当前位置:首页 » 矿机知识 » 铅锌分离洗矿机

铅锌分离洗矿机

发布时间: 2023-08-11 18:18:25

1. 洗矿机的机械分类

圆筒洗矿机广泛用于各种难洗的大块矿石,该洗矿机分圆筒型和圆筒加筛条型两种。
洗矿机-圆筒洗矿机特点
滚筒筛洗机广泛用于各种难洗的大块矿石,该洗矿机分圆筒型和圆筒加筛
洗矿机条型两种。后一种可把被洗物料分成+40mm和-40mm两级产品,-40mm可再经双螺旋槽式洗矿机进一步擦洗可将物料分为+2mm和-2mm两级产品,洗矿效率可达98%左右,这种组合对目前难洗矿石是最有效的方法。
洗矿机-圆筒铣矿机主要技术参数
规格型号 筒体直径×长度 最大清洗物料 生产能力 筒体转速 主机功率 设备重量
YTXK1030 Φ1.0×3.0 50 30~70 30 30 10800 螺旋洗矿机适用于铁、锰、石灰石、锡矿等含泥量较多的矿石选矿前序清洗泥沙,可以对矿物的搅拌、冲洗、分离、脱泥等。也适用于建筑、电站等工程石料清洗,冲洗水压<147-196kpa。
螺旋洗矿机是利用水的浮力作用,将粉尘和杂质于砂分离。经过螺旋片的搅动,达到滤水去杂质,提升输送目的。并且在提升过程中,也进行了拌和工作。是出砂达到搅拌均匀,无细、粗砂之分。
螺旋洗矿机具有,螺旋体长、密封系统好、结构简单、处理能力强、维修方便。出砂含水量、含泥量底等特点。广泛运用于各种矿石开采行业。 型号Model WCDS-1500 WCD-1118 WCDS-914 WCDS-762 螺旋直径Screw Diameter(mm) 1500 1118 914 762 槽体长度Length of Tub(mm) 10512 9554 7815 7620 洗选粒度Washing Granularity(mm) ≤75 ≤75 ≤75 ≤75 生产能力Capacity(t/h) 220 175 100 75 螺旋转速Speed of Screw(rpm) 22 26 32 35 电机功率Motor Power(kw) 45 37 30 22 耗水量Water Consumption(t/h) 14-190 13-168 10-80 9-63 机器重量Weight(kg) 17580 12250 11000 8700 外形尺寸Overall Dimensions(长x宽x高) (mm) 10700x3200x4575 8840x2530x3800 7530x2240x3650 8440x1950x4790 型号Model 2WCDS-1118 2WCDS-914 2WCDS-762 螺旋直径Screw Diameter(mm) 1118 914 762 槽体长度Length of Tub(mm) 6850 6350 6380 洗选粒度Washing Granularity(mm) ≤80 ≤80 ≤80 生产能力Capacity(t/h) 200-300 150-175 100-145 螺旋转速Speed of Screw(rpm) 26 30.33 35 电机功率Motor Power(kw) 3x37 2x30 2x22 耗水量Water Consumption(t/h) 200-250 160-220 136-182 机器重量Weight(kg) 22530 18996 16800 外形尺寸(长x宽x高) (mm) 7840x2600x3840 7350x2310x3650 8440x2091x4790

2. 螺旋洗矿机的工作原理:

螺旋洗矿机是利用水的浮力作用,将粉尘和杂质于砂分离。经过螺旋片的搅动,达到滤水去杂质,提升输送目的。并且在提升过程中,也进行了拌和工作。是出砂达到搅拌均匀,无细、粗砂之分。
螺旋洗矿机具有,螺旋体长、密封系统好、结构简单、处理能力强、维修方便。出砂含水量、含泥量低等特点。广泛运用于各种矿石开采行业。

3. 磨矿机有什么特点

机床用变频器的发展趋势表现为:一是高性能。目前基本上所有的变频器都要求矢量掌握方式,并出现了少量不同层次的掌握结构及算法。值得注意的是无速度传感器矢量掌握(SVC)正在近几年开展较快,由于SVC可以要求低利息、高功用的处置计划,曾经成为通用变频器中的梦想规范和开展方向。二是易掌握性不断提高。用户对变频器的需求逐步转变为现场装置,并在软件上增设设置工具,磨矿机用气动离合器以期通过用户操作从而简化调试进程。三是功能模块化以及智能化需求逐步上升。据了解,一台机床需用的变频器数量有的可达4~5台。这足以预见到机床变频器的市场潜力。目前我国机床市场用的变频器大部分是日系品牌,如三菱变频器由于接近伺服器的功能,因此在机床中的运用也较多;磨矿机用气动离合器而台达由于其功能接近三菱,但价钱廉价许多,性价比高,近年来市场份额也逐渐增加。在车床产品中,变频器的运用范围最多。然而,日本的安川、富士、三菱以及台湾台达等品牌占有较大的市场份额。尽管也有一些国产品牌变频器被机床制造企业采用,如深圳汇川变频器在车床应用中表现不俗,但是在磨床、锻压机床等对变频器产品的功能要求较高的领域中,依旧是国外品牌居多,如三菱、富士、德国西门子、台达等品牌依旧处于优势。据2008、磨矿机用气动离合器2009年机床的销售数据显示,通用型机床特别是功能繁多的车床库存状况相当严峻,而复合型机床、大型重型产品市场较好。这些机床加工范围广,机床实施部件具有不同的活动速度,对变频器功能也提出了更高的要求,国产变频器制造商更应抓住时机,耕植机床市场。

