比特币挖矿之后存入哪里
大概有37块钱。
我先来介绍一下比特币系统的奖励机制。
比特币通过系统设置,基本能稳定在平均每10分钟挖出一个区块。每一次出块奖励都给挖出该区块的矿工。挖出区块的矿工称为出块矿工。出块矿工会把比特币网络中的合法交易记录到区块链上,这样矿工就能收到记账的手续费。
出块矿工的奖励包含两部分:一部分是系统给奖励,称为Coinbase奖励(也称为系统发行奖励),另一部分是记账记账奖励,称为矿工费。Coinbase奖励,最开始是50枚比特币,区块高度每到21万的整数倍,Coinbase奖励就会减半,这就是我们常听到的比特币挖矿奖励四年减半。
目前阶段Coinbase奖励为12.5枚比特币。就目前阶段而言,矿工挖出一个区块的奖励,收到的交易矿工费平均大约在0.1枚比特币(不固定),也就是说矿工挖出一个区块得到的平均奖励约为12.6枚比特币。
矿工的奖励99%左右来自系统的Coinbase奖励。根据比特币系统平均每10分钟可挖出一个区块,一天可挖出的新区块数量为144(60*24/10=144),目前每天可挖出比特币数量为1800BTC(144*12.5BTC=1800BTC)。加上每个区块约0.1BTC的矿工费,所有矿工一天得到的总奖励约为1814.4BTC。
⑵ 详解比特币挖矿原理
可以将区块链看作一本记录所有交易的公开总帐簿(列表),比特币网络中的每个参与者都把它看作一本所有权的权威记录。
比特币没有中心机构,几乎所有的完整节点都有一份公共总帐的备份,这份总帐可以被视为认证过的记录。
至今为止,在主干区块链上,没有发生一起成功的攻击,一次都没有。
通过创造出新区块,比特币以一个确定的但不断减慢的速率被铸造出来。大约每十分钟产生一个新区块,每一个新区块都伴随着一定数量从无到有的全新比特币。每开采210,000个块,大约耗时4年,货币发行速率降低50%。
在2016年的某个时刻,在第420,000个区块被“挖掘”出来之后降低到12.5比特币/区块。在第13,230,000个区块(大概在2137年被挖出)之前,新币的发行速度会以指数形式进行64次“二等分”。到那时每区块发行比特币数量变为比特币的最小货币单位——1聪。最终,在经过1,344万个区块之后,所有的共20,999,999.9769亿聪比特币将全部发行完毕。换句话说, 到2140年左右,会存在接近2,100万比特币。在那之后,新的区块不再包含比特币奖励,矿工的收益全部来自交易费。
在收到交易后,每一个节点都会在全网广播前对这些交易进行校验,并以接收时的相应顺序,为有效的新交易建立一个池(交易池)。
每一个节点在校验每一笔交易时,都需要对照一个长长的标准列表:
交易的语法和数据结构必须正确。
输入与输出列表都不能为空。
交易的字节大小是小于MAX_BLOCK_SIZE的。
每一个输出值,以及总量,必须在规定值的范围内 (小于2,100万个币,大于0)。
没有哈希等于0,N等于-1的输入(coinbase交易不应当被中继)。
nLockTime是小于或等于INT_MAX的。
交易的字节大小是大于或等于100的。
交易中的签名数量应小于签名操作数量上限。
解锁脚本(Sig)只能够将数字压入栈中,并且锁定脚本(Pubkey)必须要符合isStandard的格式 (该格式将会拒绝非标准交易)。
池中或位于主分支区块中的一个匹配交易必须是存在的。
对于每一个输入,如果引用的输出存在于池中任何的交易,该交易将被拒绝。
对于每一个输入,在主分支和交易池中寻找引用的输出交易。如果输出交易缺少任何一个输入,该交易将成为一个孤立的交易。如果与其匹配的交易还没有出现在池中,那么将被加入到孤立交易池中。
对于每一个输入,如果引用的输出交易是一个coinbase输出,该输入必须至少获得COINBASE_MATURITY (100)个确认。
对于每一个输入,引用的输出是必须存在的,并且没有被花费。
使用引用的输出交易获得输入值,并检查每一个输入值和总值是否在规定值的范围内 (小于2100万个币,大于0)。
如果输入值的总和小于输出值的总和,交易将被中止。
如果交易费用太低以至于无法进入一个空的区块,交易将被拒绝。
