比特币的挖矿机制分配
近日,比特币挖矿难度下降,是两个月内首次下降,下降了2.87%,降至16.85T,挖矿难度下降,比特币挖矿自然更受投资者的喜爱,众所周知,想要挖矿就需要选择比特币挖矿机,那么,比特币挖矿机是什么原理赚钱的呢?针对这个问题,币圈子小编就给大家深度解析一下比特币挖矿机原理。
比特币挖矿机是什么原理赚钱的?
比特币系统由用户(用户通过密钥控制钱包)、交易(交易都会被广播到整个比特币网络)和矿工(通过竞争计算生成在每个节点达成共识的区块链,区块链是一个分布式的公共权威账簿,包含了比特币网络发生的所有的交易)组成。
比特币矿工通过解决具有一定工作量的工作量证明机制问题,来管理比特币网络-确认交易并且防止双重支付。
由于散列运算是不可逆的,查找到匹配要求的随机调整数非常困难,需要一个可以预计总次数的不断试错过程。这时,工作量证明机制就发挥作用了。当一个节点找到了匹配要求的解,那么它就可以向全网广播自己的结果。其他节点就可以接收这个新解出来的数据块,并检验其是否匹配规则。如果其他节点通过计算散列值发现确实满足要求(比特币要求的运算目标),那么该数据块有效,其他的节点就会接受该数据块。
中本聪把通过消耗CPU的电力和时间来产生比特币,比喻成金矿消耗资源将黄金注入经济。比特币的挖矿与节点软件主要是透过点对点网络、数字签名、交互式证明系统来进行发起零知识证明与验证交易。每一个网络节点向网络进行广播交易,这些广播出来的交易在经过矿工(在网络上的计算机)验证后,矿工可使用自己的工作证明结果来表达确认,确认后的交易会被打包到数据块中,数据块会串起来形成连续的数据块链。
每一个比特币的节点都会收集所有尚未确认的交易,并将其归集到一个数据块中,矿工节点会附加一个随机调整数,并计算前一个数据块的SHA256散列运算值。挖矿节点不断重复进行尝试,直到它找到的随机调整数使得产生的散列值低于某个特定的目标。
比特币挖矿机的风险:
1.电费问题
显卡“挖矿”要让显卡长时间满载,功耗会相当高,电费开支也会越来越高。国内外有不少专业矿场开在水电站等电费极其低廉的地区,而更多的用户只能在家里或普通矿场内挖矿,电费自然不便宜。甚至云南某小区有人进行疯狂挖矿导致小区大面积跳闸,变压器被烧毁的案例。
2.硬件支出
挖矿实际是性能的竞争、装备的竞争,有些挖矿机是更多这样的显卡阵列组成的,数十乃至过百的显卡一起来,硬体价格等各种成本本身就很高,挖矿存在相当大的支出。除了烧显卡的机器,一些ASIC(应用专用集成电路)专业挖矿机也在投入战场,ASIC是专门为哈希运算设计的,计算能力也相当强劲,而且由于它们的功耗远比显卡低,因此更容易形成规模,电费开销也更低,单张独显很难与这些挖矿机竞争,但与此同时,这种机器的花费也更大。
3.货币安全
比特币的支取需要多达数百位的密钥,而多数人会将这一长串的数字记录于电脑上,但经常发生的如硬盘损坏等问题,会让密钥永久丢失,这也导致了比特币的丢失。
4.系统风险
系统风险在比特币这个里面非常常见,最常见的当属于分叉。分叉会导致币价下跌,挖矿收益锐减。不过很多情况表明,分叉反而让矿工收益,分叉出来的竞争币也需要矿工的算力来完成铸币和交易的过程,为了争取更多的矿工,竞争币会提供更多的区块奖励及手续费来吸引矿工。风险反而成就了矿工。
