当前位置:首页 » 以太坊知识 » 以太坊柏林

以太坊柏林

发布时间: 2021-03-26 23:17:22

Ⅰ 阿尔伯特·亚伯拉罕·迈克尔逊的辉煌人生

迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊-莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出与有关的效应。
1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。干涉条纹是等光程差点的轨迹,因此,要分析某种干涉产生的图样,必求出相干光的光程差位置分布的函数。若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。

Ⅱ 迈克尔逊最早用迈克尔逊干涉仪做什么

迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器
迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊-莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出与有关的效应。
1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。
1884年在访美的瑞利、开尔文等的鼓励下,他和化学家莫雷(Morley,Edward Williams,1838~1923)合作,提高干涉仪的灵敏度,得到的结果仍然是否定的。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验引起科学家的震惊和关注,与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。随后有10多人前后重复这一实验,历时50年之久。对它的进一步研究,导致了物理学的新发展。迈克尔逊的另一项重要贡献是对光速的测定。早在海军学院工作时,由于航海的实际需要,他对光速的测定开始感兴趣。
1879年开始光速的测定工作。他是继菲佐、傅科、科纽之后,第四个在地面测定光速的。他得到了岳父的赠款和政府的资助,使他能够有条件改进实验装置。他用正八角钢质棱镜代替傅科实验中的旋转镜,由此使光路延长600米。返回光的位移达133毫米,提高了精度,改进了傅科的方法。他多次并持续进行光速的测定工作,其中最精确的测定值是在1924~1926年,在南加利福尼亚山间22英里长的光路上进行的,其值为(299796±4)km/s。迈克尔逊从不满足已达到的精度,总是不断改进,反复实验,孜孜不倦,精益求精,整整花了半个世纪的时间,最后在一次精心设计的光速测定过程中,不幸因中风而去世,后来由他的同事发表了这次测量结果。

Ⅲ 迈克尔逊干涉仪发明历史是什么

以太漂移实验迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊-莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出与有关的效应。
1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。
改进仪器
1884年在访美的瑞利、开尔文等的鼓励下,他和化学家莫雷(Morley,Edward Williams,1838~1923)合作,提高干涉仪的灵敏度,得到的结果仍然是否定的。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验引起科学家的震惊和关注,与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。随后有10多人前后重复这一实验,历时50年之久。对它的进一步研究,导致了物理学的新发展。迈克尔逊的另一项重要贡献是对光速的测定。早在海军学院工作时,由于航海的实际需要,他对光速的测定开始感兴趣。
测定光速
1879年开始光速的测定工作。他是继菲佐、傅科、科纽之后,第四个在地面测定光速的。他得到了岳父的赠款和政府的资助,使他能够有条件改进实验装置。他用正八角钢质棱镜代替傅科实验中的旋转镜,由此使光路延长600米。返回光的位移达133毫米,提高了精度,改进了傅科的方法。他多次并持续进行光速的测定工作,其中最精确的测定值是在1924~1926年,在南加利福尼亚山间22英里长的光路上进行的,其值为(299796±4)km/s。迈克尔逊从不满足已达到的精度,总是不断改进,反复实验,孜孜不倦,精益求精,整整花了半个世纪的时间,最后在一次精心设计的光速测定过程中,不幸因中风而去世,后来由他的同事发表了这次测量结果。他确实是用毕生的精力献身于光速的测定工作。迈克尔逊在基本度量方面也作出了贡献

Ⅳ 币行以太坊反弹 德国联邦区块链协会成立

根据国内知名的数字资产交易平台OKCoin币行的数据显示,7月2日币行以太坊开盘价1964.01,最高价1967.89,最低价1771.00,收盘报于1865.11.截止收盘下跌5.08%,振幅11.12%。今日以太坊开盘价1869.00,基本平开。

日内来看,4小时级别,均线系统(5、10、20)整体呈偏空格局运行,MA60对价格运行起到明确的压制作用,MACD指标出现下跌动能衰竭迹象,或只是短期现象,本级别偏空格局不变;1小时级别,价格在反弹至本周期MA60处受阻回落,同时反弹过程中没有明显的成交量放大迹象。

综上所述,4小时级别的偏中期走势偏空格局不变,同时价格在反弹回升时没有明显的资金介入迹象,这说明市场整体对多头缺乏信心,在这种市场背景没有明显发生改变前位置主要的空头思路操作,也就是参与的性质都应该是短线反弹行情。日内多空分水岭关注2030一线,未放量上破前不要追涨;下方支撑关注1500—1600区间,此区间可短线参与。