每一个输入的解锁脚本必须依据相应输出的锁定脚本来验证。
以下挖矿节点取名为 A挖矿节点
挖矿节点时刻监听着传播到比特币网络的新区块。而这些新加入的区块对挖矿节点有着特殊的意义。矿工间的竞争以新区块的传播而结束,如同宣布谁是最后的赢家。对于矿工们来说,获得一个新区块意味着某个参与者赢了,而他们则输了这场竞争。然而,一轮竞争的结束也代表着下一轮竞争的开始。
验证交易后,比特币节点会将这些交易添加到自己的内存池中。内存池也称作交易池,用来暂存尚未被加入到区块的交易记录。
A节点需要为内存池中的每笔交易分配一个优先级,并选择较高优先级的交易记录来构建候选区块。
一个交易想要成为“较高优先级”,需满足的条件:优先值大于57,600,000,这个值的生成依赖于3个参数:一个比特币(即1亿聪),年龄为一天(144个区块),交易的大小为250个字节:
High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000
区块中用来存储交易的前50K字节是保留给较高优先级交易的。 节点在填充这50K字节的时候,会优先考虑这些最高优先级的交易,不管它们是否包含了矿工费。这种机制使得高优先级交易即便是零矿工费,也可以优先被处理。
然后,A挖矿节点会选出那些包含最小矿工费的交易,并按照“每千字节矿工费”进行排序,优先选择矿工费高的交易来填充剩下的区块。
如区块中仍有剩余空间,A挖矿节点可以选择那些不含矿工费的交易。有些矿工会竭尽全力将那些不含矿工费的交易整合到区块中,而其他矿工也许会选择忽略这些交易。
在区块被填满后,内存池中的剩余交易会成为下一个区块的候选交易。因为这些交易还留在内存池中,所以随着新的区块被加到链上,这些交易输入时所引用UTXO的深度(即交易“块龄”)也会随着变大。由于交易的优先值取决于它交易输入的“块龄”,所以这个交易的优先值也就随之增长了。最后,一个零矿工费交易的优先值就有可能会满足高优先级的门槛,被免费地打包进区块。
UTXO(Unspent Transaction Output) : 每笔交易都有若干交易输入,也就是资金来源,也都有若干笔交易输出,也就是资金去向。一般来说,每一笔交易都要花费(spend)一笔输入,产生一笔输出,而其所产生的输出,就是“未花费过的交易输出”,也就是 UTXO。
块龄:UTXO的“块龄”是自该UTXO被记录到区块链为止所经历过的区块数,即这个UTXO在区块链中的深度。
区块中的第一笔交易是笔特殊交易,称为创币交易或者coinbase交易。这个交易是由挖矿节点构造并用来奖励矿工们所做的贡献的。假设此时一个区块的奖励是25比特币,A挖矿的节点会创建“向A的地址支付25.1个比特币(包含矿工费0.1个比特币)”这样一个交易,把生成交易的奖励发送到自己的钱包。A挖出区块获得的奖励金额是coinbase奖励(25个全新的比特币)和区块中全部交易矿工费的总和。
A节点已经构建了一个候选区块,那么就轮到A的矿机对这个新区块进行“挖掘”,求解工作量证明算法以使这个区块有效。比特币挖矿过程使用的是SHA256哈希函数。
用最简单的术语来说, 挖矿节点不断重复进行尝试,直到它找到的随机调整数使得产生的哈希值低于某个特定的目标。 哈希函数的结果无法提前得知,也没有能得到一个特定哈希值的模式。举个例子,你一个人在屋里打台球,白球从A点到达B点,但是一个人推门进来看到白球在B点,却无论如何是不知道如何从A到B的。哈希函数的这个特性意味着:得到哈希值的唯一方法是不断的尝试,每次随机修改输入,直到出现适当的哈希值。
需要以下参数
• block的版本 version
• 上一个block的hash值: prev_hash
• 需要写入的交易记录的hash树的值: merkle_root
• 更新时间: ntime
• 当前难度: nbits
挖矿的过程就是找到x使得
SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET
上式的x的范围是0~2^32, TARGET可以根据当前难度求出的。