4. 成矿应力场控矿机制

成矿构造应力场的控矿机制作用是一种很有理论价值和实用价值的研究课题。

成矿构造应力场的概念揭露了构造控制成矿作用的本质,它不仅概括了地质学家使用的成矿前、成矿期和成矿后构造的时间关系,更重要的是指明了成矿作用在什么样应力场作用下发生以及成矿期外力作用的方式和方向,进而指明了地壳运动的方式和方向。因此,成矿构造应力场的确定是研究构造控岩控矿作用的基本前提,在这样的前提下才导致控矿构造应力场特征的研究。

在成矿构造应力场作用下引起的构造活动与成矿作用密切相关,这种构造活动控制着矿体的形成和分布,它们可以是新生的构造,也可以是在成矿应力场作用下引起先存构造的再次活动。然而,在成矿构造应力场作用下并非卷入成矿应力场作用的所有构造处处都成矿,只是在一些局部的有利构造部位成矿,这些构造部位就是成矿构造应力场作用强烈的部位,也就是容易引起能量积累和释放的部位。

构造应力场的演化而导致构造形变,特别是断裂构造的多次活动和力学性质的演化。每当一场新的构造运动发生,不仅产生一系列新的构造形迹,而且还对先存构造产生强烈的改造作用。因此,构造应力的发展演化过程是一个复杂的问题,它不仅涉及时间演化问题,还涉及各种构造的空间关系。

成矿应力场是指成矿期的应力场。成矿构造应力场控制着成矿期的构造活动。与成矿构造应力场对应的构造体系称为成矿构造体系。例如,在南北向挤压作用下形成东西向构造,并伴之成矿,则把南北向挤压构造应力场称成矿构造应力场,而把东西向构造体系称为成矿构造体系。

在成矿构造应力场的作用下,引起成矿物质的形成、迁移和聚集。

如何确定成矿构造应力场及成矿构造体系,应首先建立区域构造格架,鉴定出矿区内各种构造成分力学性质、序次。对于多期活动的形迹,鉴定出演化历史;再根据力学性质进行组合,从而得出区内构造体系的演化历史。由此反演出区内构造应力场演化的历史,最终确定出成矿作用与哪一期构造体系活动密切相关。

地壳中的成矿元素的活化、迁移和聚集,与成矿构造应力场的能量息息相关。成矿构造应力场的能量U的高值区,有利于成矿元素的活化;成矿期的构造运动,使构造应力场能量发生变化,促进成矿元素的迁移;能量降ΔU大的部位,由于放出的能量大,岩石破碎强烈,有利于活化的成矿元素的聚集。因此,能量降ΔU的高值区,是成矿的有利部位。

成矿因素非常复杂,一般认为,构造是成矿的重要因素。可是,地壳上的许多构造并不是一定都与成矿作用有必然的联系,矿床的形成,仅与特定阶段的构造和构造的特殊部位有关。

地壳在压力(包括各种外力、内力)的作用下,产生构造应力场。设其主应力为σ1、σ2、σ3;同时也产生相应的应变场,设其主应变为ε1、ε2、ε3。地壳由于变形,各点产生位移、力的作用点也产生相应的位移,则作用力做功为

构造应力场控岩控矿

式中:Pi为作用在i点的力;δi为i点产生的位移。

假设地壳中没有发生能量交换,则功W 以势能的形式储存在地壳中,称为应变能,设单位体积中的应变能为M,则

构造应力场控岩控矿

考虑到虎克定律:

构造应力场控岩控矿

所以,

构造应力场控岩控矿

由于单位体积应变能M由两部分组成,一部分为单位体形状改变储存的势能U,另一部分为单位体体积改变储存的势能V,据弹性力学知识则有

M=U+V

构造应力场控岩控矿

式中:E为岩石弹性模量;μ为泊松比。

设单位体体积应变为Q,据弹性力学知识则有

构造应力场控岩控矿

当Q>0时,为地壳变形过程中,单位体体积膨大,地壳介质变得疏松;当Q<0时,为地壳变形过程中,单位体体积变得密实。

若地壳处于平面应力状态,σ3=0,则得

构造应力场控岩控矿

成矿元素的活化、迁移和聚集均由地壳内储存的能量及构造空间所决定。在成矿构造应力作用下,成矿前的断裂构造发生活动。活动的结果是使储存在断裂中的应变能释放出一部分,使整个成矿构造应力值发生变化,引起整个成矿构造应力场应变能下降,这个降值称为能量降。形状改变(变形)势能U下降值ΔU最大的地方,矿液失去的能量最多,处于相对稳定状态,易于沉淀。另一方面,在地壳变形中,体积应变Q>0的地方,地壳介质变得疏松,构造空间开阔,也易于矿液沉淀。若ΔU值最大,同时Q>0,这样的部位是成矿的最有利部位。

在构造动力作用下,岩石发生流动,并伴生物理和化学变化,即形变与相变,这是元素活化迁移、聚散和成岩成矿过程。

刘迅等(1998)研究璜山金矿认为其成岩成矿经历三个阶段。

第一阶段:在北西—南东向压应力作用下,差应力为80~150MPa,应变速率为10—11~10—12s—1,温度为400~500℃,地壳10~15km深处高压条件下,岩石呈塑性流动状态并发生塑性变形,形成北东向绍兴—江山挤压型韧性剪切带,向中心带应变量加大。可溶性SiO2、K+损耗,随流体向高应变区迁移,形成千糜岩和石英质糜棱岩(动力分异型石英脉),残留相黄铁矿等载金矿物细粒集合体在高应变区聚集、构成浸染状、条纹状、条带状矿石。

