该算法与SHA256不同的是,需要大内存支持。而在其他一些币种身上,我们也能看到基于SHA3算法的挖矿算法。以太坊使用了Dagger-Hashimoto算法的改良版本,并命名为Ethash,这是一个IO难解性的算法。
当然,除了挖矿算法,我们还会使用到RIPEMD160算法,主要用于生成地址,众多的比特币衍生代码中,绝大部分都采用了比特币的地址设计。
除了地址,我们还会使用到最核心的,也是区块链Token系统的基石:公私钥密码算法。
在比特币大类的代码中,基本上使用的都是ECDSA。ECDSA是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC(椭圆曲线函数)。
从技术上看,我们先从生成私钥开始,其次从私钥生成公钥,最后从公钥生成地址,以上每一步都是不可逆过程,也就是说无法从地址推导出公钥,从公钥推导到私钥。
4、账户与交易模型
从一开始的定义我们知道,仅从技术角度可以认为区块链是一种分布式数据库,那么,多数区块链到底使用了什么类型的数据库呢?
我在设计元界区块链时,参考了多种数据库,有NoSQL的BerkelyDB、LevelDB,也有一些币种采用基于SQL的SQLite。这些作为底层的存储设施,多以轻量级嵌入式数据库为主,由于并不涉及区块链的账本特性,这些存储技术与其他场合下的使用并没有什么不同。
区块链的账本特性,通常分为UTXO结构以及基于Accout-Balance结构的账本结构,我们也称为账本模型。UTXO是“unspenttransactioninput/output”的缩写,翻译过来就是指“未花费的交易输入输出”。
这个区块链中Token转移的一种记账模式,每次转移均以输入输出的形式出现;而在Balance结构中,是没有这个模式的。
数字货币里的UTXO什么意思?UTXO的中文意思叫作:未花费的交易输出。
UTXO是数字货币中的账户模型,这个模型和我们现在银行的账户模型是不一样的。
拿转账来说,现在的情况是:
我要给依依转2000块钱,我要从我的招商银行卡里面给她转账,我的卡里面有5000块钱,转给她2000块钱以后,我的招商银行账户就被扣除了2000块钱,还剩下3000块钱。
那么如果是基于比特币的UTXO,情况是这样的:
我有5000比特币,我给依依转2000比特币,2000比特币消耗掉了对不对?注意!这2000不是从我这5000总数里面扣除的,而是:我的比特币总额会分成两份(一份
2000,一份3000),这就是所谓“生成两个新的UTXO”:依依收下2000比特币,我自己收下3000比特币,3000算是给我的找零。
转账成功以后,我给依依的2000比特币目前已经使用过了,被消耗掉了,就不能再叫UTXO了,而找零给我的3000比特币目前我还没有使用,所以它还能称作UTXO,也就是未花费的交易输出。那么,如果我总共有5000比特币,我全部转给依依,那么就只需要生成一个新的
UTXO给依依就可以了,不需要找零了。
基于UTXO,每笔交易出现,都要确认比特币之前的情况,检验比特币是不是存在于我的UTXO中,如果不存在,那么系统就会拒绝你的交易行为。
这样一来,每笔交易的输入和输出都是有关系的,可以通过UTXO不断向前追溯,一直追溯到比特币诞生的时候,也就是挖矿的源头。
如果我想用同一笔UTXO发送给两个人,那么系统只确认先接受到的那一笔,一旦确认UTXO已经被消耗了,那么你就不可以再把它转给下一个人,这样就避免了双重支付的问题。
既然系统只确认先接受到的那一笔,那么问题来了,系统怎么知道谁先谁后呢?系统当然知道,因为系统有一个叫“时间戳”的东西。
什么是区块链?不是比特币进化慢,而是我们进化慢
自从区块链(blockchain)这个词被从比特币中抽象出来之后,整个业内就弥漫着一种奇特的意识形态叙事(ideologicalnarrative)。这个叙事是这样的:比特币是一架又慢又旧的破马车,十几年了没有什么改进,什么炫酷的功能都没有。当然,从人类“无利不起早”的天然本性而言,给你讲这么一通破烂话的人,绝对不是吃饱了撑的无事生非,而通常都会在看到你对手里的大饼(BTC)起了半信半疑之心之后,趁机向你推销他正在兜售的拉风跑车项目。
北京时间11月14号下午13点15分27秒,随着区块高度709632的区块被挖出,比特币自2017年隔离见证升级之后最重要的升级之一,Taproot升级,宣告成功激活(今年6月份就已经获得超90%矿工投票lock-in了,本次激活属于明牌)。
该区块中包含了chainside联合创始人FedericoTenga的一笔V1_P2TR交易。在该笔交易中,Federico在OP_RETURNDATA中附加了一句话:gmtaproot。据信,这是历史上第一笔Taproot交易。为了抢到这个名次,Federico支付了2510sat/vB的矿工费(手续费),这大概是正常矿工费(不到10sat/vB)的5百多倍。[1]
Taproot升级为我们带来了区块扩容、更好的隐私性以及增强的扩展性等诸多好处。这些好处主要是由于两项技术的引入而带来的。其一就是Schnorr签名,而另一个就是MAST(默克尔化的抽象语法树)。
Schnorr签名能够压缩数字签名的尺寸。单签名比ECDSA节省约12%的尺寸,也就可以节省转账手续费。以及,它能够把多签名压缩成一个签名,这可以极大压缩多签地址的尺寸,并保护多签参与者的隐私。据说早在2012年MikeHearn就在bitcointalk论坛提出过类似想法。通过压缩签名尺寸,相当于扩大了区块容量,容纳更多交易量。
MAST则可以大大改善P2SH交易的交易尺寸、隐私性和灵活性。最早的BIP-114提案是由JohnsonLau于2016年提出的。早前的P2SH交易可以允许支付时不揭示script(比特币脚本代码)。但是,当花费UTXO(未花费的交易输出)时,便需要提供script且记录到链上,从而占据区块链的容量。如果script比较复杂,则会占据较多的空间。MAST的引入使得我们可以把包含很多条件的复杂脚本组织成默克尔树。在花费UTXO时,也只需要揭示默克尔证明和涉及的script,而不需要揭示整颗树。这就节省了区块容量,改善了脚本的隐私性。同时,由于打开了script尺寸的限制,这就为比特币的可编程性引入了更大的扩展性和灵活性。
应该说,上面几段话对一些只在中心化交易所炒炒币,甚至连私钥都不懂的朋友来说无异于天书。别说Taproot了,便是4年前的segwit(隔离见证),对很多所谓圈内的人来说都不知何物。这没有什么可耻的。我头一次看这些新技术、新名词也是脑袋爆炸。多学习,多研究,多琢磨琢磨,也就搞明白了。
相比于科技的进步,我们掌握知识的能力进化的实在是太慢了。时至今日,很多人还搞不清楚比特币究竟是存储在自己手机上的钱包里,还是在比特币网络上。自己手机或者电脑上的钱包软件又是起什么作用的。私钥是什么,助记词是什么,所谓的HD钱包又是什么。1开头的地址,3开头的地址,5开头的地址,bc1开头的地址都有啥分别。怎么把大饼从交易所提出来,放到所谓链上。怎么自己掌控自己的比特币。怎么签名转账比特币。怎么使用隔离见证地址。以及现在,如何构建Taproot交易呢?
有人于是说,那就不要让用户自己掌握私钥,远离这些技术细节好了。回到托管式的环境,回到互联网中心化的用户体验。这样一种用户体验的改善,就像中心化交易所一样,是以牺牲用户自主掌握资产为代价的。这直接抛弃了去中心化以来全部的价值观。这又是一种进化,还是一种退化呢?
