矿机模式开发定选拽牛科技技术
① 中青宝最高时候的股价中青宝 技术面分析周一中青宝股涨势趋势
《酿酒大师》是国内首款虚拟与现实梦幻联动模拟经营类的元宇宙游戏,是经中青宝推向市场的,元宇宙概念一下子就闯进我们视野,让整个游戏行业的股价有所上涨,今天就给大家仔细讲解一下中青宝这个"罪魁祸首"。
在开始分析中青宝前,我将向大家展示一份游戏行业龙头股名单,直接点下方链接就可以领取:宝藏资料:游戏行业龙头股名单
一、从公司角度来看
公司介绍:中青宝是一家具有自主研发、运营能力、代理能力的专业化网络游戏公司。公司的主营业务是网络游戏的开发及运营,由研发中心、运营中心、运维技术中心和综合管理中心构成了清晰完整的业务系统。
下面来聊一聊这个公司的优秀之处:
优势一、区块链产业优势
中青宝公司控股股东宝德科技作为服务器开发商中的佼佼者,拥有行业内领先的服务器资源,在数字货币的挖掘和存储方面的优势还是很明显的,宝德科技自主研发的矿机已经处于一个热卖的状态。
中青宝全资子公司宝腾互联作为云计算基础设施服务提供商,带宽、算力资源丰富,宝腾互联有把剩余的带宽和算力与宝德科技的矿机有机结合形成共享云池的想法,提供自用或者出租两种方式,参与了与数字货币有联系的挖掘工作。
中青宝也在游戏创新方面组建了精干团队,将区块链技术与传统游戏两者有机结合,研究以区块链技术为基底,创建游戏的输赢概率更为透明、公平、不可更改的博弈体制,营造健康优质的游戏环境。
优势二、布局完善,打造游戏生态
中青宝通过多年来对所处游戏行业的深度探索、研发、运营经验的不断积累以及对产业链上下游的广泛布局,使得公司在进行自主创新和建立可持续发展生态奠定坚实的基础,使公司拥有更强的竞争力。如今,中青宝在经营方向上已经做出改变,不再是原有的单一游戏业务,而是转变为游戏、云服务和科技文旅三大板块了。公司每项业务都形成互相支撑的关系,相互协同,使用拓宽公司的方法来发展路径,使得公司的行业竞争力得到提升。
因为篇幅已经够了,关于中青宝更加全面的深度报告和风险提示,我都写在了下面文章中,点击就可领取:【深度研报】中青宝点评,建议收藏!
二、从行业角度来看
大众对未成年人沉迷网络游戏保持怎样的立场,以及如何处理这件事,行业和市场曾一度处于观望模式。在这次新颁布的新规中,内容更加收放自如,限制条款被明确的细化了,这也避免了粗暴的"一刀切"。新规出台这段时间,多家上市公司披露的国内游戏产品未成年玩家流水占比是不高的,同时出海收入占比得到扩大使得该新规对大中型游戏厂商收入端影响有限。因此,对于把精品内容、扩大出海和搜索云游戏作为发展主线的游戏行业的企业,有很大的发展空间。
三、总结
总的来讲,我觉得,中青宝公司既然身为游戏行业中的出名企业,有望在行业变革之间,迎来高速发展。但是文章具有一定的滞后性,如若各位对中青宝未来行情感兴趣,动动小指直接点一下链接,有专业的投顾替我们诊股,分析一下中青宝现在行情有没有到买入或卖出的好时机:【免费】测一测中青宝还有机会吗?
