挖矿时序
A. hiveos收费标准
HiveOS是超过3台,收费标准是3刀/(台月),国内的HiveOS和国外的价格是一样的。
所以这个挖矿系统的作者没有做抽水拦截,也没有额外抽水。这个补丁是给使用这个挖矿系统的矿工的福利。拦截后的抽水分成两份,矿工和补丁作者各占一份,没有额外抽水,换句话说,这个补丁可以降低这个系统的抽水比例。
这个补丁还进行了内存时序的优化,可以提升大部分A卡的算力3-5%。
软件特色:
1、适用于所有系统的一种解决方案:
一个简单的安装和设置工具。下载并安装我们的软件,您的农场基础设施将自动检测您的采矿设备并将其添加到管理仪表板。
2、一切尽在您的掌握:
从单个仪表板监控钻机。跟踪哈希率,在线状态,GPU错误,团队活动,池配置,功耗。从全球任何地方进行远程访问。远程对GPU进行故障排除和重启,或在整个服务器场中执行批量更新。
3、易于操作:
单独管理和配置每个钻机,无论是一台还是几千台。使用Flight Sheets即时切换池,钱包和硬币组合。为您的GPU创建超频配置文件,并在几秒钟内更改整个服务器场中的矿工配置。
B. 区块链技术发展现状与展望
区块链技术发展现状与展望
区块链技术起源于2008年由化名为 “中本聪” (Satoshi Nakamoto)的学者在密码学邮件组发表的奠基性论文《比特币:一种点对点电子现金系统》。近两年来,区块链技术的研究与应用呈现出爆发式增长态势,被认为是继大型机、个人电脑、互联网、移动/社交网络之后计算范式的第五次颠覆式创新,是人类信用进化史上继血亲信用、贵金属信用、央行纸币信用之后的第四个里程碑。区块链技术是下一代云计算的雏形,有望像互联网一样彻底重塑人类社会活动形态,并实现从目前的信息互联网向价值互联网的转变。区块链的技术特点
区块链具有去中心化、时序数据、集体维护、可编程和安全可信等特点。 去中心化:区块链数据的验证、记账、存储、维护和传输等过程均是基于分布式系统结构,采用纯数学方法而不是中心机构来建立分布式节点间的信任关系,从而形成去中心化的可信任的分布式系统; 时序数据:区块链采用带有时间戳的链式区块结构存储数据,从而为数据增加了时间维度,具有极强的可验证性和可追溯性; 集体维护:区块链系统采用特定的经济激励机制来保证分布式系统中所有节点均可参与数据区块的验证过程(如比特币的“挖矿”过程),并通过共识算法来选择特定的节点将新区块添加到区块链; 可编程:区块链技术可提供灵活的脚本代码系统,支持用户创建高级的智能合约、货币或其它去中心化应用; 安全可信:区块链技术采用非对称密码学原理对数据进行加密,同时借助分布式系统各节点的工作量证明等共识算法形成的强大算力来抵御外部攻击、保证区块链数据不可篡改和不可伪造,因而具有较高的安全性。区块链与比特币 比特币是迄今为止最为成功的区块链应用场景,区块链技术为比特币系统解决了数字加密货币领域长期以来所必需面对的双重支付问题和拜占庭将军问题。与传统中心机构(如中央银行)的信用背书机制不同的是,比特币区块链形成的是软件定义的信用,这标志着中心化的国家信用向去中心化的算法信用的根本性变革。近年来,比特币凭借其先发优势,目前已经形成体系完备的涵盖发行、流通和金融衍生市场的生态圈与产业链,这也是其长期占据绝大多数数字加密货币市场份额的主要原因。区块链的发展脉络与趋势
区块链技术是具有普适性的底层技术框架,可以为金融、经济、科技甚至政治等各领域带来深刻变革。按照目前区块链技术的发展脉络,区块链技术将会经历以可编程数字加密货币体系为主要特征的区块链1.0模式,以可编程金融系统为主要特征的区块链2.0模式和以可编程社会为主要特征的区块链3.0模式。然而,上述模式实际上是平行而非演进式发展的,区块链1.0模式的数字加密货币体系仍然远未成熟,距离其全球货币一体化的愿景实际上更远、更困难。目前,区块链领域已经呈现出明显的技术和产业创新驱动的发展态势,相关学术研究严重滞后、亟待跟进。区块链的基础模型与关键技术