如果只是为了发明一个噱头,让投机者去炒、去赌,那就尽可以不考虑这些。那就不仅不应该限制OP_RETURN的尺寸,甚至应该扩充script使之支持图灵完备的编程。这样就可以在比特币上发行各种空气币、土狗币,再搞出来各种为炒而生的应用出来,所谓繁荣的生态。但是比特币一路走来,似乎是走了相反的道路。不仅从一开始就极大限制了script的功能,而且主动缩短了OP_RETURN的数据尺寸,限制了在比特币链上玩各种花活儿的可能性。
比特币是审慎的。它清楚自己有更大的使命。Taproot的激活,可能会有利于二层的发展。但是,并不会给一层带来自限性的问题。相反的,它会因为压缩了数据尺寸,而扩大了一层的容量。
比特币是富有耐心的。它肩负着普及去中心化数字货币(而不是在中心化平台上进行投机)的历史任务。所以它必须耐心地等待,等待每一个人跟上技术发展的脚步。
UXTO与余额区块链入门从使用钱包开始,我们最关注的是钱包的账户余额。可看过很多区块链资料以后,一直存在一个疑问,钱包的余额信息存在区块链的什么位置?一直没有找到,只有一个相近的概念叫UTXO(UnspentTransactionOutput),但看完以后还是对应不上。直到翻遍网上所有关于UXTO的资料,才知道在中本聪设计的比特币系统中,并没有余额这个概念,“比特币余额”是由比特币等钱包应用派生出来的产物。钱包的余额是通过与账户相关的多个UXTO算出来的。下面且听我详细道来。
了解过一点点会计学,我们现在的会计系统绝大部分采用的是一种叫做“借贷记账法”的方法,账目分成借方和贷方,每发生一笔业务都要登记两个以上的科目。
简单来说,Alice转账给Bob1美元,使用借贷记账法至少要产生两条账目,Alice账户减少1美元,Bob账户增加1美元。这种记账法在企业经营、企业审计中有无数的好处。但是这种记账法也有一个最大的缺点,就是容易产生记账错误和记账误差。一笔交易需要登记两条以上的账目,本质上记录的是“交易的结果”,而不是“交易本身”。
中本聪发明了UTXO(UnspentTransactionOutput)交易模型,并将其应用到比特币当中。UTXO是“未花费的交易输出”,简单来说就是,每一笔比特币交易实际上都是由若干个交易输入和输出组成的。交易输入是资金来源,交易输出是资金去向,每一笔交易都要从交易输入中花费出去一部分,这一部分就是未花费的交易输出(UTXO)。每一次的交易输入都可以追溯到之前的UTXO,直至最初的挖矿所得。
由挖矿所得创建的比特币交易,是每个区块中的首个交易,又称之为coinbase交易,它由矿工创建,没有上一笔交易输出。
在比特币交易中UTXO就是基本单位,一个UTXO一旦被创建就不可被继续分割,它只能当作是下一笔交易的输入被花费掉,花费后产生新的UTXO,这样周而复始地实现货币的价值转移。所以我们在比特币钱包中所看到的账户余额,实际上是钱包通过扫描区块链并聚合所有属于该用户的UTXO计算得来的。
因此,当我们在说某人拥有1枚比特币的时候,我们实际上说的是,在当前的区块链记录中,有若干笔交易的UTXO收款地址写的是这个人的钱包地址,这些UTXO的总和是1个比特币。
比特币的UXTO系统遵守两个规则:
我们以以太账户为例,打开etherscan.io,选择BLOCKCHAIN-AllAccounts,这样可以看到所有地址与余额,可以选择其中一个查看详细信息。如果看不懂,没关系,把自己的以太地址输入到右上角的搜索框回车后,会显示地址的余额和详细交易记录,如下图。
至此,我能理解李笑来老师说为什么他的账户没有余额,只有UXTO了,O(∩_∩)O哈哈~,内行人不要说外行话嘛。
❷ 常见的共识算法介绍
在异步系统中,需要主机之间进行状态复制,以保证每个主机达成一致的状态共识。而在异步系统中,主机之间可能出现故障,因此需要在默认不可靠的异步网络中定义容错协议,以确保各个主机达到安全可靠的状态共识。
共识算法其实就是一组规则,设置一组条件,筛选出具有代表性的节点。在区块链系统中,存在很多这样的筛选方案,如在公有链中的POW、Pos、DPOS等,而在不需要货币体系的许可链或私有链中,绝对信任的节点、高效的需求是公有链共识算法不能提供的,对于这样的区块链,传统的一致性共识算法成为首选,如PBFT、PAXOS、RAFT等。
目录
一、BFT(拜占庭容错技术)
二、PBFT(实用拜占庭容错算法)
三、PAXOS
四、Raft
五、POW(工作量证明)
六、POS(权益证明)
七、DPOS(委任权益证明)
八、Ripple
拜占庭弄错技术是一类分布式计算领域的容错技术。拜占庭假设是由于硬件错误、网络拥塞或中断以及遭到恶意攻击的原因,计算机和网络出现不可预测的行为。拜占庭容错用来处理这种异常行为,并满足所要解决问题的规范。
拜占庭容错系统是一个拥有n台节点的系统,整个系统对于每一个请求,满足以下条件:
1)所有非拜占庭节点使用相同的输入信息,产生同样的结果;
2)如果输入的信息正确,那么所有非拜占庭节点必须接收这个信息,并计算相应的结果。
拜占庭系统普遍采用的假设条件包括:
1)拜占庭节点的行为可以是任意的,拜占庭节点之间可以共谋;
2)节点之间的错误是不相关的;
3)节点之间通过异步网络连接,网络中的消息可能丢失、乱序并延时到达,但大部分协议假设消息在有限的时间里能传达到目的地;
4)服务器之间传递的信息,第三方可以嗅探到,但是不能篡改、伪造信息的内容和验证信息的完整性。
拜占庭容错由于其理论上的可行性而缺乏实用性,另外还需要额外的时钟同步机制支持,算法的复杂度也是随节点的增加而指数级增加。
实用拜占庭容错降低了拜占庭协议的运行复杂度,从指数级别降低到多项式级别。
PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。PBFT要求共同维护一个状态。需要运行三类基本协议,包括一致性协议、检查点协议和视图更换协议。
一致性协议。一致性协议至少包含若干个阶段:请求(request)、序号分配(pre-prepare)和响应(reply),可能包含相互交互(prepare),序号确认(commit)等阶段。
PBFT通信模式中,每个客户端的请求需要经过5个阶段。由于客户端不能从服务器端获得任何服务器运行状态的信息,PBFT中主节点是否发生错误只能由服务器监测。如果服务器在一段时间内都不能完成客户端的请求,则会触发视图更换协议。
整个协议的基本过程如下:
1)客户端发送请求,激活主节点的服务操作。
2)当主节点接收请求后,启动三阶段的协议以向各从节点广播请求。
[2.1]序号分配阶段,主节点给请求赋值一个序列号n,广播序号分配消息和客户端的请求消息m,并将构造PRE-PREPARE消息给各从节点;
[2.2]交互阶段,从节点接收PRE-PREPARE消息,向其他服务节点广播PREPARE消息;
[2.3]序号确认阶段,各节点对视图内的请求和次序进行验证后,广播COMMIT消息,执行收到的客户端的请求并给客户端以响应。
3)客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果。
PBFT一般适合有对强一致性有要求的私有链和联盟链,例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。
在有些分布式场景下,其假设条件不需要考虑拜占庭故障,而只是处理一般的死机故障。在这种情况下,采用Paxos等协议会更加高效。。PAXOS是一种基于消息传递且具有高度容错特性的一致性算法。
PAXOS中有三类角色Proposer、Acceptor及Learner,主要交互过程在Proposer和Acceptor之间。算法流程分为两个阶段:
phase 1
a) proposer向网络内超过半数的acceptor发送prepare消息
b) acceptor正常情况下回复promise消息
phase 2
a) 在有足够多acceptor回复promise消息时,proposer发送accept消息
b) 正常情况下acceptor回复accepted消息
流程图如图所示:
PAXOS协议用于微信PaxosStore中,每分钟调用Paxos协议过程数十亿次量级。
Paxos是Lamport设计的保持分布式系统一致性的协议。但由于Paxos非常复杂,比较难以理解,因此后来出现了各种不同的实现和变种。Raft是由Stanford提出的一种更易理解的一致性算法,意在取代目前广为使用的Paxos算法。
Raft最初是一个用于管理复制日志的共识算法,它是在非拜占庭故障下达成共识的强一致协议。Raft实现共识过程如下:首先选举一个leader,leader从客户端接收记账请求、完成记账操作、生成区块,并复制到其他记账节点。leader有完全的管理记账权利,例如,leader能够决定是否接受新的交易记录项而无需考虑其他的记账节点,leader可能失效或与其他节点失去联系,这时,重新选出新的leader。
在Raft中,每个节点会处于以下三种状态中的一种:
(1)follower:所有结点都以follower的状态开始。如果没收到leader消息则会变成candidate状态;
(2)candidate:会向其他结点“拉选票”,如果得到大部分的票则成为leader。这个过程就叫做Leader选举(Leader Election);
(3)leader:所有对系统的修改都会先经过leader。每个修改都会写一条日志(log entry)。leader收到修改请求后的过程如下:此过程叫做日志复制(Log Replication)
1)复制日志到所有follower结点
2)大部分结点响应时才提交日志
3)通知所有follower结点日志已提交
4)所有follower也提交日志
5)现在整个系统处于一致的状态
Raft阶段主要分为两个,首先是leader选举过程,然后在选举出来的leader基础上进行正常操作,比如日志复制、记账等。
(1)leader选举
当follower在选举时间内未收到leader的消息,则转换为candidate状态。在Raft系统中:
1)任何一个服务器都可以成为候选者candidate,只要它向其他服务器follower发出选举自己的请求。
2)如果其他服务器同意了,发出OK。如果在这个过程中,有一个follower宕机,没有收到请求选举的要求,此时候选者可以自己选自己,只要达到N/2+1的大多数票,候选人还是可以成为leader的。
3)这样这个候选者就成为了leader领导人,它可以向选民也就是follower发出指令,比如进行记账。
4)以后通过心跳消息进行记账的通知。
5)一旦这个leader崩溃了,那么follower中有一个成为候选者,并发出邀票选举。