简单打个比方,想象人们不断扔一对色子以得到小于一个特定点数的游戏。第一局,目标是12。只要你不扔出两个6,你就会赢。然后下一局目标为11。玩家只能扔10或更小的点数才能赢,不过也很简单。假如几局之后目标降低为了5。现在有一半机率以上扔出来的色子加起来点数会超过5,因此无效。随着目标越来越小,要想赢的话,扔色子的次数会指数级的上升。最终当目标为2时(最小可能点数),只有一个人平均扔36次或2%扔的次数中,他才能赢。
如前所述,目标决定了难度,进而影响求解工作量证明算法所需要的时间。那么问题来了:为什么这个难度值是可调整的?由谁来调整?如何调整?
比特币的区块平均每10分钟生成一个。这就是比特币的心跳,是货币发行速率和交易达成速度的基础。不仅是在短期内,而是在几十年内它都必须要保持恒定。在此期间,计算机性能将飞速提升。此外,参与挖矿的人和计算机也会不断变化。为了能让新区块的保持10分钟一个的产生速率,挖矿的难度必须根据这些变化进行调整。事实上,难度是一个动态的参数,会定期调整以达到每10分钟一个新区块的目标。简单地说,难度被设定在,无论挖矿能力如何,新区块产生速率都保持在10分钟一个。
那么,在一个完全去中心化的网络中,这样的调整是如何做到的呢?难度的调整是在每个完整节点中独立自动发生的。每2,016个区块(2周产生的区块)中的所有节点都会调整难度。难度的调整公式是由最新2,016个区块的花费时长与20,160分钟(两周,即这些区块以10分钟一个速率所期望花费的时长)比较得出的。难度是根据实际时长与期望时长的比值进行相应调整的(或变难或变易)。简单来说,如果网络发现区块产生速率比10分钟要快时会增加难度。如果发现比10分钟慢时则降低难度。
为了防止难度的变化过快,每个周期的调整幅度必须小于一个因子(值为4)。如果要调整的幅度大于4倍,则按4倍调整。由于在下一个2,016区块的周期不平衡的情况会继续存在,所以进一步的难度调整会在下一周期进行。因此平衡哈希计算能力和难度的巨大差异有可能需要花费几个2,016区块周期才会完成。
举个例子,当前A节点在挖277,316个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第277,316个区块(父区块为277,315)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。
比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。
每一个节点对每一个新区块的独立校验,确保了矿工无法欺诈。在前面的章节中,我们看到了矿工们如何去记录一笔交易,以获得在此区块中创造的新比特币和交易费。为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?这是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒绝,因此,该交易就不会成为总账的一部分。
比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块,它将尝试将新的区块连接到到现存的区块链,将它们组装起来。
节点维护三种区块:
· 第一种是连接到主链上的,
· 第二种是从主链上产生分支的(备用链),
· 第三种是在已知链中没有找到已知父区块的。
有时候,新区块所延长的区块链并不是主链,这一点我们将在下面“ 区块链分叉”中看到。
如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。
选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链,新块本身就代表它们的投票。
因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链视角。解决的办法是, 每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就是最长的或最大累计难度的链。
