以太坊外围
❶ 炒币有什么技巧
1、要运用技术指标但不能陷入技术指标泥潭中。
K线图中的技术指标无计其数,有时候学太多反而扰乱人的客观分析,学习这些指标的最终目的是为了用这些指标去获取自己所需要的信息,如果从某项指标中获取到了所需要的信息,那么就不需要再去纠结于别的指标,在K线图中有很多指标都具备相似性。
2、顺势而为。
顺势者昌,逆势者亡。在投资方面应顺势而为,把握住大的趋势就好比坐上了飞船,它会迅速把你带到到高处,想不赚钱都难。相反,如果做了逆势操作,特别是大行情,逆势操作者将会陷入无底洞,这个洞却怎么填也填不满,把投资者深深的套住,会直接造成的巨亏,因此趋势的把握大于一切。
3、历史虽不会重演,但有值得借鉴的地方。
在技术分析层面,在某些时候确实可以从历史数据中捕捉到蛛丝马迹。市场的周期规律是始终不会变的,其他市场其实也是一样,会由调整期到成长期,成长期到成熟期,再由成熟期到衰退期,周而复始。因此在技术分析面可以将历史数据综合起来考虑。
4、深度剖析消息面。
货币市场每天都有大量的信息传递,那么对这些信息进行深度解析显得非常重要,作为一名合格的投资者,最基本的就是要学会辨别信息的真伪,特别是一些半真半假的消息非常具有误导性,甚至有的时候一则消息会直接影响到行情的方向性判断。
5、总结经验,找到适合自己一套办法。
临池观鱼,不如退而结网,不入虎穴,焉得虎子?我们总是羡慕别人能够在货币市场上投资挣取多少资金,我们总是看着别人操作热火朝天,但是自己就是不敢进入市场,害怕进入之后,赔的血本无归?
币市行情瞬息万变,人工盯盘劳神费力,一不留神就错过一个亿,CCR自动炒币机器人正是为解放币圈人士,提高生产效率和收益的工具,24小时监视交易所行情的变化,全自动分析建仓间隔,用户只需要设定止盈,回调等规则即可,CCR自动炒币机器人会根据您的设定,自动进行买入和卖出。
强大自动建仓功能,拉低整体均价。例如。机器人在下单之前会检测这个价格当前在可以进行交易的价格区间当中,第一单是在10元,100个;当价格下跌到8,机器人会下第二单,这时翻倍购买,也就是200个;以此类推直到等价格跌到4元,800个;这个只是在理想状态会下跌到这个行情,在一般情况,我们在8元下单在之后就会上涨,当行情达到10元,机器人就会平仓,因为我们在8元是翻倍下单的,所以机器人在10元平仓也是盈利的。如果是手动交易,很多交易员都不去平仓,想着行情还会再涨,最后造成亏损
❷ 工业以太网和标准以太网的区别
工业以太网是基于IEEE 802.3 (Ethernet)的强大的区域和单元网络。通用的兼容性允许用户无缝升级到新技术。以太网开始以太网只有10Mbps的吞吐量,这种早期的10Mbps以太网称之为标准以太网。区别在于一个快,一个慢
❸ 标准以太网最远传输距离是多少
看你买的网线质量如何啊
AMP的可以达到 300M
其他一般的可以达到 120M
❹ 请问S7-300F安全PLC走以太网通讯时,外围设备的安全信号可以通过以太网通讯进该S7-300F吗
可以通过以太网通讯进该S7-300F
❺ EtherCAT做为工业以太网现场总线有什么优势特点
EtherCAT EtherCAT技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接收以太网数据包,将其解码,之后再将过程数据复制到各个设备。EtherCAT从站设备在报文经过其节点时处理以太网帧:嵌入在每个从站中的FMMU(现场总线存储管理单元)在帧经过该节点时读取相应的编址数据,并同时将报文传输到下一个设备。同样,输入数据也是在报文经过时插入至报文中。整个过程中,报文只有几纳秒的时间延迟。 主站方面也非常经济,商用的标准网卡(NIC)或任何主板集成的以太网控制器可以用作硬件接口。这些接口的共性就是数据通过DMA(直接内存读取)传输至PC,即网络读取时无需占用CPU资源。 协议 EtherCAT协议在以太网帧内采用官方指定的以太类型。采用这种以太类型即可允许在以太网帧内直接传输控制数据,而无需重新定义标准以太网帧。该以太网帧可由多种子报文组成,每个子报文服务于逻辑过程映像区的特定内存区,该区域最大可达4GB。数据序列是独立于物理顺序的,所以以太网端子模块的编址可以随意排序。从站之间的广播,多播和通讯也可得以实现。 当EtherCAT组件与主站控制器运行在同一个子网,或者在控制软件直接读取以太网控制器时,可以使用以太网帧直接传输数据。 然而,EtherCAT不仅限于单个子网的应用。