通过以上介绍,相信大家对比特币挖矿机原理有所了解,比特币挖矿机的选择是挖矿准备工作中最为主要的一步,投资者在选择矿机的时候,一定要看比特币挖矿机的算力,看比特币挖矿机每秒进行多少次哈希运算,同时也要看比特币挖矿机运转时要消耗的电量指标,这关系到投资者的挖矿成本,最后一定要看比特币挖矿机厂商经营的稳定性,可以通过用户评价、售后服务等方面来判读。
❷ 如何看待《财经郎眼》中郎咸平对于比特币的观点
作为比特币玩家,看了这一期的财经郎眼,感觉有必要纠正郎教授一些并不专业的比特币知识:
1.比特币的分配机制:
比特币的挖矿分配机制,不是10000个人(也就是矿工)中的50个人分50个比特币,而是10000个人中只有1个人能拿到50个比特币。
听上去不公平,但是矿池的存在相当于矿工组团挖比特币,假如10000个人组成一个团队,这10000个人中的任何一个人拿到了50个比特币,根据团队协议,大家根据贡献均分,多劳多得,少劳少得,贡献多的所得大于0.005个币,贡献少的所得小于0.005个币,而只要有贡献,再烂的电脑都有所得(入不敷出而已),形成了相对公平的分配机制。
2.比特币是不是货币
比特币英文名BITCOIN,从来未声称自己是货币,而是类似于硬币的支付系统或记账单位,现在讨论比特币是不是货币其实没有意义,货币是从商品中分离出来固定地充当一般等价物的商品。
而比特币的发展还在实践过程中,还远从商品中分离出来,成为固定的一般等价物,如果在固定的实验过程中失败了,比特币就不是货币;如果成功了,比特币才会是历史上替代法币的货币。可喜的是,实验到目前阶段来说,是有走向成功的趋势的。
3.比特币的内在价值
节目中比特币中国的CEO无法回答比特币的内在价值,而是用了一个模棱两可的价格来反驳,甚至恼怒地反问给你100个比特币你要不要,被郞教授击溃。佩服郎教授的睿智,却也遗憾郞教授没有相关的计算机知识,没有读懂比特币的内在价值。
回到正题,比特币的内在价值是什么。
比特币本身毫无价值。它只是一串代码,一个用来记账的数字,没有价值,却价格高得离谱。
真正有价值的是比特币的协议!而这份协议却是全网公开的。
打个比方,就像互联网的域名是有价格的,好的域名还很贵,但是域名只是一串字符,没有什么价值,而整个互联网是任意使用的,全球的上网都使用着完全相同的互联网协议,在协议之上才可以有大量的域名。但互联网的协议却成为人类信息社会的基石,协议之上才衍生了众多高价格的服务。
很神奇吧,有价值的没有价格,超高价格的却没有价值。
用一句话解释比特币协议的价值:将人与人之间支付的诚实性,托付给了数学,由全网来监督。
你可以不相信和你交易的人,他可能会骗你,但是你可以相信1+1永远等于2。
表现在比特币上也就拥有了去中心化、总量恒定、无法造假、手续简化等法币所没有的特点。
4.比特币的接盘问题
节目多次说到比特币是比谁更傻,谁做最后一个接盘的游戏。
最初发明比特币的时候,我不知道是不是为了换取大家的财富,但是比特币发展至今天,用法币换取比特币的人确实都是为了赢得更多的财富。前期拥有比特币的人,挣得后期进场的人。现在进场的人,也是为了赚未来进场的人的钱。我们想象一下,最后一棒进场的人,拥有了比特币,没有了下家,它也赚不到钱了,而且比特币的发展也已经像我前面讲的大家都了解比特币的特性了,但这个时候比特币拥有者们有什么选择呢?