6)follower同意后,其成为leader,继续承担记账等指导工作。
(2)日志复制
记账步骤如下所示:
1)假设leader已经选出,这时客户端发出增加一个日志的要求;
2)leader要求follower遵从他的指令,将这个新的日志内容追加到各自日志中;
3)大多数follower服务器将交易记录写入账本后,确认追加成功,发出确认成功信息;
4)在下一个心跳消息中,leader会通知所有follower更新确认的项目。
对于每个新的交易记录,重复上述过程。
在这一过程中,若发生网络通信故障,使得leader不能访问大多数follower了,那么leader只能正常更新它能访问的那些follower服务器。而大多数的服务器follower因为没有了leader,他们将重新选举一个候选者作为leader,然后这个leader作为代表与外界打交道,如果外界要求其添加新的交易记录,这个新的leader就按上述步骤通知大多数follower。当网络通信恢复,原先的leader就变成follower,在失联阶段,这个老leader的任何更新都不能算确认,必须全部回滚,接收新的leader的新的更新。
在去中心账本系统中,每个加入这个系统的节点都要保存一份完整的账本,但每个节点却不能同时记账,因为节点处于不同的环境,接收不同的信息,如果同时记账,必然导致账本的不一致。因此通过同时来决定那个节点拥有记账权。
在比特币系统中,大约每10分钟进行一轮算力竞赛,竞赛的胜利者,就获得一次记账的权力,并向其他节点同步新增账本信息。
PoW系统的主要特征是计算的不对称性。工作端要做一定难度的工作才能得出一个结果,而验证方却很容易通过结果来检查工作端是不是做了相应的工作。该工作量的要求是,在某个字符串后面连接一个称为nonce的整数值串,对连接后的字符串进行SHA256哈希运算,如果得到的哈希结果(以十六进制的形式表示)是以若干个0开头的,则验证通过。
比特币网络中任何一个节点,如果想生成一个新的区块并写入区块链,必须解出比特币网络出的PoW问题。关键的3个要素是 工作量证明函数、区块及难度值 。工作量证明函数是这道题的计算方法,区块决定了这道题的输入数据,难度值决定了这道题所需要的计算量。
(1)工作量证明函数就是<u style="box-sizing: border-box;"> SHA256 </u>
比特币的区块由区块头及该区块所包含的交易列表组成。拥有80字节固定长度的区块头,就是用于比特币工作量证明的输入字符串。
(2)难度的调整是在每个完整节点中独立自动发生的。每2016个区块,所有节点都会按统一的公式自动调整难度。如果区块产生的速率比10分钟快则增加难度,比10分钟慢则降低难度。
公式可以总结为:新难度值=旧难度值×(过去2016个区块花费时长/20160分钟)
工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式:目标值=最大目标值/难度值
其中最大目标值为一个恒定值:
目标值的大小与难度值成反比。比特币工作量证明的达成就是矿工计算出来的 区块哈希值必须小于目标值 。
(3)PoW能否解决拜占庭将军问题
比特币的PoW共识算法是一种概率性的拜占庭协议(Probabilistic BA)
当不诚实的算力小于网络总算力的50%时,同时挖矿难度比较高(在大约10分钟出一个区块情况下)比特币网络达到一致性的概念会随确认区块的数目增多而呈指数型增加。但当不诚实算力具一定规模,甚至不用接近50%的时候,比特币的共识算法并不能保证正确性,也就是,不能保证大多数的区块由诚实节点来提供。
比特币的共识算法不适合于私有链和联盟链。其原因首先是它是一个最终一致性共识算法,不是一个强一致性共识算法。第二个原因是其共识效率低。
扩展知识: 一致性
严格一致性,是在系统不发生任何故障,而且所有节点之间的通信无需任何时间这种理想的条件下,才能达到。这个时候整个系统就等价于一台机器了。在现实中,是不可能达到的。
强一致性,当分布式系统中更新操作完成之后,任何多个进程或线程,访问系统都会获得最新的值。
弱一致性,是指系统并不保证后续进程或线程的访问都会返回最新的更新的值。系统在数据成功写入之后,不承诺立即可以读到最新写入的值,也不会具体承诺多久读到。但是会尽可能保证在某个时间级别(秒级)之后。可以让数据达到一致性状态。
最终一致性是弱一致性的特定形式。系统保证在没有后续更新的前提下,系统最终返回上一次更新操作的值。也就是说,如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。
在股权证明PoS模式下,有一个名词叫币龄,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000,这个时候,如果你发现了一个PoS区块,你的币龄就会被清空为0。你每被清空365币龄,你将会从区块中获得0.05个币的利息(假定利息可理解为年利率5%),那么在这个案例中,利息 = 3000 * 5% / 365 = 0.41个币,这下就很有意思了,持币有利息。
点点币(Peercoin)是首先采用权益证明的货币。,点点币的权益证明机制结合了随机化与币龄的概念,未使用至少30天的币可以参与竞争下一区块,越久和越大的币集有更大的可能去签名下一区块。一旦币的权益被用于签名一个区块,则币龄将清为零,这样必须等待至少30日才能签署另一区块。
PoS机制虽然考虑到了PoW的不足,但依据权益结余来选择,会导致首富账户的权力更大,有可能支配记账权。股份授权证明机制(Delegated Proof of Stake,DPoS)的出现正是基于解决PoW机制和PoS机制的这类不足。
比特股(Bitshare)是一类采用DPoS机制的密码货币。它的原理是,让每一个持有比特股的人进行投票,由此产生101位代表 , 我们可以将其理解为101个超级节点或者矿池,而这101个超级节点彼此的权利是完全相等的。如果代表不能履行他们的职责(当轮到他们时,没能生成区块),他们会被除名,网络会选出新的超级节点来取代他们。
比特股引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。
见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。
比特股还设计了另外一类竞选,代表竞选。选出的代表拥有提出改变网络参数的特权,包括交易费用、区块大小、见证人费用和区块区间。若大多数代表同意所提出的改变,持股人有两周的审查期,这期间可以罢免代表并废止所提出的改变。这一设计确保代表技术上没有直接修改参数的权利以及所有的网络参数的改变最终需得到持股人的同意。
Ripple(瑞波)是一种基于互联网的开源支付协议,在Ripple的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。
追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。
Ripple的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。每隔几秒,Ripple网络将进行如下共识过程:
1)每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。
2)每个验证节点把自己的交易候选集作为提案发送给其他验证节点。
3)验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。
4)验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤3)、步骤4),直到阈值达到80%。
5)验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(Last Closed Ledger),即账本最后(最新)的状态。
在Ripple的共识算法中,参与投票节点的身份是事先知道的。该共识算法只适合于权限链(Permissioned chain)的场景。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。
在区块链网络中,由于应用场景的不同,所设计的目标各异,不同的区块链系统采用了不同的共识算法。一般来说,在私有链和联盟链情况下,对一致性、正确性有很强的要求。一般来说要采用强一致性的共识算法。而在公有链情况下,对一致性和正确性通常没法做到百分之百,通常采用最终一致性(Eventual Consistency)的共识算法。
共识算法的选择与应用场景高度相关,可信环境使用paxos 或者raft,带许可的联盟可使用pbft ,非许可链可以是pow,pos,ripple共识等,根据对手方信任度分级,自由选择共识机制。
❸ raft铰链怎么获得
raft铰链是通过熔炉制作获得的,要先学会熔炉的资质方法,然后去海底挖矿烧成锭,再用锭放入研究台研究一下,就可以学会铰链的制作方法。
《raft木筏生存》是一款漂流生存游戏。游戏提供单人和多人在线合作模式。最初是2016年秋季时候的一个大学生项目,当时三名乌普萨拉大学Gotland分校的学生耗时15周做的一款生存游戏创意原型。
游戏中主角将出生在一片漫无边际的海洋上,靠一只小木筏和一只钩子努力求生。玩家要做的就是利用钩子勾住海洋上漂流的东西,利用这些物资制作有用的工具、武器,来加固自己的木筏。游戏支持多人模式。
❹ Quorum介绍(二):Quorum共识
我们知道,公共区块链是一个开放的社区,任何人都能够成为一个节点加入网络,在网络中计算,提交交易到链上等,因此公链是没有信任基础的,所以公链的共识第一要义就是证明交易的合法性和真实性,防止恶意成员的捣乱,效率不是第一要义。
与公链的环境不同,有准入门槛的企业链或者联盟链链上的所有成员在加入时实际上是已经获得了某些认可和许可的,因此企业链/联盟链上的成员是有一定信任基础的。在企业级链上我们没有必要使用POW或者POS这种浪费算力或者低效的交易共识。
Quorum提供了多种共识供用户采用:
在讲Raft前,有必要提一下Paxos算法,Paxos算法是Leslie Lamport于1990年提出的基于消息传递的一致性算法。然而,由于算法难以理解,刚开始并没有得到很多人的重视。其后,作者在八年后,也就是1998年在ACM上正式发表,然而由于算法难以理解还是没有得到重视。而作者之后用更容易接受的方法重新发表了一篇论文《Paxos Made Simple》。