第二阶段:在南北向压应力作用下,差应力为150~160MPa,应变速率为10—10~10—11s—1,温度为300~380℃,地壳10~15km深处,由高压向中压转变条件下,岩石仍处于塑性流动状态,北东向绍兴—江山构造带转变为平移型剪切性质(左行)。金元素以显微金、中细粒金矿物赋存于黄铁矿等硫化物和石英脉中。

第三阶段:在南北向压应力作用下,差应力水平降低至30~60MPa,应变速率升高,大于10—10s—1,温度下降至200℃左右,处于地壳5~10km深度,由高压转变为中低压环境。岩石由塑性变形向脆性变形转化,北东向绍兴—江山构造带由平移型韧性剪切左行向平移型脆性剪切(左)转化。SiO2在剪切带中相对扩容部位,岩石力学性质相对偏张,碎裂变质相对强烈,导致岩石渗透率相对升高,金元素再次迁移聚集成富矿。

701矿成矿母岩为燕山晚期黑云母花岗岩,产于区域东西向构造带与北北东向构造带复合部位。在构造动力作用下,该含矿岩体由侵位→定位→风化过程,也是岩体从塑性流动向碎裂流动过程。稀土元素发生活化迁移聚集以至成矿。刘迅(1998)研究认为,在南北向挤压和南北向反扭构造应力场的长期交替活动,由于应力较低(差应力值为40~70MPa)、应变速率和冷却率偏低,结果活动时温度低,使岩体遭受早期塑性变形和后期脆性变形,导致稀土元素从岩体内充分分离,并逐渐向高应力区迁移聚集(图5.2,图5.3)。第一阶段在南北向挤压为主的构造应力作用下,富含富钇稀土的花岗岩浆从深部向浅部侵位,在温度高于400℃和中偏高压环境中,稀土元素伴随岩浆晚期及期后残余热液、挥发分趋向聚集,在高应变区相对富集。第二阶段,在南北向反扭应力与南北向挤压应力交替作用下,温度低于400℃和中低压环境中,花岗岩以脆性变形为主。在高应变区,花岗岩发生钠长石化、白云母化、碳酸盐化,造成稀土元素进一步高度富集。第三阶段,发生次生水化作用,稀土元素呈离子状态进入高岭石等黏土矿物,造成次生富集。

图5.2 701矿区稀土元素富集特征图

(据刘迅等,1998)

1—下白垩统红层(未分);2—下侏罗统(余田群)中基性、中酸性、酸性火山岩;3—下三叠统大冶组钙质页岩、粉砂岩夹泥质灰岩;4—上二叠统龙潭组页岩、粉砂岩、长石石英砂岩、炭质页岩夹煤层;5—震旦—寒武系混合岩(未分);6—燕山中期碱性长石花斑岩;7—燕山中期晚阶段细粒黑云母花岗岩;8—燕山中期黑云母钾长花岗岩;9—燕山中期白云母钾长石碱性长石花岗岩;10—燕山早期黑云母碱性长石花岗岩;11—花岗伟晶岩;12—伟晶岩脉;13—接触角岩化蚀变带;14—南北向构造带(压性断层);15—新华夏系(压扭性断层);16—新华夏系(北北西向压扭—张扭性断层);17—东西构造带(压性断层);18—北东向硅化破碎带;19—渐变地质界线;20—不整合接触;21—富矿产区;22—次富矿产区;23—实测构造剖面

王成金(1986)用激光全息法模拟了西准噶尔金矿成矿带成矿期构造应力场特征(图5.4~图5.6),所选靶区大致沿东西向和北东向成矿带分布,即别鲁嘎希—大棍东西向异常带、铬门沟—红山头东西带、齐I宝贝东西带、安齐北东向异常带、红旗北东向带、本哈塔依—其克提北东东向异常带。这些成矿带是成矿期构造应力场作用下应变能积累和释放的集中地带。

常文志在研究别鲁阿克西金矿时,用有限单元法探讨了矿区成矿构造应力场的能量和体积应变,揭示了成矿构造应力场的能量和体积应变在成矿中的作用和意义。

图5.3 G1实测构造平面图和某些元素含量及差应力值的变化曲线

(据刘迅等,1998)

1—白云母花岗岩;2—糜棱岩;3—碎斑岩;4—碎裂岩;5—萤石化;6—方解石化;7—劈理化;8—透镜化;9—节理;10—样品位置

图5.4 萨尔托海成矿构造应力场的模型

(据王成金)

1—载荷;2—固定边界;3—成矿前断裂;4—金矿点

常文志采用如图5.7所示模式,对别鲁阿克西金矿成矿构造应力场进行有限单元法计算,结果如图5.8和图5.9所示。

图5.5 成矿构造应力场变形势能图

(单位:erg/cm3)

(据王成金)

4×104>A>3×104;3×104>B>2×104;2×104>C>1×104;1×104>D>10

图5.6 成矿构造应力场能量降图

(单位:erg/cm3)

(据王成金)

4×103>A>1.5×103;1.5×103>B>3×102;3×102>C>1.5×102;1.5×102>D>5×101

图5.7 别鲁阿克西矿区研究模型图

(据常文志)

1—固定边界;2—简支边界;3—加载荷;4—断裂

图5.8 能量降ΔU分级图(单位:erg/cm3

(据常文志)

4.1×103>A>103;103>B>8×102;8×102>C>6×102

图5.7显示成矿前断裂都将发生活动,使储存在断裂中的应变能M释放出一部分,造成整个成矿构造应力的应变能M、单位体体积改变能U下降。断层活动造成应变能改变。图5.8为ΔU分级图,由图可见,A级为中心,断裂活动引起的U降低值高,使矿液处于相对稳定状态,易于沉淀和成矿。表明能量降低ΔU是成矿的一个重要条件。