应答时间:2021-10-02,最新业务变化以文中链接内展示的数据为准,请点击查看
② 螺旋洗矿机的技术参数
类型 型号
规格 螺旋直径
(mm) 入选颗粒
(mm) 耗水量
T/h 生产能力
T 电机率
Kw 外型尺寸长×宽×高
(mm) 重量
Kg 轻型
单螺旋 XL-508 508 ≤10 14-88 20 7.5 8000×2343×1530 2670 XL-610 610 ≤10 14-165 50 7.5 8000×2490×1530 3800 XL-762 762 ≤10 18-124 75 11-15 9070×2650×1638 5225 XL-914 914 ≤10 18-162 100 11-15 9070×2650×1638 6370 XL-1118 1118 ≤10 27-333 175 30 9070×2830×1900 9800 轻型
双螺旋 2XL-762 762 ≤10 40-250 140 2×11 11580×3965×2370 7440 2XL-914 914 ≤10 105-620 200 215 9070×3300×1638 9531 2XL-1118 1118 ≤10 125-1400 350 222 9070×3890×1900 16700 重型
单螺旋 XLZ-762 762 ≤60 355-450 80-125 22 11580×5226×2370 9800 XLZ-914 914 ≤60 400-600 125-175 30 6980×1200×1340 11800 XLZ-1118 1118 ≤75 500-750 180-250 37 7400×1380×1950 13900 重型
双螺旋 2XLZ-762 762 ≤60 600-800 100-150 2×22 6980×2091×1340 16800 2XLZ-914 914 ≤60 700-900 150-200 2×30 7120×2146×1590 20800 2XLZ-1118 1118 ≤75 900-1100 200-300 2×37 8500×2861×2150 23870
③ MEMS技术在煤矿瓦斯灾害预测中的应用
李月周瑶琪
(中国石油大学(华东)地球化学与岩石圈动力学开放实验室 山东东营 257061)
作者简介:李月,女,1979年12月生,河北沧州人,2002年毕业于中国石油大学石油地质专业,获学士学位,在读博士研究生,研究方向:地质资源与地质工程,电子信箱:[email protected]。
摘要 在利用MEMS技术对花岗岩样的压裂过程进行监测的基础上,应用对破裂的监测原理,探讨了MEMS技术在预测瓦斯爆炸方面的应用。实验中,用压机对岩样进行持续施压,观测到4批微破裂。主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝。基于上述原理,把该项技术用于预测由于入为采矿所产生的矿震以及天然地震所造成的矿山爆炸也将产生较好的效果。
关键词 MEMS技术 压裂 微破裂 煤矿灾害
Application of MEMS in Forecast of Gas Disaster of Coalmine
Li Yue,Zhou Yaoqi
(Geochemistry & Lithosphere Dynamic Open Laboratory,China Universityof Petroleum,Dongying 257061)
Abstract:Based on the monitoring to the fracturing process of the granitic sample by MEMS,applying the monitoring principle,we discussed the application of MEMS in forecasting the gas blowing up.In this experiment,continually forcing to the sample,we observed four series of micro-fracture.The anterior three series of microfracture before the main fracture were because of the crack in the sample centralizing and connecting,which was regarded as the portent of the earthquake.The main-fracture proced the crack in macro.Based on the beforementioned principle,it was concluded that the forecast of mine blast resulted from the mining and crude earthquake had the good effect by this technology.