a.防通胀继续持有——比特币价格稳定在高位(因为没有人接手)
b.逛抛比特币——比特币价格下跌
c.去和接受比特币的商家兑换商品——比特币的货币实现
针对这三种情况,我们再思考一下。
a.价格稳定在高位,说明没有大规模抛售,比特币价格稳定,无通货膨胀现象,财富不被隐性掠夺,成为适合作为货币的一般等价物。法币因为在贬值会被逐渐抛弃,比特币完全胜利。
b.逛抛,价格暴跌,在暴跌中,会有无数人等着抄底,因为大家都已经知道比特币的协议是抗通胀的,相比法币来说是保值的,所以前期没来得及在低位买币的人会来继续抄底比特币,直到比特币跌到底,抄底的人会一拥而上,最终使比特币成为价格更高的商品,成为新的比特币最后一棒接力者。而这个答案,也与我们之前最后一棒进场的人假设违背。
c.比特币作为法币的补充,充当了一般等价物。
综上所述,比特币如果有可能正常发展下去,会在涨跌之间,经历成为法币补充的过程,再取代法币,成为货币。当然,这是一个极其漫长和艰难的过程,也有可能失败。
5.中国大妈炒比特币
中国大妈的概念,特指2013年金价大跌期间疯狂抢购黄金的一群中国散户,因为在中国,黄金的主要消费群体是大妈们,她们一有资金实力,二没有相关知识经验,三有勇气做疯狂投资,因为有了这一称谓。
而比特币的暴涨暴跌期间,也流传出了中国大妈炒比特币这一概念。
比特币的玩家,有过大量的统计,93.6%是男性,且为20-40岁,且本科以上学历为绝大多数。当然,其中相当部分人,也是一有资金实力,二没有比特币相关知识经验,三有勇气做疯狂投资,如果拥有这部分特质的人被称为中国大妈,那他们确实也是,是个冷笑话。
按照这个概念,节目里与郎教授争论的比特币中国CEO,也属于中国大妈的群体吧。
❸ 详解比特币挖矿原理
可以将区块链看作一本记录所有交易的公开总帐簿(列表),比特币网络中的每个参与者都把它看作一本所有权的权威记录。
比特币没有中心机构,几乎所有的完整节点都有一份公共总帐的备份,这份总帐可以被视为认证过的记录。
至今为止,在主干区块链上,没有发生一起成功的攻击,一次都没有。
通过创造出新区块,比特币以一个确定的但不断减慢的速率被铸造出来。大约每十分钟产生一个新区块,每一个新区块都伴随着一定数量从无到有的全新比特币。每开采210,000个块,大约耗时4年,货币发行速率降低50%。
在2016年的某个时刻,在第420,000个区块被“挖掘”出来之后降低到12.5比特币/区块。在第13,230,000个区块(大概在2137年被挖出)之前,新币的发行速度会以指数形式进行64次“二等分”。到那时每区块发行比特币数量变为比特币的最小货币单位——1聪。最终,在经过1,344万个区块之后,所有的共20,999,999.9769亿聪比特币将全部发行完毕。换句话说, 到2140年左右,会存在接近2,100万比特币。在那之后,新的区块不再包含比特币奖励,矿工的收益全部来自交易费。
在收到交易后,每一个节点都会在全网广播前对这些交易进行校验,并以接收时的相应顺序,为有效的新交易建立一个池(交易池)。
每一个节点在校验每一笔交易时,都需要对照一个长长的标准列表:
交易的语法和数据结构必须正确。
输入与输出列表都不能为空。
交易的字节大小是小于MAX_BLOCK_SIZE的。
每一个输出值,以及总量,必须在规定值的范围内 (小于2,100万个币,大于0)。
没有哈希等于0,N等于-1的输入(coinbase交易不应当被中继)。
nLockTime是小于或等于INT_MAX的。
交易的字节大小是大于或等于100的。
交易中的签名数量应小于签名操作数量上限。
解锁脚本(Sig)只能够将数字压入栈中,并且锁定脚本(Pubkey)必须要符合isStandard的格式 (该格式将会拒绝非标准交易)。
池中或位于主分支区块中的一个匹配交易必须是存在的。
对于每一个输入,如果引用的输出存在于池中任何的交易,该交易将被拒绝。
对于每一个输入,在主分支和交易池中寻找引用的输出交易。如果输出交易缺少任何一个输入,该交易将成为一个孤立的交易。如果与其匹配的交易还没有出现在池中,那么将被加入到孤立交易池中。
对于每一个输入,如果引用的输出交易是一个coinbase输出,该输入必须至少获得COINBASE_MATURITY (100)个确认。
对于每一个输入,引用的输出是必须存在的,并且没有被花费。
使用引用的输出交易获得输入值,并检查每一个输入值和总值是否在规定值的范围内 (小于2100万个币,大于0)。
如果输入值的总和小于输出值的总和,交易将被中止。
如果交易费用太低以至于无法进入一个空的区块,交易将被拒绝。
每一个输入的解锁脚本必须依据相应输出的锁定脚本来验证。