图5.9为在成矿构造应力场作用下的体积应变Q分布,由图5.9可见,除少数矿点位于Q<0区外,全区50多个矿点中的40多个点均位于体积应变Q>0的区域,所以体积应变Q>0是成矿控矿的另一个重要条件。

图5.9 体积变化分布图

1—体积膨大区;2—体积缩小区;3—金矿点

王成金(1986)用明胶网格法研究了豫南商城—罗山地区成矿期应力场与矿化关系。研究区围岩弹性模量为0.34×105Pa,泊松比为0.3;岩体弹性模量为0.24×105Pa,泊松比为0.36;经研究得最大剪应变、最大剪应力和剪切应变能的分布状态如图5.10~图5.12所示。应变高值区和能量高值区为矿化良好区。

图5.10 大别山北麓应变γmax等值线图

(据刘迅等,1998)

1—>0.35;2—>0.3;3—>0.2;4—>0.1;5—<0.1;6—斑岩铜钼矿床;7—铜矿点;8—铅锌矿点;9—钨矿点;10—云母矿点;11—萤石矿点;12—磁异常区

图5.11 大别山北麓剪应力等值线图(单位:100Pa)

(据刘迅等,1998)

1—τmax>5;2—τmax>4;3—τmax>3;4—τmax>2;5—τmax>1;6—τmax>0.8

图5.12 大别山北麓应变能U等值线图(单位:J)

(据刘迅等,1998)

1—>7×10—4;2—>1×10—3;3—<7×10—4

西秦岭金矿成矿构造应力场:西秦岭碳硅泥岩型金矿床处于秦岭东西构造带、川滇南北向构造带及北北东向构造带、北东向构造带交切复合部位。成矿构造应力场为南北向挤压(σ1)、东西向拉伸(σ3)(刘迅,1998)。矿体绝大多数呈东西向展布。矿体和矿脉均产于断裂带之中,严格受断裂控制。矿液的运移和富集与应力作用密切相关。因此,主成矿作用是在成矿构造应力作用下引起的能量积累和释放过程中进行的。

刘迅(1998)按南北向挤压的东西向构造成矿应力场加力方式,采用全息光弹实验萃取等差线和等和线,取fp=7.28×103N/m、fc=1.2×104N/m、fd=0.5cm、fc=0.9cm、E=3.36×109Pa、μ=0.45。利用式

构造应力场控岩控矿

求出区内各点的应变能,并绘出应变能等值线图(图5.13)。利用式(5.19)求出区内各点的矿液运移式并绘出矿液运移势等值线图 图5.14)。

图5.13 俄都矿段全息光弹试验能量分布图(单位:102J/m3

(据刘迅等,1998)

1—υ<1;2—υ=1~5;3—υ=5~10;4—υ=10~15;5—υ>15

图5.14 俄都矿段全息光弹试验矿液运移势图(单位:m/s)

(据刘迅等,1998)

1—υi<1×105;2—υi=1×105~1×1010;3—υi=1×1010~1×1015;4—υi>1×1015

构造应力场控岩控矿

式中:fp、fc及dp、dc分别为条纹值和模型厚度,是由实验测定的常数;μ和E为泊松比和弹性模量;a为介质的压缩系数;η为矿液黏度;k0为介质流通系数,由岩石样品实验测定;nc为模型中各点的等差条纹级数;np为等和条纹级数;nc和np对各不同点来说是变量。

对比金土壤地球化学异常图(图5.15)、矿体分布图(图5.16)和能量分布图(图5.13)、矿液运移势图(图5.14),显示高能量异常区、矿液高运移势区与金土壤地球化学高异常区和矿体分布区十分吻合。

图5.15 俄都矿段金元素土壤地球化学异常图

(据刘迅等,1998)

图5.16 俄都矿段矿体分布图

(据刘迅等,1998)

1—断层;2—金矿体;3—实测矿体分布区;4—推测矿体分布区;5—矿段号

新疆喀拉通克铜镍硫化物矿区Ⅰ号矿床位于额尔齐斯大断裂及其分支构造杰尔台断裂南侧。是一大型镍矿、中型铜矿并具有多种稀有和贵金属大型矿床。其品位之高、矿体之大国内外少见。

矿区出露地层以下石炭统为主,为—套海相浊积含炭质沉凝灰岩和泥板岩。矿区位于北西向、北北西向、东西向构造交会部位。由断层和褶皱组成挤压破碎带。矿区内基性岩体分南北两带,沿北西向展布。Ⅰ号岩体位于南带,Ⅰ号岩体含矿性极高,基本上是全岩矿化,所谓Ⅰ号矿床,基本上即Ⅰ号岩体。平面上呈透镜状,向下逐步转变为S形或蛇曲形(图5.17,图5.18,图3.24,图3.25);剖面上呈上大下小的“压扁喇叭”状,向北东斜歪(图5.19)。

图5.17 喀拉通克铜镍硫化物矿区1号矿床地质图

1—下石炭系南明水组上段上层;2—下石炭统南明水组上段下层;3—黑云闪长岩(岩体界线据新疆地矿局四大队资料);4—黑云角闪苏长岩;5—混染辉长岩;6—辉绿玢岩;7—闪长斜煌岩;8—石英斑岩;9—氧化矿体;10—岩相界线;11—北北西背斜轴;12—北北西向斜轴;13—北西向背斜轴;14—北西向向斜轴;15—北北西向压扭性断层;16—北西向压扭性断层;17—近东西向压扭性断层;18—勘测线位置及编号