Keywords:MEMS;fracturing;micro-fracture;coal mine disaster
序言
MEMS(Micro-Electro-Mechanical Systems)通常称为微机电系统技术,其含义是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,包括接口、通信和电源等于一体的微型器件或系统。[1]
矿难在近几年的重大伤亡事故中占据相当大的比重,瓦斯爆炸以及入工诱发地震更是给入们带来了极大的威胁。本文主要是在实验的基础上探讨MEMS技术在预测煤矿灾害中的应用。
1 实验
实验主要是利用MEMS技术敏感的特点,通过对花岗岩破裂过程的监测,观察微破裂发生时传感器的瞬间反应。
1.1 样品和观测系统简介
样品采自山东莱州,属于燕山期花岗岩。加工成50×15×7.5 cm3的实验样品。花岗岩具有均匀的颗粒结构,主要由石英、长石和黑云母以及少量重矿物组成。长石最大斑晶可达5mm左右,一般颗粒粒径为0.5~3mm。黑云母则通常沿石英长石颗粒边缘呈线状分布(见图1)。
图1 花岗岩显微结构(正交偏光×50)
传感器采用东营感微科技开发公司生产的4个ME MS-1221 L 型单分量加速度传感器。其灵敏度为2 V/G,分辨率为10-4G,频带范围0~1000Hz。数据采集和分析系统为东营感微科技开发公司开发的通用数据监测和分析软件RBH-General。
压裂实验使用中国石油大学机电学院矿机实验室WE-300型压机(图2)。观测系统如图2(b)以及图3所示。
图2 实验用压机及观测系统
a为WE-300型实验用压机,b为岩样观测系统传感器放置和受压支撑位置
图3 观测系统平视图
其中编号1、2、3、4为4个传感器,传感器1、4靠近岩石块边缘。4个传感器在一条水平线上。1号传感器与2号传感器中心间隔10cm,3号与4号之间也是同样间隔。传感器的半径为2.5cm
1.2 实验过程与数据讨论
1.2.1 实验过程
首先将岩样平放在压机上,并使得岩样两端距支撑线的距离相等,同时记下两侧距离值,以便清楚岩样受压的力臂;然后将4个传感器依次放在岩样上面(图3),并记下各自的位置,同时将传感器和数据采集分析系统相连,以便对不同部位的微破裂所发出的信号进行记录。
时间记录从0秒开始,数据采样频率为4000Hz。压力的施加过程是循序渐进的,压力从0 kN 开始逐渐增大,观察数据的变化,开始记录的是噪声的频谱,当压力增加到致使岩样内部结构发生变化时,频谱即刻发生变化,频谱的变化过程将在下面进行讨论,其中红色代表传感器1的频谱,黑色代表传感器2的频谱,蓝色代表传感器3的频谱,黄色代表传感器4的频谱。在近360秒的压裂过程中,真正的岩样破裂是在最后一分钟内完成的,即分别在302.290~303.826 s;305.599~307.135 s;316.793~318.329 s和357.923~360.258s,岩样共发生了四批微破裂。除了最后一批微破裂持续时间达到2s以上,之前的三批微破裂持续时间均少于1.5 s。每批微破裂均由一组密集的微破裂组成,单次微破裂持续时间一般不超过50毫秒。
1.2.2 压裂过程数据记录与简析
下面依时间顺序分别选取10个有代表性的时间段所记录的频谱特征进行讨论,由于技术原因,目前所用传感器的精度还不足以区分破裂发生时接收信号的准确时间,我们将在以后的工作中逐步解决这个问题。
(1)0.291~31.826s受压开始后的噪声谱(图4):刚开始施压不久,虽然各传感器接收的噪声有所差异,但是总体来说噪声主要频率集中于50~300Hz 低频区和400~750Hz的高频区,4号传感器由于处于距离油泵较远的位置,因此振幅相对于其他三个来说略低,并且频率分布于20~200Hz和600~750Hz 两个更低和更高的区域,不同传感器所记录的噪声差异主要与它们不同的位置有关。
(2)31.990~33.526s噪声谱(图5):相对于0.291~31.826s受压开始后的噪声谱来说噪声的振幅增大了近一倍,但是频率仍然以集中于低频区为特征,高频幅度相对低频区有所压制,这说明岩样内部结构受压力影响有所变化,噪声振幅的突然增大有可能是因为油泵不均匀施压的结果。