当有两个候选区块同时想要延长最长区块链时,分叉事件就会发生。正常情况下,分叉发生在两名矿工在较短的时间内,各自都算得了工作量证明解的时候。两个矿工在各自的候选区块一发现解,便立即传播自己的“获胜”区块到网络中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。如果该节点在随后又收到了另一个候选区块,而这个区块又拥有同样父区块,那么节点会将这个区块连接到候选链上。其结果是,一些节点收到了一个候选区块,而另一些节点收到了另一个候选区块,这时两个不同版本的区块链就出现了。
分叉之前
分叉开始
我们看到两个矿工几乎同时挖到了两个不同的区块。为了便于跟踪这个分叉事件,我们设定有一个被标记为红色的、来自加拿大的区块,还有一个被标记为绿色的、来自澳大利亚的区块。
假设有这样一种情况,一个在加拿大的矿工发现了“红色”区块的工作量证明解,在“蓝色”的父区块上延长了块链。几乎同一时刻,一个澳大利亚的矿工找到了“绿色”区块的解,也延长了“蓝色”区块。那么现在我们就有了两个区块:一个是源于加拿大的“红色”区块;另一个是源于澳大利亚的“绿色”。这两个区块都是有效的,均包含有效的工作量证明解并延长同一个父区块。这个两个区块可能包含了几乎相同的交易,只是在交易的排序上有些许不同。
比特币网络中邻近(网络拓扑上的邻近,而非地理上的)加拿大的节点会首先收到“红色”区块,并建立一个最大累计难度的区块,“红色”区块为这个链的最后一个区块(蓝色-红色),同时忽略晚一些到达的“绿色”区块。相比之下,离澳大利亚更近的节点会判定“绿色”区块胜出,并以它为最后一个区块来延长区块链(蓝色-绿色),忽略晚几秒到达的“红色”区块。那些首先收到“红色”区块的节点,会即刻以这个区块为父区块来产生新的候选区块,并尝试寻找这个候选区块的工作量证明解。同样地,接受“绿色”区块的节点会以这个区块为链的顶点开始生成新块,延长这个链。
分叉问题几乎总是在一个区块内就被解决了。网络中的一部分算力专注于“红色”区块为父区块,在其之上建立新的区块;另一部分算力则专注在“绿色”区块上。即便算力在这两个阵营中平均分配,也总有一个阵营抢在另一个阵营前发现工作量证明解并将其传播出去。在这个例子中我们可以打个比方,假如工作在“绿色”区块上的矿工找到了一个“粉色”区块延长了区块链(蓝色-绿色-粉色),他们会立刻传播这个新区块,整个网络会都会认为这个区块是有效的,如上图所示。
所有在上一轮选择“绿色”区块为胜出者的节点会直接将这条链延长一个区块。然而,那些选择“红色”区块为胜出者的节点现在会看到两个链: “蓝色-绿色-粉色”和“蓝色-红色”。 如上图所示,这些节点会根据结果将 “蓝色-绿色-粉色” 这条链设置为主链,将 “蓝色-红色” 这条链设置为备用链。 这些节点接纳了新的更长的链,被迫改变了原有对区块链的观点,这就叫做链的重新共识 。因为“红”区块做为父区块已经不在最长链上,导致了他们的候选区块已经成为了“孤块”,所以现在任何原本想要在“蓝色-红色”链上延长区块链的矿工都会停下来。全网将 “蓝色-绿色-粉色” 这条链识别为主链,“粉色”区块为这条链的最后一个区块。全部矿工立刻将他们产生的候选区块的父区块切换为“粉色”,来延长“蓝色-绿色-粉色”这条链。
从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。
比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。
⑶ 挖矿机是具体是怎么运行,挖出比特币需要怎么变现
去交易所交易,先把钱包里的比特币充值到交易所帐号上去,然后在市场里卖出去就得到USDT了
⑷ 比特币价格一度突破6万美元,创历史新高,比特币挖矿江湖你懂多少
比特币的价格经历过下跌之后又重新登上了顶峰。现在一枚比特币的价格已经突破了6万美元,可以说创造了一个奇迹。我本身并不是挖矿人,对于比特币其实也不是非常的了解,只不过因为身边有一些同事经常接触金融,所以也耳渲目染的听过一些关于比特币的知识。比特币在我看来,作为数字货币的一种,本身的价值其实并不是非常高,毕竟现在各个国家都在发展自身的官方数字货币。那么今天我们就来探讨一下比特币背后的挖矿江湖。
第三,如何看待比特币的未来走向?