矿区褶皱、断层及节理赤平投影分析及数理计算均显示依次经历海西早期→海西中晚期→印支燕山期→喜马拉雅期四次构造运动(图5.20),基性岩体于海西中晚期侵入,其应力分别为海西早期σ1=30°、海西中晚期σ1=50°、印支—燕山期σ1=70°、喜马拉雅期σ1=10°。

图5.18 710m中段地质图

1—下石炭统南明水组上段下层;2—岩体界线;3—石英斑岩;4—致密块状矿石矿体;5—稠密浸染状矿石矿体;6—稀疏浸染状矿石矿体;7—断层;8—勘探线及编号;9—矿体编号

由矿床地质特征及其与构造的关系和同位素研究表明,喀拉通克铜镍硫化物Ⅰ号矿床为岩浆深渊熔离—贯入成因,其形成严格受北西向构造带及其配套的北北西向断裂控制,系以海西中晚期南北向顺扭为主,伴随东西向微弱挤压外力条件下的产物。

为了解控岩控矿构造应力场特征,我们对Ⅰ号岩体710m中段(图5.18)和28号勘探线剖面(图5.19)成矿期应力场进行了有限单元法计算和趋势分析。

岩块或地块在外力作用下,其内部最大主应力、最小主应力、最大剪应力的大小和方向及应变能等符合下列关系式:

构造应力场控岩控矿

式中:σx、σy分别为x、y方向的直应力;τxy为剪应力;α为σ1与x轴的夹角;φ为τmax与x轴的夹角;E为岩石弹性模量;v为岩石泊松比。

图5.19 28号勘探线Ⅰ号岩体剖面

1—致密块状矿石矿体;2—稠密浸染状矿石矿体;3—稀疏浸染状矿石矿体;4—石英斑岩;5—基性岩体界线;6—岩性界线;7—炭质沉凝灰岩;8—断层;9—地质界线;10—钻孔;C1n—下石炭统南明水组;C1n3—1—下石炭统南明水组上段下层;C1n2—下石炭统南明水组中段;C1n1—下石炭统南明水组下段;δ—黑云母角闪岩;ω—黑云母闪苏长岩;ωλ—黑云母橄榄苏长岩;λ—辉长辉绿岩

根据前述成矿期外力条件,设σx=35×105Pa,σy=0,τxy=100×105Pa采用非线性有限单元法,用电子计算机对成矿期应力场进行计算,结果表明在平面上岩体中部,即走向由北西转为北北西,F19与F7等断层交汇处为低围压区,应变能和最大剪应力处于中偏高状态(图5.21),有利于矿浆贯入成矿。剖面上岩体中部650~750m标高处断裂破碎带中下部为高围压区,而最大剪应力和应变能偏高(图5.22),与实际地质构造变形基本吻合。710m中段和28线剖面成矿期围压、最大剪应力和应变能趋势分析得出相同结论(图5.23,图5.24)。

综上所述,成矿期低围压区为构造减压区域,有利于矿浆贯入停滞、冷却凝固形成致密块状矿石矿体,这已为该矿床矿体空间分布规律所证明。

图5.20 喀拉通克铜镍硫化物矿区构造运动程式图

1—北西向背斜轴;2—北西向向斜轴;3—北北西向背斜轴;4—北北西向向斜轴;5—压性断层;6—扭性断层;7—张性断层;8—南北向挤压;9—东西向挤压;10—南北向顺时针扭动;11—基性岩体;12—隐伏基性岩体

由计算表明,Ⅰ号岩体周围特别是西南部也出现低压区,矿浆有可能向围岩中有利成矿部位贯入成矿,应引起重视。

5. 金属矿选矿奥秘

(一)金属矿选矿的定义和作用

1. 选矿的定义

选矿最早英文解释为 Ore Dressing 或 concentration,意为矿砂富集。随后延伸为矿物处理,英文为 Mining process。选矿是利用矿物的物理或物理化学性质的差异,借助不同的方法,将有用矿物同无用的矿物分离,把彼此共生的有用矿物尽可能地分离并富集成单独的精矿,排除对冶炼和其他加工过程有害的杂质,提高选矿产品质量,以便充分、合理、经济地利用矿产资源。

矿物是在地壳中由于自然的物理化学作用或生物作用,所产生的自然元素和自然化合物,如金、银、铜自然元素和黄铁矿、黄铜矿、方铅矿等自然化合物。这些元素和化合物都具有各自的物理性质,如粒度、形状、颜色、光泽、密度、摩擦系数、磁性、电性、放射性、表面润泽性等。这些不同的性质为不同的选矿方法提供了依据。

2. 选矿的作用和地位

自然界蕴藏着极为丰富的矿产资源,但是,除少数富矿外,一般含量都较低,例如,很多铁矿石含铁只有 20% ~ 30%;铜矿石含铜小于 0.5%;铅锌矿石中铅锌的含量不到 5%;铍矿石氧化铍含量 0.05% ~ 0.1%;这样的矿石直接冶炼,极不经济。一般冶金对矿石的含量有一定的要求。如铁矿石中铁的含量最低不得低于 45%;铜矿石中铜的含量最低不得低于 12%;铅矿石含铅不得小于 40%;锌矿石含锌不得小于 40%;氧化铍含量不小于 8%。对于采出的矿石在冶炼之前,必须经过选矿工艺,将主要金属矿物的含量富集几倍、几十倍乃至几百倍才能满足冶炼工艺的要求。