以下挖矿节点取名为 A挖矿节点
挖矿节点时刻监听着传播到比特币网络的新区块。而这些新加入的区块对挖矿节点有着特殊的意义。矿工间的竞争以新区块的传播而结束,如同宣布谁是最后的赢家。对于矿工们来说,获得一个新区块意味着某个参与者赢了,而他们则输了这场竞争。然而,一轮竞争的结束也代表着下一轮竞争的开始。
验证交易后,比特币节点会将这些交易添加到自己的内存池中。内存池也称作交易池,用来暂存尚未被加入到区块的交易记录。
A节点需要为内存池中的每笔交易分配一个优先级,并选择较高优先级的交易记录来构建候选区块。
一个交易想要成为“较高优先级”,需满足的条件:优先值大于57,600,000,这个值的生成依赖于3个参数:一个比特币(即1亿聪),年龄为一天(144个区块),交易的大小为250个字节:
High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000
区块中用来存储交易的前50K字节是保留给较高优先级交易的。 节点在填充这50K字节的时候,会优先考虑这些最高优先级的交易,不管它们是否包含了矿工费。这种机制使得高优先级交易即便是零矿工费,也可以优先被处理。
然后,A挖矿节点会选出那些包含最小矿工费的交易,并按照“每千字节矿工费”进行排序,优先选择矿工费高的交易来填充剩下的区块。
如区块中仍有剩余空间,A挖矿节点可以选择那些不含矿工费的交易。有些矿工会竭尽全力将那些不含矿工费的交易整合到区块中,而其他矿工也许会选择忽略这些交易。
在区块被填满后,内存池中的剩余交易会成为下一个区块的候选交易。因为这些交易还留在内存池中,所以随着新的区块被加到链上,这些交易输入时所引用UTXO的深度(即交易“块龄”)也会随着变大。由于交易的优先值取决于它交易输入的“块龄”,所以这个交易的优先值也就随之增长了。最后,一个零矿工费交易的优先值就有可能会满足高优先级的门槛,被免费地打包进区块。
UTXO(Unspent Transaction Output) : 每笔交易都有若干交易输入,也就是资金来源,也都有若干笔交易输出,也就是资金去向。一般来说,每一笔交易都要花费(spend)一笔输入,产生一笔输出,而其所产生的输出,就是“未花费过的交易输出”,也就是 UTXO。
块龄:UTXO的“块龄”是自该UTXO被记录到区块链为止所经历过的区块数,即这个UTXO在区块链中的深度。
区块中的第一笔交易是笔特殊交易,称为创币交易或者coinbase交易。这个交易是由挖矿节点构造并用来奖励矿工们所做的贡献的。假设此时一个区块的奖励是25比特币,A挖矿的节点会创建“向A的地址支付25.1个比特币(包含矿工费0.1个比特币)”这样一个交易,把生成交易的奖励发送到自己的钱包。A挖出区块获得的奖励金额是coinbase奖励(25个全新的比特币)和区块中全部交易矿工费的总和。
A节点已经构建了一个候选区块,那么就轮到A的矿机对这个新区块进行“挖掘”,求解工作量证明算法以使这个区块有效。比特币挖矿过程使用的是SHA256哈希函数。
用最简单的术语来说, 挖矿节点不断重复进行尝试,直到它找到的随机调整数使得产生的哈希值低于某个特定的目标。 哈希函数的结果无法提前得知,也没有能得到一个特定哈希值的模式。举个例子,你一个人在屋里打台球,白球从A点到达B点,但是一个人推门进来看到白球在B点,却无论如何是不知道如何从A到B的。哈希函数的这个特性意味着:得到哈希值的唯一方法是不断的尝试,每次随机修改输入,直到出现适当的哈希值。
需要以下参数
• block的版本 version
• 上一个block的hash值: prev_hash
• 需要写入的交易记录的hash树的值: merkle_root
• 更新时间: ntime
• 当前难度: nbits
挖矿的过程就是找到x使得
SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET
上式的x的范围是0~2^32, TARGET可以根据当前难度求出的。
简单打个比方,想象人们不断扔一对色子以得到小于一个特定点数的游戏。第一局,目标是12。只要你不扔出两个6,你就会赢。然后下一局目标为11。玩家只能扔10或更小的点数才能赢,不过也很简单。假如几局之后目标降低为了5。现在有一半机率以上扔出来的色子加起来点数会超过5,因此无效。随着目标越来越小,要想赢的话,扔色子的次数会指数级的上升。最终当目标为2时(最小可能点数),只有一个人平均扔36次或2%扔的次数中,他才能赢。
如前所述,目标决定了难度,进而影响求解工作量证明算法所需要的时间。那么问题来了:为什么这个难度值是可调整的?由谁来调整?如何调整?