其实在听关于比特币的消息的时候,我也发现了这样一个比较奇特的地方,那就是比特币的价格大涨的时候,我可以听到铺天盖地的关于比特币的消息,但是如果比特币的价格下跌,那么关于比特币的消息就会非常的少。所以从这里就可以看出,有专门的人在背后不断地对比特币进行操作。而他们这么做的目的非常的简单,就是让大量的资金涌入到比特币的市场当中,为这些人接盘,因为他们已经把他比特币弄到了一个非常高的价格。在这样的价格下,他们需要让别人用现金来交换他们手中的比特币。所以在我看来,比特币的投资是具有很大风险的。
⑸ 现在都在说的挖矿是什么真能赚钱
挖矿就是指用比特币挖矿机获得比特币,也就是用于赚取比特币的计算机。如果能够获取比特币,是能够赚钱的。这类计算机一般有专业的挖矿芯片,多采用安装大量显卡的方式工作,耗电量较大。计算机下载挖矿软件然后运行特定算法,与远方服务器通讯后可得到相应比特币。
注意事项:
1.、最好是自己DIY矿机,从采购配件到组装,再到挖矿软件,每一个环节都亲自去学习,去专注,去实践,逐步去理解区块链。
2、挖矿其实是一个定投的过程:不管币价的高低,每天都会增加一定量的仓位。
3、用来存储比特币的比特币钱包使用了军用级别的加密方式,使得黑客无法轻松盗取。比特币钱包还让用户设定两个密码,一个公用账户密码和一个私人密码。公用账户密码的用户在于让用户接收比特币。而如果用户想要从账户中提取或是转移比特币,就需要使用私人密码。
⑹ 挖矿机是具体是怎么运行,挖出比特币需要怎么变现
挖矿肯定是首推专业矿机,不少新入门的童鞋会选择用显卡挖矿,但显卡挖矿就好比用“万金油”去干一个专业的事儿,也能行,但效率肯定不高。挖比特币,首要关注的就几个点,一算力(即挖矿速度),二耗电,三性能稳定。算力,比特币挖矿比的是解题速度,所以速度多重要不言而喻;耗电,直接关系到效率,也就是成本支出的问题;性能稳定,主要是看工作频率不变时算力的稳定性。试想一下,谁也不想矿机隔三差五掉算力甚至出故障吧,毕竟这烧的都是钱啊~
显卡一般算力在几个G,而专业矿机芯片高达几千G,以目前全球功耗最低的一款芯片BM1387为例,搭载它的蚂蚁矿机S9算力高达14T,墙上功耗仅为1400W ,额定的算力也到达了13.5 TH / s的±5%,电源效率是0.1J/GH + 12%(墙上,AC / DC 93%的效率,25°C的环境温度),额定电压:11.6~13.0V,除此之外在非独立电源情况下,3个算力板可以分别连接到不同的电源,但是每块算力板不能连接多个电源,并保证算力板最后通电。
矿机中,蚂蚁矿机我个人是比较看好的,同时,以比特币前期的平均投资成本来计算,用蚂蚁S9基本上五个月左右就能完全回本,且后期收入不可估量。
⑺ 2100万个比特币(BTC)挖完以后怎么办
大家都知道,比特币的总量是2100万枚。当一个块被成功算出,币就会以挖矿奖励的形式发放给成功“爆块”的矿工。比特币的稀缺性也拉升了它的价值。但是,比特币网络是一个由矿工组成的,通过挖矿他们获得巨大的奖励,很多人就在想如果所有比特币都被挖出来之后会发生什么事情?