名叫“区块链联合”的数字货币和区块链游说团体——德国联邦区块链协会在德国成立,比特币、以太坊等数字货币将在德国获得新的支持。

新协会的于上周四在德国首都柏林的联邦国会大厦正式成立,诸多德国议会议员纷纷出席此次新协会推出大会。

区块链技术将成为继互联网后的又一个创新技术,德国希望自己走在技术创新的前列,成为创新技术的监管先驱,联邦协会的正式推出将有助于德国抓住这一机遇。

在该协会制定的众多待商定目标中,一个引人注目的目标是,在区块链上进行公开登记测试。

该协会和游说团体获得了Gnosis,IOTA基金会,区块链公司Helix和Slock.it等在内的多家公司的支持。

新的区块链协会还设有一个“咨询委员会”,该委员会由不同政党的政治人物及其他利益相关者组成。

在今年3月初,联邦银行行长詹姆斯·维德曼在G20峰会期间发表声明表示,数字化的金融服务可以从区块链技术中获益。

此外,该协会也会推动去中心化金融技术事业的发展。

Ⅳ 经典物理学遇到的俩朵乌云是什么

19世纪的最后一天,欧洲著名的科学家欢聚一堂。会上,英国著名物理学家W?汤姆生(即开尔文男爵)发表了新年祝词。他在回顾物理学所取得的伟大成就时说,物理大厦已经落成,所剩只是一些修饰工作。同时,他在展望20世纪物理学前景时,却若有所思地讲道:“动力理论肯定了热和光是运动的两种方式,现在,它的美丽而晴朗的天空却被两朵乌云笼罩了,”“第一朵乌云出现在光的波动理论上,”“第二朵乌云出现在关于能量均分的麦克斯韦-玻尔兹曼理论上。”W.汤姆生在1900年4月曾发表过题为《19世纪热和光的动力学理论上空的乌云》的文章。他所说的第一朵乌云,主要是指迈克尔逊-莫雷实验结果和以太漂移说相矛盾;他所说的第二朵乌云,主要是指热学中的能量均分定则在气体比热以及势辐射能谱的理论解释中得出与实验不等的结果,其中尤以黑体辐射理论出现的“紫外灾难”最为突出。开尔文是19世纪英国杰出的理论物理和实验物理学家,是一位颇有影响的物理学权威,他的说法道出了物理学发展到19世纪末期的基本状况,反映了当时物理学界的主要思潮。
物理学发展到19世纪末期,可以说是达到相当完美、相当成熟的程度。一切物理现象似乎都能够从相应的理论中得到满意的回答。例如,一切力学现象原则上都能够从经典力学得到解释,牛顿力学以及分析力学已成为解决力学问题的有效的工具。对于电磁现象的分析,已形成麦克斯韦电磁场理论,这是电磁场统一理论,这种理论还可用来阐述波动光学的基本问题。至于热现象,也已经有了唯象热力学和统计力学的理论,它们对于物质热运动的宏观规律和分子热运动的微观统计规律,几乎都能够做出合理的说明。总之,以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理大厦已经建成,而且基础牢固,宏伟壮观!在这种形势下,难怪物理学家会感到陶醉,会感到物理学已大功告成,因而断言往后难有作为了。这种思想当时在物理界不但普遍存在,而且由来已久。
普朗克曾在1924年做过一次演讲。在演讲中,他回忆1875年在慕尼黑大学学物理时,物理老师P.约里(1809-1884)曾劝他不要学纯理论,因为物理学“是一门高度发展的、几乎是臻善臻美的科学”,现在这门科学“看来很接近于采取最稳定的形式。也许,在某个角落里还有一粒尘屑或一个小气泡,对它们可以去进行研究和分类,但是,作为一个完整的体系,那是建立得足够牢固的。而理论物理学正在明显地接近于几何学在数百年中所已具有的那样完美的程度。”普朗克的另一位名师,柏林大学的G?基尔霍夫(1824-1887)也说过类似的话,他说“物理学已经无所作为,往后无非在已知规律的小数点后面加上几个数字而已。”尽管开尔文对物理学成就的评价言之过激,但他能够在此万里晴空中发现“两朵乌云”并为之忧心忡忡,足见他富有远见。物理学发展的历史表明,正是这两朵小小的乌云,终于酿成了一场大风暴。