可见,Paxos算法是有多难理解,即便现在放到很多高校,依然很多学生、教授都反馈Paxos算法难以理解。同时,Paxos算法在实际应用实现的时候也是比较困难的。这也是为什么会有后来Raft算法的提出。
Raft是实现分布式共识的一种算法,主要用来管理日志复制的一致性。它和Paxos的功能是一样,但是相比于Paxos,Raft算法更容易理解、也更容易应用到实际的系统当中。而Raft算法也是联盟链采用比较多的共识算法。
Raft一共有三种角色状态:
每个节点上都有一个倒计时器 (Election Timeout),时间随机在 150ms 到 300ms 之间。有几种情况会重设 Timeout:
在分布式系统中,“时间同步”是一个很大的难题,因为每个机器可能由于所处的地理位置、机器环境等因素会不同程度造成时钟不一致,但是为了识别“过期信息”,时间信息必不可少。
Raft算法中就采用任期(Term)的概念,将时间切分为一个个的Term(同时每个节点自身也会本地维护currentTerm),可以认为是逻辑上的时间,如下图。
每一任期的开始都是一次领导人选举,一个或多个候选人(Candidate)会尝试成为领导(Leader)。如果一个人赢得选举,就会在该任期(Term)内剩余的时间担任领导人。在某些情况下,选票可能会被评分,有可能没有选出领导人(如t3),那么,将会开始另一任期,并且立刻开始下一次选举。Raft 算法保证在给定的一个任期最少要有一个领导人。
特殊情况的处理
在以太坊中节点本身并没有角色,因此在使用Raft共识时,我们称leader节点为挖矿节点:
Raft共识机制本身保证了同一时间点最多只有一个leader,因此用在以太坊模型下也只会有一个出块者,避免了同时出块或者算力浪费的情况。
在单笔交易(transaction)层级Quorum依然沿用了Ethereum的p2p传输机制,只有在块(block)层级才会使用Raft的传输机制。
其中需要注意到一点,在以太坊中一个节点收到块以后就会立刻记账,而在Quorum模型中,一个块的记录必须遵从Raft协议,每个节点从leader处收到块以后必须报告给leader确认收到以后,再由leader通知各个节点进行数据提交(记录)
在Quorum模型中新块的信息是很有可能和已有块的header信息不符的,最容易发生这种情况的就是选举人更替(挖矿节点更替),具体描述如下:
假设有两个节点,node1和node2,node1是现有的leader,现有链的最新区块是0xbeda,它的父区块是0xacaa
对块“Extends”或者“No-op”的标记是在更上层完成的,并不由raft本身log记录机制实现。因为在raft内部,信息并不分为有效或无效,只有在区块链层面才会有有效区块和无效区块的含义。
需要注意的是,Quorum的这种记账机制和本身Ethereum的LVC(最长链机制)是完全不一样的
Quorum的出块频率默认是50ms一个块,可以通过 --raftblocktime 参数进行设置
投机性出块并不是以太坊Raft共识严格必须的核心机制之一,但是是提高出块效率的有效方式。
一个块从产生到实际被记录账本,走完整个raft流程实际上是需要耗费一定时间的。如果我们在上一个块被计入账本之后才开始产生下一个块,那么一笔交易想要成功被记录需要耗费较多的时间。
而在投机性(speculative minting)出块中,我们允许一个新块在它的父块被记录之前就产生。依次类推,在一段时间内,实际上会产生“投机链(speculative chain)”,在祖先块没有被记录进账本之前,一个一个新块已经依据先后关系组成了一条临时链片段,等待被记录。
对于已经被记录进投机块的交易,我们会在交易池中标记为“proposed transaction”
在之前我们说过,raft机制中是存在两个挖矿节点比赛出块和记账的可能的,因此,一条 speculative chain 中间的某一个块很有可能不会被记录到账本中。在这种情况下我们也会把交易池中的交易状态修改回来。( InvalidRaftOrdering event)
目前,Quorum并没有对speculative chain的长度做限制,但在它的未来规划中有讲这一点作为一个性能优化项加入开发进程,最后能够让一个挖矿节点即使在raft共识层没有连接上,它也可以离线一直出块,产生自己的speculative chain。
一条speculative chain有以下几个部分构成:
在块传输上我们使用etcd Raft默认的http传输,当然使用Ethereum的p2p传输也是可以的,但是Quorum团队在测试阶段发现,高负载的状态下,ETH p2p的性能没有raft p2p性能好。
Quorum使用50400端口作为Raft 传输层的默认监听端口,也可以通过 --raftport 参数自行设置。
一个集群默认的最大节点个数是25,可以通过 --maxpeers N 来设置,N是你的最大节点个数。
Quorum的IBFT其实就是PBFT,只不过摩根大通把它自己实现的PBFT叫做IBFT,所以IBFT的基本原理与PBFT是一样的,所不同的是,IBFT中把出块和共识的三阶段结合在了一起。
Istanbul BFT修改自PBFT算法,包括三个阶段: PRE-PREPARE 、 PREPARE 以及 COMMIT 。在 N 个节点的网络中,这个算法可以最多容忍 F 个出错节点,其中 N=3F+1 。
Istanbul BFT算法中的区块是确定的,意味着链没有分叉并且合法的区块一定是在链中。为了防止一个恶意节点生成不同的链,在把区块插入进链 之前 ,每一个validator必须把 2F + 1 个 COMMIT 签名放进区块头的 extraData 字段。因此,区块是可以自我验证的(因为有签名)并且轻客户端也支持。
然而动态的 extraData 也会造成区块的hash计算问题。因为一个区块可以被不同的validator验证,所以会有不同的签名,所以同一个区块会有不同的hash。解决的方案是,计算区块hash的时候把 COMMIT 签名排除在外。因此我们任然可以在保证block hash一致性的同时进行共识验证。
由于Ethereum POA共识在网上已经有大量介绍,笔者这里就不多做详细介绍,只对重要特点和POA的工作流程做大致梳理和介绍
❺ 区块链共识方法是什么(区块链共识机制有哪些)
区块链常见的三大共识机制区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。
可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。
所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。
区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。
不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。
目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)
接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景
概念:
工作量证明机制(Proofofwork),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。
工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。
应用:
POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的BlockHash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。
而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到BlockHash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。
如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。
假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。
优缺点
优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。
缺点:需要消耗大量的算法,达成共识的周期较长
概念:
权益证明机制(ProofofStake),要求证明人提供一定数量加密货币的所有权。
权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。
应用:
2012年,化名SunnyKing的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。
为了实现POS,SunnyKing借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。
上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。
优缺点:
优点:缩短达成共识所需的时间,比工作量证明更加节约能源。
缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证
概念:
授权股权证明机制(DelegatedProofofStake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。
授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。
同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
应用:
比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。
见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。
DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。
优缺点:
优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证
缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。