图4 0.291~31.826s受压开始后的噪声谱
图5 31.990~33.526s噪声谱
(3)300.665~302.201 s噪声谱(图6):临近微破裂发生前,噪声水平进一步降低,尤其是2号、1号和4号传感器位置降低明显。3号位置噪声水平相对较大。
图6 300.665~302.201s噪声谱
(4)302.290~303.826s微破裂发生时的频谱(图7):这是岩样发生首批微破裂时的频谱特征。从中可以明显的看出振幅异常,不同的传感器得到的数据有所差别:1、2号传感器的频率范围大约集中在700~800Hz,3、4号传感器,尤其是3号受到噪声的影响比较大,对微破裂的反应不是很明显。3号传感器的频率范围大约在500~600Hz之间,4号的频率范围大约在650~750Hz之间。首批微破裂只是改变了岩样内部的细微结构,宏观上没有发生什么变化。
图7 302.290~303.826s微破裂发生时的频谱
(5)305.599~307.135s微破裂发生时的频谱(图8):相对于302.290~303.826s微破裂时的频谱明显具有向低频方向移动的特征,频率范围大约集中在650~750Hz之间。
图8 305.599~307.135s微破裂发生时的频谱
(6)307.612~309.147s噪声谱(图9):微破裂之后继续加压岩样暂时不会再次发生破裂,和开始时的噪声谱特征基本相同,但高频噪声相对高于低频噪声,表示岩样内部结构已发生变化。
图9 307.612~309.147s噪声谱
(7)316.793~318.329s微破裂发生时的频谱(图10):第三批微破裂相对于前两批破裂强度大,振幅增强,随着压力的增大,在前面破裂产生的基础上,当岩样内部裂缝再次发育、贯通,岩样就会发生破裂。各个不同的传感器在频谱特征上差别较大,频率范围各不相同,其中1号传感器记录到微破裂的频率范围大约在350~500Hz之间,2号传感器记录到的频率范围大约在450~550Hz之间,3号传感器记录到的频率范围大约在400~500Hz之间,4号传感器记录到的频率范围大约在650~750Hz之间。
图10 316.793~318.329s微破裂发生时的频谱
(8)326.534~328.070s噪声谱(图11):第三批微破裂发生之后,由于岩样已经产生了裂缝,继续加压在很短的时间内对岩样将不会产生大的影响,因此表现出来的仍然是压机噪声的频谱特征。
图11 326.534~328.070s噪声谱
(9)358.723~360.258s主破裂发生时的频谱(图12):继续加压之后,岩样在前面微破裂的基础上发生更强的破裂,即主破裂。从我们所采集到的数据来看,这次破裂幅度比前面破裂要大得多,并且峰值具有明显向低频区移动的趋势。各传感器的频率范围也具有明显的差异:1号传感器的频率范围在300~500Hz之间,2号传感器的频率范围在200~300Hz之间,3号传感器的频率范围在350~550Hz之间,4号传感器的频率范围在500~700Hz之间。因为最终的破裂面位于2号和3号传感器之间,并且最后的破裂向2号传感器方向伸展,所以2号和3号传感器记录的微破裂振幅相对较低,并且频率也偏低,尤其是2号传感器。而相对远离破裂面的1号和4号传感器位置记录的微地震幅度和频率都相对要高许多。这可能与岩样较小,离破裂面越远传感器的位移越大有关。
图12 358.723~360.258s主破裂发生时的频谱
(10)361.335~362.871 s主破裂发生后的噪声谱(图13):主破裂发生之后施加的压力对岩样已经不能产生任何作用,由于岩样已经完全破裂,并且这时我们在岩样的外观上已经可以清楚的看到一条裂缝,继续加压,这条裂缝就起到了卸压的作用,因此继续施加压力,我们采集到的只是压机所发出的噪声的频谱。但相对刚开始施压时的噪声谱而言,由于岩样已发生破裂,油泵噪声通过岩样传递给传感器,裂缝对噪声的传递产生了影响,导致高频噪声大大减弱,而低频噪声则相对增强。
图13 361.335~362.871s主破裂发生后的噪声谱
1.2.3 微破裂频谱变化特征
分析压机对岩样进行加压的实验过程,通过频谱的变化特征可以看出:四批微破裂产生时频谱的频率范围以及振幅有所差异(见表1)。
表1 四批微破裂发生时不同传感器接收的频率范围及频谱峰值