EtherCAT UDP将EtherCAT协议封装为UDP/IP数据报文,这就意味着,任何以太网协议堆栈的控制均可编址到EtherCAT系统之中,甚至通讯还可以通过路由器跨接到其它子网中。在这种情况下,系统性能显然取决于控制器及其以太网协议的实时性能。EtherCAT网络本身的响应时间几乎不受影响:UDP数据帧只需要在第一个站点解包。 性能 EtherCAT使网络性能达到了一个新高度。借助于从站节点中的FMMU和网络控制器主站的直接内存存取,协议的处理过程完全在硬件中完成。整个协议的处理过程都在硬件中得以实现,因此,完全独立于协议堆栈的实时运行系统、CPU 性能或软件实现方式。1000个I/O的更新时间只需30 s。单个以太网帧最多可进行1486字节的过程数据交换,几乎相当于12000个数字输入和输出,而传送这些数据耗时仅为 300 s. 100个伺服轴的通讯也仅为100s。在此期间,系统更新带有命令值和控制数据的所有轴的实际位置及状态,分布时钟技术使轴的同步偏差小于1微秒。而即使是在保证这种性能的情况下,带宽仍足以实现异步通讯,如TCP/IP、下载参数或上载诊断数据。 超高性能的EtherCAT技术可以实现传统的现场总线系统无法迄及的控制理念。例如,以太网系统现在不仅可以处理速度控制,也可用于分布式驱动的电流控制。巨大的带宽可以实现每个数据信息与其状态信息同时传输。EtherCAT使通讯技术和现代工业PC所具有的超强计算能力相适应,总线系统不再是控制理念的瓶颈,分布式I/O可能比大多数本地I/O接口运行速度更快。 EtherCAT取代PCI 由于主板集成了以太网卡,用于接口卡的插槽不再是必要条件。随着PC组件急剧向小型化经济化方向发展,工业PC的体积日趋取决于插槽的数目。而快速以太网的带宽和EtherCAT通讯硬件的过程数据长度则为该领域的发展提供了新的可能性:IPC 中的传统接口现在可以转变为集成的EtherCAT接口端子。除了可以对分布式I/O进行编址,还可以对驱动和控制单元以及现场总线主站、快速串行接口、网关和其它通讯接口等复合系统进行编址。即使是其他无协议限制的以太网设备变体,也可以通过分布式交换机端口设备进行连接。由于一个以太网接口足以满足整个外围设备的通讯要求,因此,这不仅极大地精简了IPC主机的体积,而且也降低了IPC主机的成本。 拓扑结构 EtherCAT几乎支持任何拓扑类型,包括线型、树型、星型等。通过现场总线而得名的总线结构或线型结构也可用于以太网,并且不受限于级联交换机或集线器的数量。最有效的系统连线方法是线型、分支或树叉结构的组合拓扑。因为所需接口在I/O 模块等很多设备中都已存在,所以无需附加交换机。当然,仍然可以使用传统的、基于以太网的星型拓扑结构。 还可以选择不同的电缆以提升连线的灵活性:灵活、经济的标准超五类以太网电缆可采用100BASE-TX模式或E-Bus(LVDS)传送信号。塑封光纤(PFO)则可用于特殊应用场合。还可通过交换机或介质转换器实现不同以太网连线(如:不同的光纤和铜电缆)的完整组合。 根据对距离的要求,可选择快速以太网的物理层或E-bus作为物理介质。快速以太网物理层允许两个设备之间的最大电缆长度为100米,而E-Bus可连接最大距离为10米。由于连接的设备数量可高达65535,因此,网络的容量几乎没有限制。 分布时钟 精确同步对于同时动作的分布式过程而言尤为重要。例如,几个伺服轴同时执行协调运动时,便是如此。 最有效的同步方法是精确排列分布时钟(请参阅IEEE 1588标准[6])。与完全同步通讯中通讯出现故障会立刻影响同步品质的情况相比,分布排列的时钟对于通讯系统中可能存在的相关故障延迟具有极好的容错性。 采用EtherCAT,数据交换就完全基于“父”“子”时钟的纯硬件机制。由于通讯采用了逻辑环结构 (借助于全双工快速以太网的物理层),主站时钟可以简单、精确地确定各个从站时钟传播的延迟偏移。分布时钟均基于该值进行调整,这意味着可以在网络范围内使用非常精确的、小于1 微秒的、确定性的同步误差时间基。 此外,高分辨率的分布时钟不仅可以用于同步,还可以提供数据采集的本地时间精确信息。当采样时间非常短暂时,即使是出现一个很小的位置测量瞬时同步偏差,也会导致速度计算出现较大的阶跃变化,例如,运动控制器通过顺序检测的位置计算速度便是如此。而在EtherCAT中,引入时间戳数据类型作为一个逻辑扩展,以太网所提供的巨大带宽使得高分辨率的系统时间得以与测量值进行链接。这样,速度的精确计算就不再受到通讯系统的同步误差值影响,其精度要高于基于自由同步误差的通讯测量技术。 