区块链有几种共识算法?RippleConsensus(瑞波共识算法)
使一组节点能够基于特殊节点列表达成共识。初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由“中心化”开始,它将一直是“中心化的”,而如果它开始腐化,股东们什么也做不了。
5、PBFT:(实用拜占庭容错算法)
PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。将所有的副本组成的集合使用大写字母R表示,使用0到|R|-1的整数表示每一个副本。为了描述方便,假设|R|=3f+1,这里f是有可能失效的副本的最大个数。尽管可以存在多于3f+1个副本,但是额外的副本除了降低性能之外不能提高可靠性。
PBFT算法主要特点如下:客户端向主节点发送请求调用服务操作;主节点通过广播将请求发送给其他副本;所有副本都执行请求并将结果发回客户端;客户端需要等待f+1个不同副本节点发回相同的结果,作为整个操作的最终结果。
什么是区块链共识?
所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。
区块链作为一种按时间顺序存储数据的数据结构,可支持不同的共识机制。共识机制是区块链技术的重要组件。区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质:
1)一致性。所有诚实节点保存的区块链的前缀部分完全相同。
2)有效性。由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。
区块链的四种共识机制区块链的共识机制可以分为以下四类:权益证明机制、工作量证明机制、Pool验证和池股份授权证明机制。
区块链,就是一个又一个区块组成的链条。每一个区块中保存了一定的信息,它们按照各自产生的时间顺序连接成链条。这个链条被保存在所有的服务器中,只要整个系统中有一台服务器可以工作,整条区块链就是安全的。这些服务器在区块链系统中被称为节点,它们为整个区块链系统提供存储空间和算力支持。
区块链---共识算法PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。
PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。
R=Hash(r)
哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:
Rd=Hash(r+n)
该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。
?
PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。
POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。
节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。
?
DPoS算法和PoS算法相似,也采用股份和权益质押。
但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。
选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。
这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。
通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。
?
拜占庭问题:
拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。
但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。
BFT:
BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。
拜占庭容错系统:
发生故障的节点被称为拜占庭节点,而正常的节点即为非拜占庭节点。
假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n≥3m+1),拜占庭容错系统需要满足如下两个条件:
另外,拜占庭容错系统需要达成如下两个指标:
PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题
?
PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点p=vmod|R|。v:视图编号,|R|节点个数,p:主节点编号。
PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。
具体流程如下:
客户端c向主节点p发送REQUEST,o,t,c请求。o:请求的具体操作,t:请求时客户端追加的时间戳,c:客户端标识。REQUEST:包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。
主节点收到客户端的请求,需要进行以下交验:
a.客户端请求消息签名是否正确。
非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条PRE-PREPARE,v,n,d,m消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。PRE-PREPARE,v,n,d进行主节点签名。n是要在某一个范围区间内的[h,H],具体原因参见垃圾回收章节。
副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:
a.主节点PRE-PREPARE消息签名是否正确。
b.当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。
c.d与m的摘要是否一致。
d.n是否在区间[h,H]内。
非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条PREPARE,v,n,d,i消息,v,n,d,m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。PREPARE,v,n,d,i进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于ViewChange过程中恢复未完成的请求操作。
主节点和副本节点收到PREPARE消息,需要进行以下交验:
a.副本节点PREPARE消息签名是否正确。
b.当前副本节点是否已经收到了同一视图v下的n。
c.n是否在区间[h,H]内。
d.d是否和当前已收到PRE-PPREPARE中的d相同
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条COMMIT,v,n,d,i消息,v,n,d,i与上述PREPARE消息内容相同。COMMIT,v,n,d,i进行副本节点i的签名。记录COMMIT消息到日志中,用于ViewChange过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。
主节点和副本节点收到COMMIT消息,需要进行以下交验:
a.副本节点COMMIT消息签名是否正确。
b.当前副本节点是否已经收到了同一视图v下的n。
c.d与m的摘要是否一致。
d.n是否在区间[h,H]内。
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回REPLY,v,t,c,i,r给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。
?
如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。
如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起ViewChange协议。
ViewChange协议:
副本节点向其他节点广播VIEW-CHANGE,v+1,n,C,P,i消息。n是最新的stablecheckpoint的编号,C是2f+1验证过的CheckPoint消息集合,P是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。
当主节点p=v+1mod|R|收到2f个有效的VIEW-CHANGE消息后,向其他节点广播NEW-VIEW,v+1,V,O消息。V是有效的VIEW-CHANGE消息集合。O是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:
副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始O中的PRE-PREPARE消息处理流程。
?
在上述算法流程中,为了确保在ViewChange的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。
最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。
副本节点i发送CheckPoint,n,d,i给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stablecheckpoint。
这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。
为了防止i的处理请求过快,设置一个上文提到的高低水位区间[h,H]来解决这个问题。低水位h等于上一个stablecheckpoint的编号,高水位H=h+L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L=2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stablecheckpoint发生变化,再继续前进。
?
在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。
?
?
Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。
?