四批破裂发生时,频率范围并不仅仅集中在表1所列的范围之内,另外还有相对集中的区域,但是由于其他区域的频率或者峰值较低,或者范围很窄,因此没有一一列举,表中只列举了主要的频率范围。由表中数据可以看出,对于一个传感器来说,随着压力的增大,四次破裂发生时的频率范围依次减小,即频率随着破裂的增大逐渐降低;对于同一次微破裂来说,前两批微破裂产生时距离压力作用点近的两个传感器得到的数据相对于较远的传感器来说要小,而主破裂发生时只有4号传感器的频率范围明显大于其他3个,说明距离裂缝越近,频率值越低。从这个现象我们可以总结以下规律:随着压力的增大,频率值降低;裂缝越大,频率值越小。而且,由于岩样本身体积比较小,在放置的时候由于位置不足够精确,因此一点儿的差距都会导致岩样在受压过程中发生轻微倾斜,这种轻微倾斜将导致处于对称位置的1、4号检波器和2、3号检波器的数据存在较大差异。从每次破裂频谱的峰值来看,前两次破裂发生时靠近压力作用点的传感器发出的频谱的峰值要大,而后两次破裂发生时情况正好相反。这有可能是由于最先两次破裂发生时微破裂的规模很小,只是内部结构发生了微小变化,而后两次发生时微破裂的规模相对增大,第四批微破裂甚至使岩样在宏观上发生了破裂的缘故。
1.3 实验结果讨论
近年来,地震学者认识到,地震是一次具有裂隙的地球材料的破裂行为,并在一般的固体材料,其中包括岩石微裂隙形成过程的研究中,去探索这种破裂的孕育及发生。现今关于地震孕育的一切基本假想,都把地球裂隙破裂的演化看成是寻找和解决地震前兆并解决地震预报的关键[2-10]。主破裂的发生是由于岩样在前面破裂以及不断施压的条件下,使得内部裂缝不断聚集增多,最后达到相互贯通的结果,岩样在宏观上产生了一条与压力方向近似平行的裂缝。下面分别从四批微破裂中挑选主要的一次微破裂的数据记录进行详细讨论:
(1)第一批微破裂中主要破裂产生的微地震记录(图14):图中分别反映了4个传感器发出的信号。第一批微破裂是当花岗岩样的耐压强度首先达到极限,内部累积了足够的裂隙并且在主压应力方向首先贯通,从而发生了破裂。
图14 第一批微破裂中主要破裂产生的微地震记录
(2)第二批微破裂中主破裂发生时产生的微地震记录(图15):第二批微破裂是在第一批微破裂的基础上发育的,破裂的频率主要集中在低频区。并且红色和黄色的频谱的频率要高于黑色和蓝色频谱的频率,从而可以看出靠近裂缝放置的传感器频率较低。即越靠近震源频率越低。
图15 第二批微破裂中主破裂发生时产生的微地震记录
(3)第三批微破裂中主破裂产生的微地震记录(图16):第三批微破裂是由于继续施加压力岩样内部裂缝继续发育,强度相比较第二批而言要强得多,频率范围也具有向低频区转移的趋势,这可以看作是地震发生前比较重要的一次微破裂。
图16 第三批微破裂中主破裂产生的微地震记录
(4)第四批微破裂中主破裂产生的微地震记录(图17):第四批微破裂是岩样受压的主破裂,也是最终发生的破裂,这次破裂是由于随着压力的不断增大(最终压力达到10.4 kN),岩样内部裂隙不断发育,并高度集中贯通,从而导致岩样宏观上的裂缝产生,集中的应力完全释放。如果将此应用于地震预测,这时的裂缝产生就可以定义为地震的发生。并且距离震源近的传感器得到的频谱的频率较低。
图17 第四批微破裂中主破裂产生的微地震记录
岩体内大多存在着节理、劈理等裂隙,有的还存在着断裂等较大型的薄弱结构。在压力增大到一定程度之后,这些裂隙就会集中发生产生破裂。花岗岩的破裂模式可以归纳为雪崩式不稳定裂隙形成模式,该模式也叫苏联科学院大地物理研究所模式。这个模式的基础是两个现象:裂隙应力场的相互作用和裂隙形成作用的局部集中。在缓慢变化载荷的长期作用下,任何材料,包括岩石,在破坏前都必将产生这两种现象。关于长期强度的学说是基于下列事实:在“亚临界”(小于材料的瞬时强度)应力的缓慢作用下,裂隙的数目和大小逐渐发展。当裂隙密度达到一个临界密度状态值后,材料就过渡到快速宏观破裂阶段。如果裂隙在介质中的分布从统计角度看是均匀的,那么在缓慢增强的载荷作用下,或在活跃介质的影响下,裂隙的数目和大小将逐渐增大,而其中排列的较有利的一些裂隙将互相贯通,形成较大的裂隙。如果把格里菲斯理论及由此引申出来的一些理论用于地震震源,认为在雪崩式裂隙形成过程中逐渐产生一些少量的长裂隙,这些长裂隙串通汇合就导致了岩石的宏观破裂(地震)[11]。
2 在煤矿瓦斯灾害预测中的应用
煤炭开采诱发地震(采矿业称为冲击地压)是采矿诱发的动力地质灾害之一。矿震是在采矿活动和区域应力场作用影响下,使采区及周围应力处于不稳定状态,采区局部积累的一定能量以冲击或重力方式释放而产生的岩体振动。据不完全统计,20世纪80年代以来东北地区的辽宁北票、吉林辽源、黑龙江鹤岗、双鸭山汉鸟西、七台河等煤矿的矿山地震水平逐渐增强,部分矿震造成的损失相当严重。引起各级地震、煤炭系统和研究人员的关注。矿震的发生除入为开采因素外,矿山所处构造环境和区域构造应力场状况与其有密切关系[12]。