热连接 热连接功能能够使网络的各部分相连,并且解耦或重新自由配置;所提供的灵活响应特性,改变了很多应用需要在运行时变更I/O配置的需求。 例如,具备变更特性的处理中心,装备传感器的工具系统,或者智能化的传输设备,灵活的工件执行器等。EtherCAT系统考虑到了这些需求:任意配置。 EtherCAT功能安全 传统上,安全功能是独立于自动化网络实现的,使用专用硬件或专门的安全总线系统。EtherCAT安全功能使安全相关通信和控制通信可以在同一网络上实现。安全协议基于EtherCAT应用层,而不会影响底层运行。它由IEC61508标准认证,并满足整体安全等级(SIL)3。数据长度是可变的,所以可以用于安全I/O和安全伺服驱动技术。和其它EtherCAT数据相同,安全数据可以不使用安全路由器或网关传输。完全符合EtherCAT功能安全认证的产品已经上市。Safety over EtherCAT协议符合IEC 61748-3标准中的FSCP 12(功能安全通讯设备行规)。 开放性 EtherCAT技术是完全兼容以太网并真正开放的。该协议可与其他提供各种服务的以太网协议并存,并且所有的协议都并存于同一物理介质中——通常只会对整个网络性能有很小程度的影响。标准的以太网设备可通过集线器端子连接至一个EtherCAT系统,该端子并不会影响循环时间。配备传统现场总线接口的设备可通过EtherCAT现场总线主站端子的连接集成到网络中。UDP协议变体允许设备整合于任何插槽接口中。EtherCAT技术组确保每个感兴趣的组织可以实施并使用该项网络。EtherCAT协议将在作出最后的技术规范后发布。
❻ 什么是Ethernet
Ethernet 以太网(EtherNet)
以太网最早是由Xerox(施乐)公司创建的,在1980年由DEC、Intel和Xerox三家公司联合开发为一个标准。以太网是应用最为广泛的局域网,包括标准以太网(10Mbps)、快速以太网(100Mbps)、千兆以太网(1000 Mbps)和10G以太网,它们都符合IEEE802.3系列标准规范。
(1)标准以太网
最开始以太网只有10Mbps的吞吐量,它所使用的是CSMA/CD(带有冲突检测的载波侦听多路访问)的访问控制方法,通常把这种最早期的10Mbps以太网称之为标准以太网。以太网主要有两种传输介质,那就是双绞线和同轴电缆。所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。
·10Base-5 使用粗同轴电缆,最大网段长度为500m,基带传输方法;
·10Base-2 使用细同轴电缆,最大网段长度为185m,基带传输方法;
·10Base-T 使用双绞线电缆,最大网段长度为100m;
·1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;
·10Broad-36 使用同轴电缆(RG-59/U CATV),最大网段长度为3600m,是一种宽带传输方式;
·10Base-F 使用光纤传输介质,传输速率为10Mbps;
(2)快速以太网(Fast Ethernet)
随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器FastSwitch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MII、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。
快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。
快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于载波侦听多路访问和冲突检测(CSMA/CD)技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。
100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。
·100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SPT 1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。