通过选矿手段为冶炼提供“精料”,减少冶炼的物料量,大大提高冶炼的技术经济指标。在选矿过程中大量的废石被排除,减少了炉渣量,一方面减低了能耗和运输成本,同时也相应地减少了炉渣中的金属损失,大大提高了冶炼的回收率。例如,某冶炼厂将铜精矿含量提高1%,每年可多生产粗铜 3135 吨。某钢铁公司将铁精矿含量提高 1%,高炉产量提高 3%,节约石灰石 4% ~ 5%,减少炉渣量 1.8% ~ 2%。目前,我国要求入炉炼铁磁铁矿含量在 65% 以上,如果铁精矿含量达到 68% 以上,可以采用直接炼钢工艺,大大简化冶炼流程。

通过选矿工艺可以减少冶炼原料中有害元素的危害,变害为利,综合回收金属资源。自然界中的矿石往往含有多种有用成分,例如,铜、铅、锌等有色金属往往共生或伴生于同一矿床中;铁既有单一的铁矿石,也有铁-铜、铁-硫、钒钛铁等共生矿石。冶炼过程中对原料中某些共生或伴生元素,常视为有害杂质。例如,炼铜的原料中含铅、锌都是有害杂质。炼铁原料中含硫、磷和其他有色金属都是有害杂质。但将这些杂质提前通过选矿工艺使之分离分别富集后,分别冶炼,变害为利。

选矿也作为冶炼工艺中的一个中间过程,用以提高选矿、冶炼两个过程的总的经济效益。例如,我国金川有色金属公司冶炼厂现有的生产流程是将铜-镍混合精矿用电炉熔炼、转炉吹炼,产出高冰镍,经过缓冷后,再破碎磨矿,用浮选法获得铜精矿和镍精矿,用磁选法得到合金。此后分别进入各自的冶炼系统提取金属铜、镍和贵金属。

选矿是冶金、化工、建材等工业部门必不可少的极其重要的一环。选矿技术的发展,大大地扩大了工业原料基地,从而使那些以前因为含量太低或成分复杂而不能在工业上应用的矿床变为有用矿床。

近 20 多年来,随着科学技术和经济建设的迅猛发展,对矿产资源的需求量与日俱增,矿产资源开采量翻番,周期愈来愈短,易采易选的单一富矿愈来愈少,嵌布粒度细、含量低的难选复合矿的开采量愈来愈大,对矿产品加工过程中的环保要求越来越高,这些都需要通过选矿方法来解决。

(二)选矿方法

目前常用的选矿方法主要是重选、浮选、磁选和化学选矿,除此而外还有电选、手选、摩擦选矿、光电选矿、放射性选矿等。

重力选矿法(简称重选法),是根据矿物密度的不同及其在介质(水、空气、重介质等)中具有不同的沉降速度进行分选的方法,它是最古老的选矿方法之一。这种方法广泛地用来选别煤炭和含有铂、金、钨、锡和其他重矿物的矿石。此外,铁矿石、锰矿石、稀有金属矿、非金属矿石和部分有色金属矿石也采用重选法进行选别。

磁选法,是根据矿物磁性的不同进行分选的方法。它主要用于选别铁、锰等黑色金属矿石和稀有金属矿石。

浮游选矿法(简称浮选法),是根据矿物表面的润泽性的不同选别矿物的方法。目前浮选法应用最广,特别是细粒浸染的矿石用浮选处理效果显著。对于复杂多金属矿石的选别,浮选是一种最有效的方法。目前绝大多数矿石可用以浮选处理。

化学选矿法,基于矿物和矿物组分的化学性质的差异,利用化学方法改变矿物组成,然后用相应方法使目的组分富集的矿物加工工艺。目前对氧化矿石的处理效果非常明显,也是处理和综合利用某些贫、细、杂等难选矿物原料的有效方法之一。

电选法是根据矿物电性的不同来进行选别的方法。

手选法是根据矿物颜色和光泽的不同来进行选别的方法。

摩擦选矿是利用矿物摩擦系数的不同对矿物进行分选的方法。

光电选矿是利用矿物反射光的强度不同对矿物进行选别的方法。

放射性选矿是利用矿物天然放射性和人工放射性对矿物进行选别的方法。

(三)选矿过程

选矿是一个连续的生产过程,由一系列连续的作业组成,表示矿石连续加工的工艺过程为选矿流程(图 6-7-1)。

矿石的选矿处理过程是在选矿厂里完成的。不论选矿厂的规模大小(小型选矿厂日处理矿石几十吨,大型选矿厂日处理矿石量高达数万吨以上),但无论工艺和设备如何复杂,一般都包括以下三个最基本的过程。

选别前的准备作业:一般矿石从采矿场采出的矿石粒度都较大,必须经过破碎和筛分、磨矿和分级,使有用矿物与脉石矿物、有用矿物和无用矿物相互分开,达到单体分离,为分选作业做准备。