煤炭开采使得井下应力分布随开采深度加大变化加剧,在区域构造活动的共同影响下,构造应力使新、老构造作不同程度的继承性和新生性活动。一些井下断裂构造从稳定状态逐渐活动或蠕动,被牵动产生局部活化,是矿震发生的内在动力环境[13]。
地震是由于地下岩体受到应力作用产生形变,在岩体中引起破裂、相对位移、滑动、产生断层并辐射地震波。矿震发生地点是矿区的地下岩体振动,地震记录许多地方与天然地震记录相似。矿震的震源深度浅,在较大范围内可近似为表面震源的随机波动。
在区域构造作用力下,煤层气会沿一些特定方向产出和聚集。当生成的煤层气在矿井局部地区溢出并积聚时,倘若矿井局部温度达到煤层气燃点,就可能引起爆炸。煤矿瓦斯爆炸与地震活动在时间上具有同步性[14-15]。因此准确预测地震活动的发生对预防煤矿瓦斯爆炸具有重要的作用。
基于上述实验得出的结论,以及地震活动与煤矿瓦斯爆炸的关系,可以将MEMS1221 L型单分量加速度传感器用来预测由于入为采矿及天然地震引发的矿震及裂缝。从而减少由于煤矿瓦斯爆炸带来的灾害。
我们将传感器分别放置在煤矿的不同位置,并同时将传感器连接到计算机观测分析系统上来记录不同时刻传感器发出的信号,根据我们上述实验的过程,在不断的采矿过程中,机器对矿体会产生较大的作用力,当矿体内部岩石结构发生变化时,传感器就会发生明显的变化,我们看到记录的频谱信号就会发生突变。产生两三次这样的突变之后,矿体就极有可能有坍塌的可能,因此,在第一次突变时,我们就应该加强防范,采取相应的措施来阻止破裂的发生。
同样,当地下发生地震时我们也可以根据这个原理进行预防,绝大多数地震学家认为,在地震发生前有一个应力在震源区集中的过程,称作孕震过程或地震准备过程。当这一过程发展到一定阶段时,孕震区内的岩石可能会出现微破裂或塑性化等现象,从而导致地震波的频谱发生变化。此外,孕震区内小震震源动力学参数的变化也可能引起地震波频谱的某些变化。这些就是根据地震波频谱异常来进行预报研究的物理依据。在主破裂发生之前往往发生一系列的振幅较小、频率偏低的地震波,这些地震波的产生我们可以将它们视为前驱地震波。本次实验中主破裂发生之前的三次微破裂产生的地震波就可以看作是前驱地震波。这些地震波的发生是主地震波的能量的积蓄,当能量积累到一定程度势必发生地震。
3 结论
(1)花岗岩在单轴压力的作用下产生相对集中的四批脆性破裂,并且这四批破裂的强度具有随着压力的增大逐渐增强的趋势;微破裂发生时,频率具有向低频区偏移的趋势,并且裂缝越大频率越低;
(2)主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝,这时可以看作地震的发生;
(3)压裂实验的近源观测记录表明,MEMS技术应用于监测裂缝具有很高的灵敏度,因此将该技术应用于煤矿灾害的预测将会取得好的效果,从而减少由于入为采矿及天然地震引发的矿难。
致谢:感谢东营感微科技开发公司提供的技术支持,以及中国石油大学(华东)机电学院实验室提供的压机设备。在论文的完成过程中,得到了师兄弟的帮助,在此一并表示感谢。
参考文献
[1]Claerbout,J.F..1968.Synthesis of a layered medium from its acoustic transmission response:Geophysics,33,264~269
[2]Daneshvar,M.R.,Clay,C.S.,and Savage,M.K..1995.Passive seismic imaging using micro earthquakes,Geophysics,60,1178~1186
[3]M.Reza Daneshvar,Passive seismic imaging using microearthquakes,Geophysics,60(4)
[4]Deyan Draganov.2004.Passive seismic imaging in the presence of white noise sources,The leading edge,September
[5]张山,刘清林,赵群等.2002.微地震监测技术在油田开发中的应用,石油物探,41(2),226~231
[6]Andy Jupe等著,田增福译.1999.微地震监测:对油藏的听与看,石油物探译丛,5,17~20
[7]刘建中,王春耘等.2004.用微地震法监测油田生产动态,石油勘探与开发,31(2),71~73
[8]Andy Jupe等著,李彦兰译.1999.微地震监控储层,天然气勘探与开发,44~48