·100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um) 多模光纤连接的最大距离为550米。单模光纤连接的最大距离为3000米。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用MIC/FDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。
·100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用4对双绞线,3对用于传送数据,1对用于检测冲突信号。在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。
(3)千兆以太网(GB Ethernet)
随着以太网技术的深入应用和发展,企业用户对网络连接速度的要求越来越高,1995年11月,IEEE802.3工作组委任了一个高速研究组(HigherSpeedStudy Group),研究将快速以太网速度增至更高。该研究组研究了将快速以太网速度增至1000Mbps的可行性和方法。1996年6月,IEEE标准委员会批准了千兆位以太网方案授权申请(Gigabit Ethernet Project Authorization Request)。随后IEEE802.3工作组成立了802.3z工作委员会。IEEE802.3z委员会的目的是建立千兆位以太网标准:包括在1000Mbps通信速率的情况下的全双工和半双工操作、802.3以太网帧格式、载波侦听多路访问和冲突检测(CSMA/CD)技术、在一个冲突域中支持一个中继器(Repeater)、10BASE-T和100BASE-T向下兼容技术千兆位以太网具有以太网的易移植、易管理特性。千兆以太网在处理新应用和新数据类型方面具有灵活性,它是在赢得了巨大成功的10Mbps和100Mbps IEEE802.3以太网标准的基础上的延伸,提供了1000Mbps的数据带宽。这使得千兆位以太网成为高速、宽带网络应用的战略性选择。
1000Mbps千兆以太网目前主要有以下三种技术版本:1000BASE-SX,-LX和-CX版本。1000BASE-SX 系列采用低成本短波的CD(compact disc,光盘激光器) 或者VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔体表面发光激光器)发送器;而1000BASE-LX系列则使用相对昂贵的长波激光器;1000BASE-CX系列则打算在配线间使用短跳线电缆把高性能服务器和高速外围设备连接起来。
(4)10G以太网
现在10Gbps的以太网标准已经由IEEE 802.3工作组于2000年正式制定,10G以太网仍使用与以往10Mbps和100Mbps以太网相同的形式,它允许直接升级到高速网络。同样使用IEEE 802.3标准的帧格式、全双工业务和流量控制方式。在半双工方式下,10G以太网使用基本的CSMA/CD访问方式来解决共享介质的冲突问题。此外,10G以太网使用由IEEE 802.3小组定义了和以太网相同的管理对象。总之,10G以太网仍然是以太网,只不过更快。但由于10G以太网技术的复杂性及原来传输介质的兼容性问题(目前只能在光纤上传输,与原来企业常用的双绞线不兼容了),还有这类设备造价太高(一般为2 ̄9万美元),所以这类以太网技术目前还处于研发的初级阶段,还没有得到实质应用。
❼ stm32作为控制芯片,然后用两片以太网芯片的rx、tx对接,这样就双工了,不通过网口,直接接有什么问题
最简单的就是用stm32的串口和网络模块通讯来上网,网络模块几十元。也可自己扩展外围芯片实现网络模块的功能,就看系统成本的限制了。前者就当成一个串口来用,很简单方便。
❽ 关于主流数控系统以及系统有哪些外围接口
主流系统中端一般首推日本FANUC系统,比较高端的是HEIDENHAIN 系统,海德汉系统主要特点高速加工五轴及以上加工智能化友好人机界面。通讯接口。
FANUC系统一般使用是RS232C接口,HEIDENHAIN 系统主机单元带有各类数据通信接口(Ethernet/RS232/RS422/USB等)以太网接口的传输速度是100 MBit/s。 通常情况下一般使用电脑进行连接并可以实现在线加工
❾ 毕设题目是基于fpga的以太网实现,大家有什么最基本的思路么不会做啊不会做~~
这个看你的以太网是多少M的,然后mac可以用ip控制,然后phy可以外围控制芯片。。。可以先看点网络协议的书籍