比特币的区块平均每10分钟生成一个。这就是比特币的心跳,是货币发行速率和交易达成速度的基础。不仅是在短期内,而是在几十年内它都必须要保持恒定。在此期间,计算机性能将飞速提升。此外,参与挖矿的人和计算机也会不断变化。为了能让新区块的保持10分钟一个的产生速率,挖矿的难度必须根据这些变化进行调整。事实上,难度是一个动态的参数,会定期调整以达到每10分钟一个新区块的目标。简单地说,难度被设定在,无论挖矿能力如何,新区块产生速率都保持在10分钟一个。
那么,在一个完全去中心化的网络中,这样的调整是如何做到的呢?难度的调整是在每个完整节点中独立自动发生的。每2,016个区块(2周产生的区块)中的所有节点都会调整难度。难度的调整公式是由最新2,016个区块的花费时长与20,160分钟(两周,即这些区块以10分钟一个速率所期望花费的时长)比较得出的。难度是根据实际时长与期望时长的比值进行相应调整的(或变难或变易)。简单来说,如果网络发现区块产生速率比10分钟要快时会增加难度。如果发现比10分钟慢时则降低难度。
为了防止难度的变化过快,每个周期的调整幅度必须小于一个因子(值为4)。如果要调整的幅度大于4倍,则按4倍调整。由于在下一个2,016区块的周期不平衡的情况会继续存在,所以进一步的难度调整会在下一周期进行。因此平衡哈希计算能力和难度的巨大差异有可能需要花费几个2,016区块周期才会完成。
举个例子,当前A节点在挖277,316个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第277,316个区块(父区块为277,315)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。
比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。
每一个节点对每一个新区块的独立校验,确保了矿工无法欺诈。在前面的章节中,我们看到了矿工们如何去记录一笔交易,以获得在此区块中创造的新比特币和交易费。为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?这是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒绝,因此,该交易就不会成为总账的一部分。
比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块,它将尝试将新的区块连接到到现存的区块链,将它们组装起来。
节点维护三种区块:
· 第一种是连接到主链上的,
· 第二种是从主链上产生分支的(备用链),
· 第三种是在已知链中没有找到已知父区块的。
有时候,新区块所延长的区块链并不是主链,这一点我们将在下面“ 区块链分叉”中看到。
如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。
选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链,新块本身就代表它们的投票。
因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链视角。解决的办法是, 每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就是最长的或最大累计难度的链。
当有两个候选区块同时想要延长最长区块链时,分叉事件就会发生。正常情况下,分叉发生在两名矿工在较短的时间内,各自都算得了工作量证明解的时候。两个矿工在各自的候选区块一发现解,便立即传播自己的“获胜”区块到网络中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。如果该节点在随后又收到了另一个候选区块,而这个区块又拥有同样父区块,那么节点会将这个区块连接到候选链上。其结果是,一些节点收到了一个候选区块,而另一些节点收到了另一个候选区块,这时两个不同版本的区块链就出现了。
分叉之前
分叉开始
我们看到两个矿工几乎同时挖到了两个不同的区块。为了便于跟踪这个分叉事件,我们设定有一个被标记为红色的、来自加拿大的区块,还有一个被标记为绿色的、来自澳大利亚的区块。
假设有这样一种情况,一个在加拿大的矿工发现了“红色”区块的工作量证明解,在“蓝色”的父区块上延长了块链。几乎同一时刻,一个澳大利亚的矿工找到了“绿色”区块的解,也延长了“蓝色”区块。那么现在我们就有了两个区块:一个是源于加拿大的“红色”区块;另一个是源于澳大利亚的“绿色”。这两个区块都是有效的,均包含有效的工作量证明解并延长同一个父区块。这个两个区块可能包含了几乎相同的交易,只是在交易的排序上有些许不同。