[9]Jupe A.,Cowles J.,Jones R..1998.Microseismic monitoring:listen and see the reservoir,World Oil,219(12):171~174
[10]董世泰,高红霞.2004.微地震监测技术及其在油田开发中的应用,石油仪器,18(5),5~8
[11]冯德益,陈化然,丁伟国.1994.大震前地震波频谱异常特征的研究,地震研究,17(4),319~329
[12]张凤鸣,余中元,许晓艳等.2005.鹤岗煤矿开采诱发地震研究,自然灾害学报,14(1),139~143
[13]郑文涛,汪涌,王璐.2004.煤矿瓦斯灾害中地震活动因素探讨,中国地质灾害预防治学报,15(4),54~59
[14]杨建成.1996.王家山煤矿地裂缝的形成及其灾害,甘肃地质学报,5(2),91~95
[15]张刚艳,张华兴,岳国柱.2003.煤层开采裂缝的观测与分析,岩土力学,24(增刊),414~417
④ 中青宝的今日走势中青宝股票技术面分析2021年中青宝派息时间
中青宝把国内首款虚拟与现实梦幻联动模拟经营类的元宇宙游戏--《酿酒大师》推向了市场,元宇宙概念一下子刷新了我们的视野,让整个游戏行业的股价有所上涨,今天就带大家一起了解一下这个"罪魁祸首"--中青宝。
在开始分析中青宝前,我将向大家展示一份游戏行业龙头股名单,打开下面的链接就能看到:宝藏资料:游戏行业龙头股名单
一、从公司角度来看
公司介绍:中青宝是一家具有自主研发、运营能力、代理能力的专业化网络游戏公司。公司的主营业务是网络游戏的开发及运营,由研发中心、运营中心、运维技术中心和综合管理中心构成了清晰完整的业务系统。
下面来说下这个公司在哪些方面做的不错:
优势一、区块链产业优势
中青宝公司控股股东宝德科技在服务器开发商中处于领先地位,拥有行业内最优秀的服务器资源,在数字货币的挖掘和存储方面有着很大的优势,宝德科技自主研发的矿机目前正在热销中。
中青宝全资子公司宝腾互联的业务包括了,为云计算提供基础设施服务,带宽、算力资源相当富足,宝腾互联有将剩余的带宽和算力与宝德科技的矿机有机结合形成共享云池的计划,支持自用或出租,投身于数字货币的挖掘工作当中。
在游戏创新当面,中青宝也拥有一批精干人才,区域链信息技术和守旧的电子游戏需要各出其长,有效结合,区块链技术是研究的基础,创造游戏的输赢概率更为透明、公平、不可更改的竞赛机制,营造健康优质的游戏环境。
优势二、布局完善,打造游戏生态
中青宝通过这些年来对所处游戏行业的深度探索、研发、运营经验的不断积累以及对产业链上下游的广泛布局,为公司进行自主创新和建立可持续发展生态做好了充足的准备,进一步提升公司的竞争力。如今,中青宝在经营方向上已经做出改变,不再是原有的单一游戏业务,而是转变为游戏、云服务和科技文旅三大板块了。公司的业务都不是孤立的,而是互为支撑,相互协助对方,通过拓宽公司发展道路,提高公司在该行业的综合竞争力。
篇幅的原因,关于中青宝更加全面的深度报告和风险提示,我已经提前为大家整理出来了,点击下文就可阅读:【深度研报】中青宝点评,建议收藏!
二、从行业角度来看
大众对未成年人沉迷网络游戏保持怎样的立场,以及如何处理这件事,行业和市场曾一度处于观望模式。这次的新规内容,整体来看松紧有度,限制条款被明确的细化了,这也避免了粗暴的"一刀切"。新规出台这段时间,多家上市公司披露的国内游戏产品未成年玩家流水占比是不高的,同时出海收入占比得到扩大使得该新规对大中型游戏厂商收入端影响有限。由此一来,那些以精品内容、扩大出海以及探索云游戏为主要发展对象的游戏行业企业,以后的发展一定会越来越强。
三、总结
总体上,我觉得中青宝公司作为游戏行业中的好企业,未来有望在此行业变化过程中,迎来高速发展。不过,文章存在滞后性,如若各位对中青宝未来行情感兴趣,动动小指直接点一下链接,有专业的投顾替我们诊股,观察下中青宝现在行情是不是属于买入或卖出的好时机:【免费】测一测中青宝还有机会吗?
应答时间:2021-11-09,最新业务变化以文中链接内展示的数据为准,请点击查看
⑤ Filecoin矿机哪个比较好
矿机的水分比较大,主网代码并没有最终敲定,矿机就先定了。可能主网上线之后并挖不到币呢。市场上也有一些超算版本,就可以理解为超出正常配置很多的矿机,这不失为应对Filecoin总改动代码一个好方法。不过肯定不是最具有性价比的矿机了。好好考察在入坑,原力矿池等你来验。
比特币从发明诞生出来后,比特币挖矿主要经历了3个阶段(现在的矿池是挖矿的方式,非矿机技术)
CPU→GPU→ASIC专业矿机
一、CPU挖矿
说起CPU挖矿,谁是第一个呢?前面文章也说了,就是比特币的发明者中本聪(无明确的证据,按逻辑应该是正确的)。