下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。
在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证,这也称为法定人数。在Raft集群中执行操作所需的最少投票数为(N/2+1),其中N是组中成员总数,即投票至少超过一半,这也就是为什么集群节点通常为奇数的原因。因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。
如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。
?
数据存储:Tidb/TiKV
日志:阿里巴巴的DLedger
服务发现:Consuletcd
集群调度:HashiCorpNomad
?
只能容纳故障节点(CFT),不容纳作恶节点
顺序投票,只能串行apply,因此高并发场景下性能差
?
Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。
当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。因此,在给定的实例中,Raft集群的节点可以处于以下任何状态:追随者(Follower),候选人(Candidate)或领导者(Leader)。
系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;
如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;
一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。
Raft使用基于心跳的RPC机制来检测何时开始新的选举。在正常期间,Leader会定期向所有可用的Follower发送心跳消息(实际中可能把日志和心跳一起发过去)。因此,其他节点以Follower状态启动,只要它从当前Leader那里收到周期性的心跳,就一直保持在Follower状态。
当Follower达到其超时时间时,它将通过以下方式启动选举程序:
根据Candidate从集群中其他节点收到的响应,可以得出选举
❻ 区块链的5大缺点有哪些,区块链的不足之处
区块链在股权融资中的优点和缺点区块链的缺点
1.无隐私性
区块链是分布式,在公有链上,等于每个人手上都有一份完整账本,并且由于区块链计算余额、验证交易有效性等等都需要追溯每一笔账,因此交易数据都是公开透明的,如果我知道某个人的账户,我就能知道他的所有财富和每一笔交易,没有隐私可言。
2.监管
区块链的去中心、自治化的特点淡化了国家监管的概念。然而所有的创新,都需要符合监管的要求。区块链的监管,在某种程序上是促进区块链的商业应用,更好的提供合规性保护。另一方面监管部门对这项新技术的法律和制度建立上存在滞后,也可能会毁掉区块链,需要把握好尺度。
3.安全性问题
区块链技术一大特点就是不可逆、不可伪造,但前提是私钥是安全的。私钥是用户生成并保管的,没有第三方参与。私钥一旦丢失,便无法对账户的资产做任何操作。随着量子计算机等新计算技术的发展,未来非对称加密算法具有一定的破解可能性,这也是区块链技术面临的潜在安全威胁。
4.数据确认的延迟性
区块链的交易是存在延迟性的,拿比特币举例,当前产生的交易的有效性受网络传输影响,因为要被网络上大多数节点得知这笔交易,还要等到下一个记账周期(比特币控制在10分钟左右),也就是要被大多数节点认可这笔交易。还受一个小概率事件影响,就是当网络上同时有2个或以上节点竞争到记账权力,那么在网络中就会产生2个或以上的区块链分支,这时候到底那个分支记录的数据是有效的,则要再等下一个记账周期,最终由最长的区块链分支来决定。因此区块链的交易数据是有延迟性的。
区块链的优点
1.集体维护
系统是开放的,除了交易各方的私有信息被加密外,系统是由其中所有具有维护功能的节点共同维护的,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明。
2.去中心化
区块链存储数据时使用的是对等网络技术,使用分布式核算和存储,不存在中心化的硬件或管理机构。所有节点的权利和义务都相等,因此任一节点停止工作都会不影响系统整体的运作。
3.无须信任系统
由于节点之间的交换遵循固定的算法,参与人不需要对任何人信任,随着参与节点增加,系统的安全性反而增加。因此交易对手无须通过公开身份的方式让对方自己产生信任,对信用的累积非常有帮助。
4.信息不可篡改
一旦信息经过验证并添加至区块链,就会永久的存储起来。生成一套按照时间先后顺序记录的、不可篡改的、可信任的数据库,从而可以限制相关不法行为。因此区块链的数据稳定性和可靠性极高。
区块链的不可篡改和撤销既是优点也是缺点,在区块链里没有后悔药,你对区块链的数据变动几乎无能为力,主要体现在:如果转账地址填错,会直接造成永久损失且无法撤销;如果丢失密钥也一样会造成永久损失无法挽回。而现实中如果你银行卡丢了或者密码忘记了,还能到银行营业点处理,你的钱还在。
区块链目前用到哪些共识机制?它们各自的优缺点和适用范围是什么目前主要有四大类共识机制:Pow、Pos、DPos、Pool
1、Pow工作量证明,就是大家熟悉的挖矿,通过与或运算,计算出一个满足规则的随机数,即获得本次记账权,发出本轮需要记录的数据,全网其它节点验证后一起存储;
优点:完全去中心化,节点自由进出;
缺点:目前bitcoin已经吸引全球大部分的算力,其它再用Pow共识机制的区块链应用很难获得相同的算力来保障自身的安全;挖矿造成大量的资源浪费;共识达成的周期较长,不适合商业应用
2、Pos权益证明,Pow的一种升级共识机制;根据每个节点所占代币的比例和时间;等比例的降低挖矿难度,从而加快找随机数的速度。
优点:在一定程度上缩短了共识达成的时间
缺点:还是需要挖矿,本质上没有解决商业应用的痛点
3、DPos股份授权证明机制,类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。
优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证
缺点:整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的
4、Pool验证池,基于传统的分布式一致性技术,加上数据验证机制;是目前行业链大范围在使用的共识机制
优点:不需要代币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证;
缺点:去中心化程度不如bictoin;更适合多方参与的多中心商业模式
在使用共识机制,保证数据一致性时的巨大优势(共识机制则是Ripple首先提出的,数据正确性优先的网络交易同步机制,在共识网络中,无论软件代码怎么变动,无法取得共识就无法进入网络,更不要提分叉了)。
——————————————————
PS:稍微自黑下,虽然共识机制绝对能确保任何时候都不会产生硬分叉。但是,这种机制的缺点也比较明显,那就是要取得与其他节点的共识,明显要比当前Bitcoin网络漫长的多。极端情况下,在Ripple共识机制网络中掉线的后果也是很恐怖的。
有可能你家停电一天,第二天整个系统就再也无法与其它Rippled节点取得共识了(共识机制事实上需要超过80%的节点承认了你的数据,你的提交才会被其它节点接受,否则就会被排它的拒绝连接),甚至只能清空自己全部500多GB数据重新同步才能连上其它Ripple节点。
所以目前来说,现有的Rippled端并不适合民用(商用的话影响就比较小,比如RL自己的Rippled节点托管在亚马逊云数据中心,长时间无响应是可以高额索赔的,而且那种地方除了大型灾害几乎不会断),这也是RL一直想改进的方面之一。
浅谈区块链的几大应用,哪些会是坑
区块链能做什么?区块链(BlockChain)这个伴随着比特币诞生的伟大技术,目前在金融领域应用能大幅降低交易成本,提高效率,这足以令华尔街兴奋不已。然而这仅仅是冰山一角,其潜在应用前景非常广泛,未来将颠覆我们生活的方方面面。
互联网是一种信息网络,里面流淌着0和1,区块链是一种价值网络,起到的作用是价值的传递,而不同于互联网做数据传递。
说到价值传递,有一个非常简单的场景,例如支付,我手上有100元钱,我想转到群里,可以通过微信红包或者微信转账的方式,在这个交易过程中,需要第三方的参与,而区块链的传递方式是点对点的传递,并不需要任何一个中间节点,这是区块链和我们现有架构非常大的一个区别。
说到支付的点对点,很多人会想到比特币,因为大多数人是从比特币知道区块链的,区块链和比特币又有什么区别呢?