比特币网络中邻近(网络拓扑上的邻近,而非地理上的)加拿大的节点会首先收到“红色”区块,并建立一个最大累计难度的区块,“红色”区块为这个链的最后一个区块(蓝色-红色),同时忽略晚一些到达的“绿色”区块。相比之下,离澳大利亚更近的节点会判定“绿色”区块胜出,并以它为最后一个区块来延长区块链(蓝色-绿色),忽略晚几秒到达的“红色”区块。那些首先收到“红色”区块的节点,会即刻以这个区块为父区块来产生新的候选区块,并尝试寻找这个候选区块的工作量证明解。同样地,接受“绿色”区块的节点会以这个区块为链的顶点开始生成新块,延长这个链。
分叉问题几乎总是在一个区块内就被解决了。网络中的一部分算力专注于“红色”区块为父区块,在其之上建立新的区块;另一部分算力则专注在“绿色”区块上。即便算力在这两个阵营中平均分配,也总有一个阵营抢在另一个阵营前发现工作量证明解并将其传播出去。在这个例子中我们可以打个比方,假如工作在“绿色”区块上的矿工找到了一个“粉色”区块延长了区块链(蓝色-绿色-粉色),他们会立刻传播这个新区块,整个网络会都会认为这个区块是有效的,如上图所示。
所有在上一轮选择“绿色”区块为胜出者的节点会直接将这条链延长一个区块。然而,那些选择“红色”区块为胜出者的节点现在会看到两个链: “蓝色-绿色-粉色”和“蓝色-红色”。 如上图所示,这些节点会根据结果将 “蓝色-绿色-粉色” 这条链设置为主链,将 “蓝色-红色” 这条链设置为备用链。 这些节点接纳了新的更长的链,被迫改变了原有对区块链的观点,这就叫做链的重新共识 。因为“红”区块做为父区块已经不在最长链上,导致了他们的候选区块已经成为了“孤块”,所以现在任何原本想要在“蓝色-红色”链上延长区块链的矿工都会停下来。全网将 “蓝色-绿色-粉色” 这条链识别为主链,“粉色”区块为这条链的最后一个区块。全部矿工立刻将他们产生的候选区块的父区块切换为“粉色”,来延长“蓝色-绿色-粉色”这条链。
从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。
比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。
❹ 挖矿的核心机制:PoW与PoS详解
工作量证明机制(PoW)
比特币采用的PoW机制,是通过矿工使用计算机解决复杂的数学问题来获取奖励。这可以理解为一种竞赛,谁最先找到正确答案,谁就能将最近的交易打包成数据块,加入到整个交易记录链上。这种过程被称为“挖矿”,成功者不仅确认了交易,还能获得比特币作为奖励。
优点:PoW机制非常安全,因为要篡改已确认的信息需要巨大的计算力,几乎不可能实现。它确保了网络中每个人都能遵循规则,因为作弊成本高昂。
缺点:消耗大量电力,导致资源浪费或环境影响。可能引发资源集中问题,少数大矿池控制大部分挖矿能力。
权益证明机制(PoS)
权益证明机制通过持有区块链项目原生代币来获得验证交易和创建新区块的权利。持有更多货币的验证者有更大的机会被选中验证交易,创建新区块。
想象另一种游戏,这里不是看谁算得快,而是看谁手里的筹码多。在PoS系统中,创建下一个数据块的人通过押注更多货币作为“抵押”。押得越多的人,被选中的机会越大,类似于一个根据投入筹码数获得抽奖号码的抽奖。
以太坊采用PoS,从工作量证明过渡,降低了参与验证网络的门槛,让更多用户参与到网络中。
优点:更环保,不需要大量电力和昂贵设备。鼓励长期持有货币,增加被选为下一个区块创建者的机会。
缺点:可能导致财富不均,原本持有大量货币的人更容易获得创建区块的权利,从而赚取更多。在某些情况下,这种机制的安全性可能不如PoW。
结语
PoW类似于全力以赴的算力竞赛,而PoS则更像是基于信任和财富的抽奖游戏。两者各有优劣,适应不同场景和需求。随着技术发展,未来可能有更多新的共识机制出现,以解决现有问题,但目前这两种机制是最常见的。
❺ 为什么比特币挖矿要在矿池里挖,不能自己挖吗
挖矿其实就是在竞争区块打包权
由于有数以万计的矿工竞争打包权,单个矿工抢得打包权的概率非常小,产出非常不稳定,有可能走狗屎运1小时就抢到一次,也有可能一年都抢不到一次。
为稳定挖矿产出,矿工往往选择加入矿池挖矿,矿池将大量矿工的算力整合在一起,在全网总算力中占据一定的份额,由此得到较稳定的挖矿产出,矿池在收取2%~4%矿池手续费后,将产出按矿工算力分配给矿工。
这就好比一个人买彩票很难中奖,于是矿池把很多人组织在一起买彩票,中奖了再按出资额分配给大家。
❻ 数字货币挖矿是什么挖矿真的可以赚到钱吗
现在比特币挖矿不是普通人可以做的。其他的挖矿,挖的是空气币。骗骗智商不够用,对生活充满幻想的人。