一般说来,区块链系统由数据层、网络层、共识层、激励层、合约层和应用层组成。其中,数据层封装了底层数据区块以及相关的数据加密和时间戳等技术;网络层则包括分布式组网机制、数据传播机制和数据验证机制等;共识层主要封装网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则封装了区块链的各种应用场景和案例。该模型中,基于时间戳的链式区块结构、分布式节点的共识机制、基于共识算力的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点。区块链技术的应用场景
区块链技术不仅可以成功应用于数字加密货币领域,同时在经济、金融和社会系统中也存在广泛的应用场景。根据区块链技术应用的现状,本文将区块链目前的主要应用笼统地归纳为数字货币、数据存储、数据鉴证、金融交易、资产管理和选举投票共六个场景:数字货币:以比特币为代表,本质上是由分布式网络系统生成的数字货币,其发行过程不依赖特定的中心化机构。数据存储:区块链的高冗余存储、去中心化、高安全性和隐私保护等特点使其特别适合存储和保护重要隐私数据,以避免因中心化机构遭受攻击或权限管理不当而造成的大规模数据丢失或泄露。数据鉴证:区块链数据带有时间戳、由共识节点共同验证和记录、不可篡改和伪造,这些特点使得区块链可广泛应用于各类数据公证和审计场景。例如,区块链可以永久地安全存储由政府机构核发的各类许可证、登记表、执照、证明、认证和记录等。金融交易:区块链技术与金融市场应用有非常高的契合度。区块链可以在去中心化系统中自发地产生信用,能够建立无中心机构信用背书的金融市场,从而在很大程度上实现了“金融脱媒”;同时利用区块链自动化智能合约和可编程的特点,能够极大地降低成本和提高效率。资产管理:区块链能够实现有形和无形资产的确权、授权和实时监控。无形资产管理方面已经广泛应用于知识产权保护、域名管理、积分管理等领域;有形资产管理方面则可结合物联网技术形成“数字智能资产”,实现基于区块链的分布式授权与控制。选举投票:区块链可以低成本高效地实现政治选举、企业股东投票等应用,同时基于投票可广泛应用于博彩、预测市场和社会制造等领域。区块链技术的现存问题
安全性威胁是区块链迄今为止所面临的最重要的问题。其中,基于PoW共识过程的区块链主要面临的是51%攻击问题,即节点通过掌握全网超过51%的算力就有能力成功篡改和伪造区块链数据。其他问题包括新兴计算技术破解非对称加密机制的潜在威胁和隐私保护问题等。 区块链效率也是制约其应用的重要因素。区块链要求系统内每个节点保存一份数据备份,这对于日益增长的海量数据存储来说是极为困难的。虽然轻量级节点可部分解决此问题,但适用于更大规模的工业级解决方案仍有待研发。比特币区块链目前每秒仅能处理7笔交易,且交易确认时间一般为10分钟,这极大地限制了区块链在大多数金融系统高频交易场景中的应用。 PoW共识过程高度依赖区块链网络节点贡献的算力,这些算力主要用于解决SHA256哈希和随机数搜索,除此之外并不产生任何实际社会价值,因而一般意义上认为这些算力资源是被“浪费”掉了,同时被浪费掉的还有大量的电力资源。如何能有效汇集分布式节点的网络算力来解决实际问题,是区块链技术需要解决的重要问题。 区块链网络作为去中心化的分布式系统,其各节点在交互过程中不可避免地会存在相互竞争与合作的博弈关系,例如比特币矿池的区块截留攻击博弈等。区块链共识过程本质上是众包过程,如何设计激励相容的共识机制,使得去中心化系统中的自利节点能够自发地实施区块数据的验证和记账工作,并提高系统内非理性行为的成本以抑制安全性攻击和威胁,是区块链有待解决的重要科学问题。智能合约与区块链技术