第一朵乌云——迈克耳逊-莫雷实验与“以太”说破灭
人们知道,水波的传播要有水做媒介,声波的传播要有空气做媒介,它们离开了介质都不能传播。太阳光穿过真空传到地球上,几十亿光年以外的星系发出的光,也穿过宇宙空间传到地球上。光波为什么能在真空中传播?它的传播介质是什么?物理学家给光找了个传播介质——“以太”。
最早提出“以太”的是古希腊哲学家亚里士多德。亚里士多德认为下界为火、水、土、气四元素组成;上界加第五元素,“以太”。牛顿在发现了万有引力之后,碰上了难题:在宇宙真空中,引力由什么介质传播呢?为了求得完整的解决,牛顿复活了亚里士多德的“以太”说,认为“以太”是宇宙真空中引力的传播介质。后来,物理学家又发展了“以太”说,认为“以太”也是光波的传播介质。光和引力一样,是由“以太”传播的。他们还假定整个宇宙空间都充满了“以太”,“以太”是一种由非常小的弹性球组成的稀薄的、感觉不到的媒介。19世纪时,麦克斯韦电磁理论也把传播光和电磁波的介质说成是一种没有重量,可以绝对渗透的“以太”。“以太”既具有电磁的性质,又是电磁作用的传递者,又具有机械力学的性质,它是绝对静止的参考系,一切运动都相对于它进行。这样,电磁理论因牛顿力学取得协调一致。“以太”是光、电、磁的共同载体的概念为人们所普遍接受,形成了一门“以太学”。
但是,肯定了“以太”的存在,新的问题又产生了:地球以每秒30公里的速度绕太阳运动,就必须会遇到每秒30公里的“以太风”迎面吹来,同时,它也必须对光的传播产生影响。这个问题的产生,引起人们去探讨“以太风”存在与否。
为了观测“以太风”是否存在,1887年,迈克耳逊(1852-1931)与美国化学家、物理学家莫雷(1838-1923)合作,在克利夫兰进行了一个著名的实验:“迈克耳逊-莫雷实验”,即“以太漂移”实验。实验结果证明,不论地球运动的方向同光的射向一致或相反,测出的光速都相同,在地球同设想的“以太”之间没有相对运动。因而,根本找不到“以太”或“绝对静止的空间”。由于这个实验在理论上简单易懂,方法上精确可靠,所以,实验结果否定“以太”之存在是毋庸置疑的。
迈克耳逊一莫雷实验使科学家处于左右为难的境地。他们或者须放弃曾经说明电磁及光的许多现象的以太理论。如果他们不敢放弃以太,那末,他们必须放弃比“以太学”更古老的哥白尼的地动说。经典物理学在这个著名实验面前,真是一筹莫展。
第二朵乌云——黑体辐射与“紫外灾难”
在同样的温度下,不同物体的发光亮度和颜色(波长)不同。颜色深的物体吸收辐射的本领比较强,比如煤炭对电磁波的吸收率可达到80%左右。所谓“黑体”是指能够全部吸收外来的辐射而毫无任何反射和透射,吸收率是100%的理想物体。真正的黑体并不存在,但是,一个表面开有一个小孔的空腔,则可以看作是一个近似的黑体。因为通过小孔进入空腔的辐射,在腔里经过多次反射和吸收以后,不会再从小孔透出。
19世纪末,卢梅尔(1860-1925)等人的著名实验―黑体辐射实验,发现黑体辐射的能量不是连续的,它按波长的分布仅与黑体的温度有关。从经典物理学的角度看来,这个实验的结果是不可思议的。
怎样解释黑体辐射实验的结果呢?当时,人们都从经典物理学出发寻找实验的规律。前提和出发点不正确,最后都导致了失败的结果。例如,德国物理学家维恩建立起黑体辐射能量按波长分布的公式,但这个公式只在波长比较短、温度比较低的时候才和实验事实符合。英国物理学家瑞利和物理学家、天文学家金斯认为能量是一种连续变化的物理量,建立起在波长比较长、温度比较高的时候和实验事实比较符合的黑体辐射公式。但是,从瑞利——金斯公式推出,在短波区(紫外光区)随着波长的变短,辐射强度可以无止境地增加,这和实验数据相差十万八千里,是根本不可能的。所以这个失败被埃伦菲斯特称为“紫外灾难”。它的失败无可怀疑地表明经典物理学理论在黑体辐射问题上的失败,所以这也是整个经典物理学的“灾难”。