但假设真的到了那一天,比特币的区块奖励机制已经无法提供丰厚的代币回报时,矿工就不会挖矿了吗?事实上,挖矿成本是不固定的,单独计算爆块奖励也是不科学的。加密数字货币的挖矿难度虽然只增不减,但会受全网算力的增长速度快慢,影响调整周期长短。如果挖的人多,成本自然高,挖的人少,成本自然就降低了。其次,不同地区的电费成本不一样,有的地方甚至能拿到接近免费的电,功耗成本基本就可以忽略不计了。所以,我们要明确一个原则,只要仍有利润可图,挖矿就不会停止。
其实,从比特币的发展历程来看,真正影响矿工是否继续挖矿的因素,并非是否有矿可挖,而是挖矿的收益如何。在比特币交易量增加、手续费升高;或者比特币价格升高的情况下,挖矿收益可观,矿工们的投入热情都会相应高涨。那么,只要比特币价值还在,不管何时挖矿都会有利润,总有矿工不会关停手中的机器。
很多人之所以会有“2100万枚比特币挖完就没收益”这种顾虑,主要是误以为矿工收益的唯一来源是“爆块”奖励。但实际上,矿工的挖矿收入包括两个部分,一部分是区块奖励,从最初打包一次交易开始,每四年减半一次。而另一部分则来自交易手续费。
为了保证自己的交易能够尽快被矿工确认,交易者们通常会额外付给他们一笔手续费,手续费越高,交易被优先打包的可能性越大。而手续费的存在一方面可以提高转账门槛,防止区块链中充斥垃圾交易;另一方面,也可以激励矿工竞争记账,使他们在比特币全部被挖出之后,还能够继续为比特币网络的安全提供算力保障。这一点在中本聪的比特币白皮书中,关于激励机制的描述中也可以找到原文:“只要既定数量的电子货币已经进入流通,那么激励机制就可以逐渐转换为完全依靠交易费。”也就是说,就算所有的比特币都发行完毕,只要有足够多的交易需求,矿工们就有理由继续挖矿,并能从中获得收益。
现在,新的区块被挖出之后,矿工会获得区块的奖励,这包括获得新币和手续费。这些奖励激励矿工维护和保护网络。
(1000T算力七个月挖出7枚比特币,咨询kaiye910323)
如果比特币都被挖出之后,没有区块奖励,单单依靠手续费,可以维持网络的运转吗?如果不能,是否会让矿工离开,而导致网络崩溃。下面的走势图,我们可以看出到2030年,手续费收入会高过区块奖励。一旦手续费超过收入的50%以上,矿工们就可以过度到通过收取手续费存活下来。
手续费是否足以激励矿工?
这个问题暂时没有人可以完全确定出答案。但是,目前的证据表明,通过手续费收入是足以维持矿工和比特币网络的。毕竟,随着比特币价格的上涨,手续费也在上涨。有人担心过高的手续费是否会阻止人们使用比特币。然而,现在的手续费仍然要低于世界国家间的法币转账。我们现在只需要考虑耗电和房屋的租金。正如专家指出的:买卖一套房子的成本是2%,即8000美元。我敢肯定,如果个人买卖成本只需要50美元。
目前,很多矿工习惯性以当前币价为参考计算挖矿收益。有一些矿池甚至采用贪心算法,一直把算力集中来挖“最有利可图的币”,也就是目前兑换美元价值最高的币。但是事实证明这种贪心算法并没有比一直挖一种币的好到哪里去。为什么呢?因为挖矿本来就不是一个一次性的游戏,币是可以储存的,也就是说,每个矿工都有自己对于加密数字货币前景的判断。即便今天比特币跌到1美元,认为只要有矿工相信未来比特币依然能够涨回去,那么他们就不会在乎眼下的亏损,而是会继续的挖下去,待其未来币价暴涨时,眼下投入的成本完全是九牛一毛了。
⑻ 请问比特币挖矿的原理是什么
比特币挖矿是利用计算机硬件为比特币网络做数学计算进行交易确认和提高安全性的过程。