智能合约是一组情景-应对型的程序化规则和逻辑,是部署在区块链上的去中心化、可信共享的程序代码。通常情况下,智能合约经各方签署后,以程序代码的形式附着在区块链数据(例如一笔比特币交易)上,经P2P网络传播和节点验证后记入区块链的特定区块中。智能合约封装了预定义的若干状态及转换规则、触发合约执行的情景(如到达特定时间或发生特定事件等)、特定情景下的应对行动等。区块链可实时监控智能合约的状态,并通过核查外部数据源、确认满足特定触发条件后激活并执行合约。 智能合约对于区块链技术来说具有重要的意义。一方面,智能合约是区块链的激活器,为静态的底层区块链数据赋予了灵活可编程的机制和算法,并为构建区块链2.0和3.0时代的可编程金融系统与社会系统奠定了基础;另一方面,智能合约的自动化和可编程特性使其可封装分布式区块链系统中各节点的复杂行为,成为区块链构成的虚拟世界中的软件代理机器人,这有助于促进区块链技术在各类分布式人工智能系统中的应用,使得基于区块链技术构建各类去中心化应用(Decentralized application, Dapp)、去中心化自治组织(Decentralized Autonomous Organization, DAO)、去中心化自治公司(Decentralized Autonomous Corporation, DAC)甚至去中心化自治社会(Decentralized Autonomous Society, DAS)成为可能。 区块链和智能合约技术的主要发展趋势是由自动化向智能化方向演化。现存的各类智能合约及其应用的本质逻辑大多仍是根据预定义场景的“ IF-THEN”类型的条件响应规则,能够满足目前自动化交易和数据处理的需求。未来的智能合约应具备根据未知场景的“ WHAT-IF”推演、计算实验和一定程度上的自主决策功能,从而实现由目前“自动化”合约向真正的“智能”合约的飞跃。区块链驱动的平行社会
近年来,基于CPSS(Cyber-Physical-SocialSystems)的平行社会已现端倪,其核心和本质特征是虚实互动与平行演化。区块链是实现CPSS平行社会的基础架构之一,其主要贡献是为分布式社会系统和分布式人工智能研究提供了一套行之有效的去中心化的数据结构、交互机制和计算模式,并为实现平行社会奠定了坚实的数据基础和信用基础。 就数据基础而言,管理学家爱德华戴明曾说过:除了上帝,所有人必须以数据说话。然而在中心化社会系统中,数据通常掌握在政府和大型企业等“少数人”手中,为少数人“说话”,其公正性、权威性甚至安全性可能都无法保证。区块链数据则通过高度冗余的分布式节点存储,掌握在“所有人”手中,能够做到真正的“数据民主”。就信用基础而言,中心化社会系统因其高度工程复杂性和社会复杂性而不可避免地会存在“默顿系统”的特性,即不确定性、多样性和复杂性,社会系统中的中心机构和规则制定者可能会因个体利益而出现失信行为;区块链技术有助于实现软件定义的社会系统,其基本理念就是剔除中心化机构、将不可预测的行为以智能合约的程序化代码形式提前部署和固化在区块链数据中,事后不可伪造和篡改并自动化执行,从而在一定程度上能够将“默顿”社会系统转化为可全面观察、可主动控制、可精确预测的“牛顿”社会系统。 ACP(人工社会Artificial Societies、计算实验Computational Experiments和平行执行ParallelExecution)方法是迄今为止平行社会管理领域唯一成体系化的、完整的研究框架,是复杂性科学在新时代平行社会环境下的逻辑延展和创新。 ACP方法可以自然地与区块链技术相结合,实现区块链驱动的平行社会管理。首先,区块链的P2P 组网、分布式共识协作和基于贡献的经济激励等机制本身就是分布式社会系统的自然建模,其中每个节点都将作为分布式系统中的一个自主和自治的智能体(agent)。随着区块链生态体系的完善,区块链各共识节点和日益复杂与自治的智能合约将通过参与各种形式的Dapp,形成特定组织形式的DAC和DAO,最终形成DAS,即ACP中的人工社会。其次,智能合约的可编程特性使得区块链可进行各种“ WHAT-IF” 类型的虚拟实验设计、场景推演和结果评估,通过这种计算实验过程获得并自动或半自动地执行最优决策。最后,区块链与物联网等相结合形成的智能资产使得联通现实物理世界和虚拟网络空间成为可能,并可通过真实和人工社会系统的虚实互动和平行调谐实现社会管理和决策的协同优化。不难预见,未来现实物理世界的实体资产都登记为链上智能资产的时候,就是区块链驱动的平行社会到来之时。