区块链是比特币背后的技术;区块链是一种基础的技术架构,通过一个特定的数据结构和共识算法,设计实现了一个多方参与的自治系统。
特定的数据结构其实就是区块链这个名字本身,也就是他的数据是放在一块一块的数据区块里面,然后这个数据区块用一个链条进行连接和实现。“共识算法”是区块链里非常重要的概念,没有共时算法,也就没有区块链这个意义的存在。
布比区块链简介
布比区块链自成立以来一直专注于区块链技术与产品的研发与创新,拥有多项核心技术,并在多个方面取得了实质性的创新,形成多项核心技术成果,例如:可数学证明的分布式共识技术、快速的大规模账本存取技术、支持业务形态扩展的多链总账技术、异构区块链间的互联技术等。4月25日,“格格积分”将积分系统引入区块链概念,多方联合开放,积分发行及兑换,促进积分流通。各合作机构可共同参与交易验证、账本存储、实时结算;企业积分发行方的第三方支付平台,使积分进出更灵活。布比开发了自有的区块链基础服务平台,已在股权、供应链、积分、信用等领域开展应用。布比一直致力于以去(多)中心信任为核心,构建开放式价值流通网络,让数字资产自由流动起来。
讲到这里,我们再来分析一下区块链和比特币的区别是什么?
1.本质区别。比特币对于这个世界来说,它是一个基于密码学的数字货币,而区块链我们刚才说过,它是一种价值传递的协议,这两者是有本质区别的,因为一个是数字货币,一个是价值传递的协议。
2.算法。比特币的共识算法是基于一个被称为工作量证明,POW的工作算法,区块链有很多不同的共识算法,既可以用比特币POW算法又可以用POS算法,也可以用DPS算法。
3.交易速度。比特币每秒钟的交易最大只能有七笔每秒。请注意,大家请注意这里说的是最大而不是平均,因为这是一个非常严格的一个定义,对于区块链来说,其实每秒的交易次数可以达到上万次或者更多,所以这也是区块链和比特币的一个主要区别。因为很多人会混淆说,区块链这个交易的速度七笔每秒,这是不对的,这是比特币的一个限制,区块链根据它不同的共识算法以及链接方式,可以达到非常高的交易速度。
4.链接形式。比特币是基于互联网的一个区块链,也就是说我们把它称之为公有链,区块链可以有公有链的形式也可以有私有链或者联盟链的形式。
5.局限性。建议大家不要去碰跟区块链相关的一些数字货币。理由是什么呢?比特币这样一个数字货币,它虽然有挺好的不同的特性,但是它并不符合金融监管,也就是说这2100万枚比特币是在没有国家授权的情况下,没有国家信用作为倍数的情况下被发行出来的。而区块链也有一些局限性,虽然它只是一个协议,是一个技术,但是它还是处于萌芽阶段的一个新技术。
总结一下,区块链是一个比较底层的协议,是一种技术的基础架构,在它之上有各种各样不同的共识算法。如果说区块链是1的话,可能共识算法是10到20,但在它之上的应用可能会有一千或者两千,或者更多,也就是说比特币只是众多区块链应用当中的一种实现。所以,比特币和区块链是不能等同的,比特币只是区块链的一个非常初级的实现。
区块链能做什么?区块链的问题?在票据市场,基于区块链技术实现的数字票据能够成为更安全、更智能、更便捷的票据形态。借助区块链实现的点对点交易能够打破票据中介的现有功能,实现票据价值传递的去中介化;数字票据系统的搭建和数据存储不需要中心服务器,省去了中心应用和接入系统的开发成本,降低了传统模式下系统的维护和优化成本,减少了系统中心化带来的风险;基于区块链的信息不可篡改性,票据一旦完成交易,将不会存在赖账现象,从而避免“一票多卖”、打款背书不同步等行为,有效防范票据市场风险。有价证券交易市场也是区块链技术大有作为的领域。目前传统的证券交易模式,具有交易流程长、交易效率低、综合成本高的缺点,且存在强势中介和监管机构,金融消费者的权利往往得不到保障。应用区块链技术,买卖双方能够通过智能合约直接实现配对,交易执行的效率可大幅度提升,并通过分布式的数字化登记系统,自动实现结算和交割。由于录入区块的数据不可撤销且能在短时间内被拷贝到每个数据块中,录入到区块链上的信息实际上产生了公示的效果,因此交易的发生和所有权的确认不会产生争议。
区块链能做什么?区块链的问题?尽管从目前来看还没有确立成熟的底层区块链技术平台方案,容量的可扩展性、隐私保护、无法以净额结算、事后不可追索等技术难题也有待解决,大规模应用区块链技术还要重设IT架构和再造业务流程,但这些都只是技术层面的问题。而真正考验区块链技术在金融领域植根并成长的是监管机构和金融机构本体,区块链内在的“去监管化”和“去中心化”特质会不会使得市场主体没有动力驱动技术创新。但由于区块链是基于数学算法的技术,交易各方信任关系的建立完全不需要借助中介机构或权威中心,建立信任关系的成本几乎为零(在区块链金融基础设施和附属基础设施建立的前提下),且区块链代码开源开放,无地域限制,网络格局分布式互联,为未来普惠金融和共享金融的建立及发展奠定了技术基础,为全球金融融合统一创造了物质条件。单就从这一点来看,区块链技术必将在未来金融发展中确立核心地位,并和金融相互依托、相辅相成,并共赢未来。
区块链解决了什么问题吗?区块链最重要的是解决了中介信用问题。在过去,两个互不认识和信任的人要达成协作是难的,必须要依靠第三方。比如支付行为,在过去任何一种转账,必须要有银行或者支付宝这样的机构存在。但是通过区块链技术,比特币是人类第一次实现在没有任何中介机构参与的情况下,完成双方可以互信的转账行为。这是区块链的重大突破。(交易区块链资产上“币汇交易所”)
如果用一句话说明就是:去中心化。
区块链(BlockChain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。
所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。
广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。
优点:
1)算法简单,容易实现;
2)节点间无需交换额外的信息即可达成共识;
3)破坏系统需要投入极大的成本。
缺点:
1)浪费能源;
2)区块的确认时间难以缩短;
3)新的区块链必须找到一种不同的散列算法,否则就会面临比特币的算力攻击;
4)容易产生分叉,需要等待多个确认;
5)永远没有最终性,需要检查点机制来弥补最终性。
区块链几大共识机制及优缺点首先,没有一种共识机制是完美无缺的,各共识机制都有其优缺点,有些共识机制是为解决一些特定的问题而生。
1.pow(ProofofWork)工作量证明
一句话介绍:干的越多,收的越多。
依赖机器进行数学运算来获取记账权,资源消耗相比其他共识机制高、可监管性弱,同时每次达成共识需要全网共同参与运算,性能效率比较低,容错性方面允许全网50%节点出错。
优点:
1)算法简单,容易实现;
2)节点间无需交换额外的信息即可达成共识;
3)破坏系统需要投入极大的成本;
缺点:
1)浪费能源;
2)区块的确认时间难以缩短;
3)新的区块链必须找到一种不同的散列算法,否则就会面临比特币的算力攻击;
4)容易产生分叉,需要等待多个确认;
5)永远没有最终性,需要检查点机制来弥补最终性;
2.POSProofofStake,权益证明
一句话介绍:持有越多,获得越多。
主要思想是节点记账权的获得难度与节点持有的权益成反比,相对于PoW,一定程度减少了数学运算带来的资源消耗,性能也得到了相应的提升,但依然是基于哈希运算竞争获取记账权的方式,可监管性弱。该共识机制容错性和PoW相同。它是Pow的一种升级共识机制,根据每个节点所占代币的比例和时间,等比例的降低挖矿难度,从而加快找随机数的速度
优点:在一定程度上缩短了共识达成的时间;不再需要大量消耗能源挖矿。
缺点:还是需要挖矿,本质上没有解决商业应用的痛点;所有的确认都只是一个概率上的表达,而不是一个确定性的事情,理论上有可能存在其他攻击影响。例如,以太坊的DAO攻击事件造成以太坊硬分叉,而ETC由此事件出现,事实上证明了此次硬分叉的失败。
DPOS与POS原理相同,只是选了一些“人大代表”。
BitShares社区首先提出了DPoS机制。