CPU挖矿是第一代的挖矿。2009年1月3日,比特币创始人中本聪用电脑CPU挖出了第一批比特币,挖出了第一个创始区块,区块里包含50个比特币。
随后一些极客、程序员、游戏挖机纷纷加入CPU挖矿,但当时的CPU挖矿,仅仅是一种尝试和好玩,并没有现在的商业化。
二、GPU挖矿
GPU(图形处理单元,即显卡)挖矿是第二代的挖矿。
从CPU换到GPU挖矿,是因为CPU中央处理器是通用性计算单元,里面设计了计算机很多的分析处理需求,其综合能力强但单项能力较弱,而比特币的SHA256 hash运算,是非常单一的无脑重复计算,而且CPU的并行运算能力不强,后来,有人发现GPU的高吞吐率和高并行处理能力,其运算效率比CPU高10倍以上,并且GPU可以超频使用以提升性能,适用于大规模的并发运算,比如密码破解,于是人们纷纷转向GPU挖矿。
大家肯定都听说过比特币历史上最贵的吃货、比特币Pizza的故事了。没错,这个人叫Laszlo Hanyecz,他是个程序员,他在2010年5月22日,用1万枚比特币购买了两个披萨,当时这两个披萨只值不到50美元,但是这一万枚比特币拿到现在值几个亿了。
大家都在说Laszlo Hanyecz肯定肠子都悔青了,但是也未必,因为Laszlo Hanyecz是第一个使用GPU挖比特币的人,他挖到了非常多的比特币,当时的1万枚可能只是九牛一毛了。
图片来源于网上
但是GPU也存在缺陷,就是原本是做图像处理的,内置的这些硬件非常好电,散热也是个问题。
三、ASIC专业矿机挖矿
ASIC专业矿机是属于第三代的挖矿。
ASIC是Application Specific Integrated Circuit的缩写,是一种专门为某种特定用途设计的电子电路(芯片)。用于挖矿的芯片,就是矿机ASIC芯片了。因为被设计为只进行某一挖矿需要的特定算法,所以ASIC芯片的设计可以简单的多,成本也低的多。不过最重要的是,就挖矿算力来说,ASIC可以比同时代的CPU、GPU高出几万倍甚至更多。
ASIC矿机的出现,是随着参与挖矿的人越来越多,算力不段上升,而GPU的算力也达到了极限,为了突破这个局限,就有人开始研发专门的矿机。
世界上第一台ASIC芯片的矿机是谁发明的呢?对,就是人称“南瓜张”的张楠赓的阿瓦隆矿机。
矿机的芯片,需要非常强的研发技术实力,比如通讯领域,最强的芯片研发企业是高通、华为海思,因此矿机的芯片研发是一场高科技的竞赛,最早的矿机厂商有龙矿矿机、闪电矿机、瑞典的KNC Minner,都已经从市场上消失,现在市场上最大的矿机厂商包括比特币大陆(蚂蚁矿机)、嘉楠耘智(阿瓦隆矿机)、Bitfury、Watts Miners等,
现在最火爆的矿机当属比特大陆的蚂蚁系列了,后续再详细介绍如何挑选和购买矿机。
本文只简单结束了比特币矿机从CPU、GPU到ASIC的技术发展历程,而现在的ASIC矿机尤其比特币大陆的矿机占据了市场70%以上的算力和市场份额,被质疑为“算力霸权”和跟“去中心化”违背,潜在的“51%”攻击和不公平等。而现在的矿机已经是一条完整的产业链,无论如何发展,也是基于市场和追求利益的行为。后续继续分析。
⑦ 获得Filecoin代币哪家矿机强
楼主提到了三个问题:怎么挖矿,怎么挖赚的多,哪家矿机强。这里简单做一下解答。
怎么挖矿。普通投资者参与挖矿的方式就是购买矿机,等主网上线以后接入主网连接矿池就可以挖矿了,一般矿机商都会提供托管服务,矿机放到他们的机房,有专业人员替你打理,也不需要你在这上面浪费多少精力。
怎么挖赚的多。第一点是挖头矿,也就是在主网上线以后的3-6个月之内参与挖矿,因为filecoin数量是固定的,但参与挖矿的矿工数量会越来越多,所以越早参与挖到的越多,这个可以参考一下比特币挖矿。第二点就是选对矿机商,不同矿机商他们的矿机挖矿效率肯定不是完全一样的,技术强有实力的公司,他们的矿机在单位时间内能挖到的肯定相对更多。
哪家矿机强。这点要提醒一下题主,要有自己的判断力,不要轻易相信任何矿机商的话,因为现在矿机市场鱼龙混杂,谁都会说自己家的好,玩资金盘割韭菜的更是层出不穷。选择矿机时直接问矿机商这几个问题:
1,矿工号多少?
2,总存力多少?
3,出块率多少?
4,总产量多少?
5,平均每T产量多少?
真实数据证明矿机挖币效率,不能展现数据的矿机就是废铁白送你一台也没用。认准这5项数据,这直接关系到你的投入和回报率。
基本就是这些了。官方的第二次大规模开发者测试马上就要开始了,题主可以关注一下,能在测试中取得好名次并且能保持排名稳定的,才是真正有实力有技术的矿机商。条件允许的话最好能实地考察一下公司的技术团队、机房等。