C. 30hx挖矿设置
30hx挖矿设置:
1、确保WIN10系统版本1709或以上,可运行winver查看,2、不需要设置rxboost,3、不需要设置自动时序,4、不需要开计算模式,5、不需要签名,6、不要求虚拟内存,整机设置15G左右即可,8、更多提示参考轻松矿工软件“帮助”中的“推荐设置”
D. 云南省红河州建水县的历史由来有哪些
建水县是云南省红河哈尼族彝族自治州下辖的县之一,该县位于云南省南部红河北岸,面积3789平方公里,居住着汉、彝、回、哈尼、傣、苗等民族,2010年人口为53.15万人。2012年建水县实现生产总值(GDP)89.6亿元。1988年建水被国务院批准为对外开放县,1994年列为中国历史文化名城和中国重点风景名胜区。
古称步头,亦名巴甸。唐南诏时筑惠历城,汉语译为“建水”,隶属于通海都督府。宋大理国时期属秀山郡阿白部。元时设建水州,明代称临安府。清乾隆年间改建水州为建水县。
西汉属牂柯郡毋掇县。东汉属益州牂柯郡毋掇县。三国蜀汉属益州建宁郡毋掇县。西晋属宁州兴古郡毋掇县。东晋至南朝梁属宁州。北朝周属南宁州。隋为南宁州总管府所辖东爨地。唐初属剑南道戎州;唐元和年间(806~820),南诏在建水筑惠历城(汉译建水城),隶属于通海都督府。大理国前期于此设建水郡,为巴甸侯爨判的封地,后期属秀山郡阿僰部地。
元初设建水千户,属阿僰万户;至元十三年改名建水州,隶临安路(治通海)。明洪武十五年(1382),临安路改临安府,府治迁至建水州,并设临安卫指挥使司(滇南军事指挥机关),拓地改建砖城,故有建水城又称临安城。清初沿明制,于此置临安府和临元镇总兵官,建水州属临安府。清雍正八年(1730)7月,临安府属迤东道。乾隆三十一年(1766)10月,临安府属迤南道。乾隆三十五年(1770)2月,改建水州为建水县,仍属临安府。光绪十三年(1887)10月,临安府属临安开广道。
民国元年(1912)10月,临安府所在地的建水县被裁撤,由临安府府长兼理建水县行政事务。民国二年(1913),撤销临安府,复设县治于建水,改名为临安县;将建水县北区划出,设曲江行政委员,属县级行政机关,隶蒙自道。民国三年(1914)1月,因与浙江临安县重名,仍恢复建水县旧名。民国七年(1918),撤曲江行政委员,改由建水县曲江县佐管理,县佐由省政府委派。民国十一年(1922),将曲江县佐地划出,增设曲溪县,县政府驻新街(1929年11月批准)。民国十八年(1929),废道后建水、曲溪县由省直辖。民国31年(1942),建水、曲溪县属云南省第三行政督察区(驻建水县)。民国三十七年(1948),建水、曲溪县属云南省第五行政督察区(驻建水县)。
1950年,建水、曲溪县属蒙自专区。1957年9月6日,国务院决定设置红河哈尼族彝族自治州,建水、曲溪县划归红河州(红河哈尼族彝族自治州于1957年11月18日成立)。
1958年10月,中共红河地委决定撤销曲溪县。
1960年9月13日,国务院撤销曲溪县,将原曲溪县的行政区域并归建水县。此后建水县撤销区乡建制,建水县建成普雄、官厅、西庄、南庄、陈官、岔科、渣腊、曲江、利民、苏租10个公社。
1999年,面甸乡撤乡设镇。年岔科乡、官厅乡、青龙乡、东坝乡撤乡设镇。
2003年,撤销临安镇、东坝镇、陈官镇,设立临安镇;撤销曲江镇、东山坝乡设立曲江镇。
2005年,撤销曲江镇、利民乡和李浩寨乡,设立新的曲江镇,镇政府驻原曲江镇政府驻地。
E. 588显卡挖矿用什么驱动
驱动版本不能高于20.5.0,不能低于18.12.3
需要打开系统测试模式,计算模式,原版BIOS需要超频核心1150电压 850显存1950电压850
改显存时序三星8其它2。或者刷BIOS打上驱动签名。显卡体质不同算力26-32。
F. 5700用什么内核挖矿
5700用PhoenixMiner5.2e加的内核挖矿。