选别作业:这是选矿过程的关键作业(或称主要作业)。它根据矿物的不同性质,采用不同的选矿方法,如浮选法、重选法、磁选法等。

产品处理作业:主要包括精矿脱水和尾矿处理。精矿脱水通常由浓缩、过滤、干燥三个阶段。尾矿处理通常包括尾矿的储存和尾水的处理。

有的选矿厂根据矿石性质和分选的需要,在选别作业前设有洗矿,预先抛废(即在较粗的粒度下预先排出部分废石)以及物理、化学与处理等作业,如赤铁矿的磁化焙烧等作业。

(四)选矿技术在新疆矿山的应用

新疆应用选矿技术可追溯到古代,新疆远在 300 年前,就在阿勒泰地区的各个沟内利用金的比重大的特点,从砂金矿中淘洗黄金,这就是重选的原始雏形。但在新中国成立之前,新疆没有一处正规的选矿厂,全部都是采用人工方式手选和手淘,生产效率极其低下,只能处理比重差异大的砂金矿和根据颜色手选出黑钨矿石。新中国成立后,新疆选矿技术有了长足的发展,磁选技术应用于铁矿山,建成年处理量 80 万吨的磁选矿厂,为钢铁企业源源不断地提供高品质的铁精粉。浮选应用于铅锌矿、铜矿、金矿山,先后建成康苏铅锌浮选厂、喀拉通克铜镍浮选厂、哈图金浮选厂,促进了新疆有色工业的发展。重选、浮选、磁选联合应用于新疆北部阿勒泰地区的稀有金属矿山,为我国的早期国防建设提供所需的锂、铍、钽、铌等稀有金属资源。以下是目前新疆有代表性的选矿厂。

1. 康苏铅锌矿浮选选矿

康苏选矿厂是新疆第一座机械化浮选厂,1952 年开始建设,设计生产规模为 250 吨 / 天,1954 年投产。该厂是由前苏联专家参与指导设计,前期主要处理喀什地区沙里塔什的方铅矿和闪锌矿,1961 年开始处理乌拉根氧化铅锌矿。康苏选厂最初投产时是采用苏联专家设计的流程和药剂制度进行浮选,流程采用氰化物与硫酸锌作闪锌矿的抑制剂,以苏打作 pH 值的调整剂,并添加了少量的硫化钠,先将铅矿优先选出后,再将锌矿物选出。该流程没有取得较好的经济指标,大部分锌矿被选入铅矿中。后经过我国工程技术人员和苏联专家的共同努力,通过几次技术改造,在流程结构、技术参数和生产管理方面进行了革新和改进。将部分德国式的浮选机改成苏式米哈诺贝尔 5A 型充气量大的浮选机,使用水力旋流器代替螺旋分级机,加强了中矿再磨循环,增加了锌浮选时间,降低了锌浮选矿浆碱度,合理控制破碎粒度和钢球装入量,严格贯彻技术操作规程和技术监督等。使各项指标得到稳步提升。铅回收率由 71% 提高到 90%,锌回收率由 13% 提高到 41%。其选矿过程见浮选工艺流程图(图 6-7-2)。

2. 新疆八一钢铁厂磁铁矿浮磁选选矿

新疆八一钢铁选矿厂与 1989 年建成投产,设计处理能力 80 万吨 / 年,主要处理高硫磁铁矿。矿石由矿山采出后,运输到选矿厂,经两段破碎一段磨矿后,矿浆进入浮-磁车间。选出的硫精矿销售给新疆境内的一些化工厂和化肥厂,铁精矿供球团和烧结使用。尾矿浓缩后,用水隔泵输送至尾矿库,晾干后,一部分尾矿成为八钢西域水泥厂铁质校正原料。新疆八一钢铁厂简易浮磁选流程图(图 6-7-3)。

3. 喀拉通克铜镍矿浮选选矿

喀拉通克铜镍矿是新疆目前最大的铜镍生产基地,矿山一期为采冶工程,采出的特富矿块直接进入鼓风炉熔炼成低冰镍,经过几年的生产特富矿逐渐减少。为充分利用矿产资源,在二期改造中增加了优先选铜-铜镍混合浮选流程,日处理原矿 900 吨。

原矿直接从采场经竖井提升到地面,通过窄轨输送到原矿仓,原矿仓的矿石经群式给矿机由带式输送机送至中间矿仓。经重型板式给矿机、带式输送机,送至自磨机进行一段磨矿,自磨机排矿给入与格子型球磨机闭路的高堰式双螺旋分级机,进行二段磨矿。分级机溢流经砂泵扬送至水力旋流器组,沉砂进入溢流型球磨机,进行三段磨矿。三段磨矿排矿与第一段分级机溢流合并,经砂泵扬送至水力旋流器组,旋流器溢流,自流至浮选厂房的搅拌槽内,加药后进入浮选作业。浮选采用一次铜粗选、一次铜精选、一次铜镍混合浮选、一次铜镍扫选、三次铜镍精选后,产出铜精矿、铜镍混合精矿及尾矿,分别送至脱水厂房。铜精矿、铜镍混合精矿经过脱水后分别送入铜精矿库和冶炼厂原料库。浮选尾矿经高效浓密机脱水后,用泵杨送至采矿场充填站,作为充填原料。喀拉通克铜镍矿简易选矿工艺流程图(图 6-7-4)。

4. 哈图金矿黄金混汞-浮选选矿

哈图矿区是新疆历史上有名的岩金产地,早在乾隆年间便开始开采,主要采用的是土法重选法,将采出的矿石用石碾盘碾碎,通过淘洗的方式回收比重大的金粒。大量的细粒金无法回收,致使许多淘金者亏损严重。

1983 年通过实验研究,采用“混汞—浮选—部分焙烧—氰化”原则流程,哈图金矿建成了新疆第一座现代化的黄金生产矿山,日处理原矿 100 吨。1986 年通过改进破碎工艺,新增 100吨 / 天的浮选系列,使产能达到 200 吨 / 天。哈图金矿混汞浮选工艺流程图(图 6-7-5)。