与PoS的主要区别在于节点选举若干代理人,由代理人验证和记账。其合规监管、性能、资源消耗和容错性与PoS相似。类似于董事会投票,持币者投出一定数量的节点,代理他们进行验证和记账。
DPoS的工作原理为:
去中心化表示每个股东按其持股比例拥有影响力,51%股东投票的结果将是不可逆且有约束力的。其挑战是通过及时而高效的方法达到51%批准。为达到这个目标,每个股东可以将其投票权授予一名代表。获票数最多的前100位代表按既定时间表轮流产生区块。每名代表分配到一个时间段来生产区块。所有的代表将收到等同于一个平均水平的区块所含交易费的10%作为报酬。如果一个平均水平的区块含有100股作为交易费,一名代表将获得1股作为报酬。
网络延迟有可能使某些代表没能及时广播他们的区块,而这将导致区块链分叉。然而,这不太可能发生,因为制造区块的代表可以与制造前后区块的代表建立直接连接。建立这种与你之后的代表(也许也包括其后的那名代表)的直接连接是为了确保你能得到报酬。
该模式可以每30秒产生一个新区块,并且在正常的网络条件下区块链分叉的可能性极其小,即使发生也可以在几分钟内得到解决。
成为代表:
成为一名代表,你必须在网络上注册你的公钥,然后分配到一个32位的特有标识符。然后该标识符会被每笔交易数据的“头部”引用。
授权选票:
每个钱包有一个参数设置窗口,在该窗口里用户可以选择一个或更多的代表,并将其分级。一经设定,用户所做的每笔交易将把选票从“输入代表”转移至“输出代表”。一般情况下,用户不会创建特别以投票为目的的交易,因为那将耗费他们一笔交易费。但在紧急情况下,某些用户可能觉得通过支付费用这一更积极的方式来改变他们的投票是值得的。
保持代表诚实:
每个钱包将显示一个状态指示器,让用户知道他们的代表表现如何。如果他们错过了太多的区块,那么系统将会推荐用户去换一个新的代表。如果任何代表被发现签发了一个无效的区块,那么所有标准钱包将在每个钱包进行更多交易前要求选出一个新代表。
抵抗攻击:
在抵抗攻击上,因为前100名代表所获得的权力权是相同的,每名代表都有一份相等的投票权。因此,无法通过获得超过1%的选票而将权力集中到一个单一代表上。因为只有100名代表,可以想象一个攻击者对每名轮到生产区块的代表依次进行拒绝服务攻击。幸运的是,由于事实上每名代表的标识是其公钥而非IP地址,这种特定攻击的威胁很容易被减轻。这将使确定DDOS攻击目标更为困难。而代表之间的潜在直接连接,将使妨碍他们生产区块变得更为困难。
优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。
缺点:整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。
3.PBFT:,实用拜占庭容错
介绍:在保证活性和安全性(livenesssafety)的前提下提供了(n-1)/3的容错性。
在分布式计算上,不同的计算机透过讯息交换,尝试达成共识;但有时候,系统上协调计算机(Coordinator/Commander)或成员计算机(Member/Lieutanent)可能因系统错误并交换错的讯息,导致影响最终的系统一致性。
拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。
而拜占庭问题的可能解决方法为:
在N≥3F+1的情况下一致性是可能解决。其中,N为计算机总数,F为有问题计算机总数。信息在计算机间互相交换后,各计算机列出所有得到的信息,以大多数的结果作为解决办法。
1)系统运转可以脱离币的存在,pbft算法共识各节点由业务的参与方或者监管方组成,安全性与稳定性由业务相关方保证。
2)共识的时延大约在2~5秒钟,基本达到商用实时处理的要求。
3)共识效率高,可满足高频交易量的需求。
缺点:
1)当有1/3或以上记账人停止工作后,系统将无法提供服务;
2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据
下面说两个国产的吧~
4.dBFT:delegatedBFT授权拜占庭容错算法
介绍:小蚁采用的dBFT机制,是由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。
此算法在PBFT基础上进行了以下改进:
将C/S架构的请求响应模式,改进为适合P2P网络的对等节点模式;
将静态的共识参与节点改进为可动态进入、退出的动态共识参与节点;
为共识参与节点的产生设计了一套基于持有权益比例的投票机制,通过投票决定共识参与节点(记账节点);
在区块链中引入数字证书,解决了投票中对记账节点真实身份的认证问题。
优点:
1)专业化的记账人;
2)可以容忍任何类型的错误;
3)记账由多人协同完成,每一个区块都有最终性,不会分叉;
4)算法的可靠性有严格的数学证明;
缺点:
1)当有1/3或以上记账人停止工作后,系统将无法提供服务;
2)当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使系统出现分叉,但是会留下密码学证据;
以上总结来说,dBFT机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。
5.POOL验证池
基于传统的分布式一致性技术,加上数据验证机制。
优点:不需要代币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。
缺点:去中心化程度不如bictoin;更适合多方参与的多中心商业模式。
区块链所面临的问题?维护成本非常高:
传统的中心化数据库只需要写入一次,而区块链需要被写入成千上万次;传统的中心化数据库只需要检验一次数据,区块链需要对数据进行成千上万次检验;传统的中心化数据库只需要传输一次数据就可以储存,区块链需要将数据传输成千上万次。
激励结构很难设计:
如何确保奖励与网络目标一致?为什么节点会保留或更新数据?当两段数据冲突时,是什么使它们选择一段数据而不是另一段数据?这些问题都都还有待探索、解答,区块链不仅需要在开始时保持一致,还需要在未来的所有时间节点上保持一致。
所有的升级都是自发的:
区块链最重要的一点在于它不是在单个实体的控制之下,不可能强制升级。所有的升级都必须向后兼容。这显然是相当困难的,尤其是如果你想要添加新特性,以及从测试的角度考虑时会更加困难。软件的每个版本都为测试矩阵添加了很多内容,并延长了发布时间。
扩展很困难
扩展的困难程度至少比传统的中心化系统高出几个量级。同样的数据必须存在于成百上千个地方,而不是在一个单一的地方。传输、验证和存储的成本是巨大的,因为必须用支付数据库中的每一个独立节点的成本,来代替传统的中心化数据库中只支付一次的成本。
以上所有导致区块链至今没有杀手级的应用(比特币除外)
援引自:为什么说区块链没那么简单
❼ raft金属矿石哪里多
raft金属矿石海岛多,在附近潜水找到矿脉开挖即可。在游戏里寻找海岛,找到就靠近海岛。将船固定后,直接下水寻找矿脉。见疑似矿脉的石头,不要犹豫,直接靠过去查看。发现金属矿石后,直接装备塑料钩挖矿,对着矿脉长按鼠标左键,等进度条满后就可以得到金属矿石。
《木筏生存》是一款漂流生存游戏。游戏提供单人和多人在线合作模式。最初是2016年秋季时候的一个大学生项目,当时三名乌普萨拉大学Gotland分校的学生耗时15周做的一款生存游戏创意原型。
木筏求生皮艇用法:
创建一个世界,创建成功就会有一个小木筏船,然后有时候会出现一个补给船,用鼠标控制前进就可以下水。气象方面,官方表示一昼夜是20分钟,第一次出现的恶劣天气是大雨加大雾大浪,一般都是晚上。
不同难度模式下,恶劣天气出现的天数会递减,难度越高,出现恶劣天气的时间间隔越短。在没有建造帆的情况下,你的木筏航行。
游戏中主角将出生在一片漫无边际的海洋上,靠一只小木筏和一只钩子努力求生。玩家要做的就是利用钩子勾住海洋上漂流的东西,利用这些物资制作有用的工具、武器,来加固自己的木筏。游戏支持多人模式。