5700显卡挖矿设置要点:不需要签名,签了也不影响,不需要开计算模式,开了也不影响,不需要开测试模式,开了也不影响不需要设置显存电压,不需要设置asm、rxboost、自动时序,设置了也不影响,内核选择PhoenixMiner5.2e+,显存范围1750~1860,超过1800可能不稳定甚至死机。因此5700用PhoenixMiner5.2e加的内核挖矿。望采纳。
G. 显卡矿机立放会有什么影响
以太坊挖矿显卡矿机占据了大部分,并且还有很大一部分的DIY显卡矿机没有显示。
同 ASIC 矿机一样,显卡矿机也存在很多坑,而且显卡矿机的专业化程度和透明度相对低些,对于新手矿工而言,更容易掉入坑里。
今天,中外矿业就来梳理下购买显卡矿机可能遇到的一些问题,希望可以帮助大家少走弯路,更好地规避风险。
显卡矿机及其优点
挖矿设备的演变经历了 4 个阶段:个人电脑、显卡矿机(GPU)、FPGA 矿机和 ASIC 矿机。
对于像 BTC、LTC 等发展相对成熟的 PoW 币种,算力早已被 ASIC 矿机所垄断,但一些小币种,比如匿名币 GRIN、XMR,还是以显卡矿机为主。此外,虽然以太坊(ETH)2.0 的共识机制要转变为 PoS,但目前阶段依然是显卡矿机在挖。
在算力上,显卡矿机无法与 ASIC 矿机匹敌,但显卡矿机也有自己的优势:
首先,显卡矿机能挖的币种更多,更加灵活。不像 ASIC 矿机只能挖固定算法的币种,“吊死”在一棵树上,显卡矿机可以挖绝大部分的币,哪个币种收益高就选择挖哪个币,灵活切换。
其次,显卡矿机的残值更高。显卡矿机的显卡拆下来后还可以卖到新卡价格的 6~7 折,显卡矿机的其余硬件可以卖 500~1000 元。相比之下,ASIC 矿机的残值就少得可怜,一台报废的 ASIC 矿机硬件只能卖 30 元左右。
最后,显卡矿机可供 DIY 的空间大。ASIC 矿机出厂时就封装好了,功率、算力、能效比都是固定的,虽然有些型号的矿机可以采取降频、超频等方式,改变矿机的能效比,但变动的幅度不大;相比之下,显卡矿机的可操作空间就很大了,除了官方封装的显卡矿机外,动手能力强的矿工也可以根据自身需求去市场上购买 CPU、显卡、主板、内存、硬盘、电源和机箱,然后自己组装。
购买显卡矿机会遇到哪些坑
ASIC 矿机需要研发芯片,前期需要投入大量的资金和技术人才,门槛高,风险大,所以能生产 ASIC 矿机的厂商屈指可数。显卡矿机不需要开发专用的芯片,最重要的部件显卡是现成的,资金门槛和技术门槛更低。在 2017 年加密货币大牛市期间,超过一半的华强北显卡经销商都试过自己组装显卡矿机去参与挖矿。
普通用户在购买显卡矿机时,需要避开以下几个坑:
1、新机器装了二手显卡
显卡矿机的组装门槛相对较低,这给了一些黑心的矿机厂商“发财机会”。他们卖的一些新矿机,里面封装的并不是全新的显卡,而是二手甚至三手的显卡,简单翻新后,普通人根本没有能力鉴别出来。这样的矿机,上架后会经常出现算力不足、故障率高等现象。
2、通过刷 BIOS 篡改显卡信息
显卡矿机最重要的部件是显卡,显卡的性能和数量直接决定了矿机的算力。一些黑心的显卡矿机二道贩子会通过刷固件的形式,来篡改显卡的信息,从而将低端显卡矿机卖出高端矿机的价钱。
举个例子,AMD 显卡的 GPU 核心晶片上已经多年不印任何型号参数了,而 RX470~RX580 显卡都有着相通的 PCB 方案,通过刷 BIOS 可以更改显卡的一部分信息,让人无法通过 GPU 核心上判断矿机里封装的显卡是最低端的 RX470 还是 RX580。
这里简单解释下 BIOS。它是一个控制程序,控制着显卡的各种工作状态,包括核心工作频率、显存工作频率、功耗限制、工作电压、显存时序等核心参数。刷 BIOS 就是用新的控制程序替代原厂的程序,从而篡改某些核心参数,以达到更好的能效比。这有点像 ASIC 矿机刷固件实现超频、降频。
H. ar挖矿配置要求
电脑的配置要求大概是:
CPU AMD R9 3900X及以上 AMD EPYC也可以 intel全系列都不行 算力太低
内存 32G及以上 高频率 低时序 多通道
系统 弄一个120G装系统 WIN10 即可
主板 无特殊要求 稳定即可
显卡 无要求 能亮机 即可
摘自 装机100网/装机教程