原矿由采厂通过汽车运到原矿仓,原矿经颚式破碎机进行一段破碎。然后经皮带运输机运到圆锥破碎机,进行二段破碎,破碎产物由圆振筛筛分后,筛下矿物由皮带运输机运送至粉矿仓,筛上矿物返回圆锥破碎机再破。粉矿仓经给矿机和皮带运输机送至格子型球磨机磨矿,磨矿排矿自流通过镀银铜板(俗称汞板)进行混汞作业,通过汞板表面粘附的汞吸附单体解理的金形成汞齐,通过冶炼回收部分黄金。矿浆经过汞板后,用高堰式螺旋分级机,溢流进入浮选工序,返砂进入球磨机再磨。浮选工序采用一次粗选、二次精选、一次扫选流程选的浮选精矿。浮选精矿脱水经过焙烧和进行冶炼后得到金锭。

5. 可可托海稀有金属矿重、磁、电、浮联合选矿

可可托海以稀有金属储量大,品种多而闻名中外,铍、锂、钽、铌、铷、铯、锆、铪等稀有元素在许多矿带中均有不同程度的分布,因而造成选矿上的复杂性和难度。经过众多科技人员 10 年的反复实验研究,从手工选矿到单一矿物选矿,发展到最后的重磁浮联合选矿流程,分选出锂精矿、铍精矿、钽铌精矿,突破了这一世界性的难题,促进了选矿技术的发展。

1953 年,为回收绿柱石和钽铌矿在 3 号矿脉小露天采场东北角兴建了一座简易的 30 多米长的手选室,改善了手选的工作环境,提高了手选效率。另外,在 3 号矿脉尾矿堆附近兴建了一座 20 吨 / 天的钽铌重选厂,采用对滚一段破碎、跳汰、摇床、溜槽进行重选,回收钽铌矿。1957 ~ 1958 年,将手选筛下的尾矿,用方螺旋溜槽进行富集,每年产出的氧化锂精矿接近万吨。

1963 年,经过科研院所近 8 年的选矿试验研究,国家计委批准兴建 750 吨 / 天的选矿厂(“87 - 66”机选厂),综合回收氧化锂精矿和钽铌精矿。选厂工艺流程简图(图 6-7-6)。根据可可托海矿伟晶岩体分带开采的特点,选厂采用三个系统分别对三种类型的矿石(铍矿石、锂矿石、钽铌矿石)进行选别。采用联合选矿工艺综合回收矿石中的锂铍钽铌矿物。先利用重力-磁法-电磁法选矿,从原矿含量只有 0.01% ~ 0.02%(Ta、Nb)203 的原矿中选50% 以上的(Ta、Nb)203 钽铌精矿,然后再用碱法锂铍优先浮选,先优浮选锂再选铍。

可可托海选厂选矿工艺的不断改进,使我国花岗伟晶岩类型矿石钽铌、锂、铍选矿工艺水平进入世界先进行列。

6. 选矿技术的发展方向

在美国、日本、德国等国家对选矿技术的发展非常重视,选矿技术的不断进步和创新,促进了这些国家矿产资源的开发和综合利用沿着可持续发展前进。在矿物破碎方面,美国开发了超细破碎机和高压对滚机,降低球磨机入料粒度,节约了能耗。同时在不断研究外加电场、激光、微波、超声、高频振荡、等离子处理矿石对粉碎和分选的影响。在矿物分选方面,已经或正在研究“多种力场”联合作用的分选设备,并不断将高技术引入选矿工程领域,诸如将超导技术引入磁选,将电化学及控制技术引入浮选等。在选矿工艺管理方面,将工艺控制过程自动化,并将“专家控制系统”与“最优适时控制”相结合,以达到根据矿石性质调整控制参数,使选矿生产工艺流程全过程保持最优状态。

随着我国国民经济的快速发展,对矿产品的需求不断增长,选矿工程技术面临着资源、能源、环保的严峻挑战和发展机遇。以下领域的技术创新将是今后选矿的发展方向:

一是研究开发高效预选设备、高效节能新型破磨与分选设备,以及固液分离新技术与装备,大幅降低矿石粉碎固液分离过程的能耗。

二是研究各种能场的预处理对矿物粉碎和分选行为的影响,开发利用各种能场的预处理新技术,以提高粉碎效率和分选精度。

三是开发高效分选设备、高效无毒的新药剂,重点研究复合力场分选新设备、多种成分协同作用的新药剂以及处理贫、细、杂难选矿石的综合分选新技术。

四是在矿石综合利用研究中,开发无废清洁生产工艺,加强尾矿中矿物的分离、提纯、超细、改性的研究,使其成为市场需要的产品,为矿物物料工业向矿物材料工业转化提供新技术。

五是大力将高新技术引进矿物工程领域,重点开展矿物生物工程技术、电化学调控和电化学控制浮选技术、过程自动寻优技术,以及高技术改造传统产业的新技术研究。

六是加强基础理论与选矿技术相结合的新型边缘科学研究,促进新一代矿物分选理论体系的形成,并派生出新兴的矿物分选和提纯技术。

热点内容
人脉链最新挖矿邀请 发布:2024-11-17 10:34:18 浏览:485
轴力控制值怎么算 发布:2024-11-17 10:29:29 浏览:170
魔兽世界怀旧服艾塞拉挖矿 发布:2024-11-17 10:28:33 浏览:517
为什么usdt一直不到账 发布:2024-11-17 10:27:49 浏览:490
usdt提币要24小时 发布:2024-11-17 10:23:48 浏览:327
中国最大比特币交易网 发布:2024-11-17 10:15:27 浏览:594
济南国际时尚创意中心怎么去 发布:2024-11-17 09:58:38 浏览:12
eth挖矿断网 发布:2024-11-17 09:55:15 浏览:324
区块链共识机制ppt 发布:2024-11-17 09:41:06 浏览:450
Vega64矿机 发布:2024-11-17 09:38:12 浏览:388