Ⅵ 近年来,哪国已经成为被大家公认的加密货币最友好国家之一

  1. 日本

    在亚洲国家中,日本似乎是率先支持加密货币的国家。相反的是,在过去几年里,中国不断打击ICO,还关闭了数字货币交易所在中国境内的交易业务。相对于中国严格的限制措施,日本在加密货币领域无疑是遥遥领先的。

    也许是因为开发比特币的匿名人士(或团队?)的化名是中本聪,所以日本对加密货币的友好度排在前列。

    在遭受黑客攻击后,总部设在日本的Mt. Gox交易所最终在2014年2月倒闭,这至今仍是数字货币世界中最大的丑闻。之后,日本的持牌加密货币交易所齐聚一堂,组成了一个新的自我监管组织,该组织提出了使ICO合法化的指导方针,并制定了明确的行业标准,以保护投资者,同时也让该行业得以成长和继续创新。

    这个名为ICO商业研究集团(ICO Business Research Group)的协会的成员包括议员、学者、银行家和bitFlyer的首席执行官。bitFlyer是日本最大的加密货币交易所。根据政府研究,立法机构或将允许可能盈利的ICO以及加密货币交易所继续交易,但同时须向政府提供这些活动的更多洞察并提高透明度。

    2.委内瑞拉

    这个石油资源丰富但债台高筑的南美国家在今年2月推出了石油支持的加密货币,当时引发了争议,也引发了很多嘲笑。据CNN报道,该国总统尼古拉斯·马杜罗(Nicolas Maro)称“在代币销售的首月,已经筹集了逾50亿美元”。这种代币运行在新经币区块链上,并据称,每枚代币得到了1桶原油支持。不过,分析师普遍认为马杜罗显然在说假话。

    尽管如此,截至4月底,有消息传出如果印度使用Petro币支付所购买的原油的话,委内瑞拉可向印度提供30%的折扣。Bitcoin magazine报道称,“委内瑞拉已向买家保证,Petro币将具有法定货币的全部功能,可支付税费并可兑换为委内瑞拉硬通货即玻利瓦尔。

    尽管许多人对Petro币本身持怀疑态度,也同样怀疑委内瑞拉政府将加密货币融入其不断衰退的经济中的举措,但也有一些人认为,为加密货币赢得信誉的任何努力都是值得的。Ripio Credit Network高级副总裁兼合伙人David Garcia指出,拉丁美洲正在经历一个过渡期。

    拉美地区由于政治腐败、经济危机而处境艰难,并受到通胀高企和当地货币急速贬值的困扰,委内瑞拉目前的情况尤其如此。Garcia认为,要想使这些国家朝着积极的方向发展,如区块链和加密货币这些创新的想法和解决方案是必要的。

    3.瑞典

    2015年,瑞典成了欧洲第一个批准了两种比特币交易所交易票据(ETN)买卖的国家,该等票据由XBT Providers管理。以瑞典克朗计价的Bitcoin Tracker One XBT (ST:SE0007126024)基金和Bitcoin Tracker EUR XBT Provider (ST:SE0007525332)均可在瑞典主要交易所北欧纳斯达克(Nordic NASDAQ)买卖。

    自推出以来,XBT已经在丹麦、芬兰、爱沙尼亚和拉脱维亚推出了相应版本。截至2017年12月初,Cointelegraph宣布瑞典的ETN“(规模)超过80%的美国ETF”。今年1月中旬,CNBC称,瑞典的比特币投资项目吸引了13亿美元的资金。

    此外,瑞典央行一直在考虑开发一种名为电子克朗(e-krona)的电子货币,以应对瑞典正迅速成为世界上第一个无现金社会的形势。然而,瑞典的银行业予以了回击。瑞典银行家协会首席执行官Hans Lindberg在4月17日接受采访时表示:“就电子货币而言,已经有很多了。有银行卡、信用卡……和其他电子解决方案。未来最可能的情况应该还是瑞典央行将坚持批发业务。”

    不过,汇丰全球经济学家James Pomeroy认为,瑞典仍有可能成为世界上第一个发行数字货币的国家,并可能在未来几年内推出。委内瑞拉或许在政府支持的加密货币发行方面走在了前面,但瑞典这个经济实力更强、监管机构更受信任的斯堪的纳维亚国家,仍可能在这方面打乱加密货币现有次序,甚至仍将引领欧洲加密货币行业。

    4.瑞士

    瑞士金融市场监督管理局在明确加密货币监管和支持ICO方面走在前列。瑞士金融技术专家、加密货币企业家和Swiss Real Coin顾问Marc Bernegger表示,传统上,瑞士一直是财富的避风港。在一定程度上,这得益于瑞士更开放的金融监管以及一种保护瑞士银行机构客户隐私的悠久文化。Bernegger指出,瑞士一直在“前瞻性地考虑”将加密货币资产作为整体财富管理的一部分,并正在“为不断变化的经济形式做准备”。

    瑞士中北部的祖格(Zug)周边地区被称为“加密谷(Crypto Valley)”,自从2014年以太坊ICO在哪里开展以来,这个地区就被称为“加密谷”。对于加密货币企业家、开发商和投资者来说,加密谷是最活跃的生态系统之一,

    5.以色列

    在以色列,针对加密货币的监管讨论仍在继续,议员们正在寻找保护投资者的方法。尽管以色列银行体系未能帮助促进与比特币相关业务的发展,但以色列第六大银行以色列联合银行(Union Bank of Israel)正被当地一家加密货币矿商起诉,理由是该银行停止了从比特币交易所向该矿商转移资金;此外,以色列第二大银行以色列国民银行集团(Bank Leumi)在试图阻止一家当地加密货币交易所的账户活动时,遭到地区法院和该国最高法院的干预。这无疑是当地加密货币行业的重大胜利。

    此外,最近有报道称,以色列央行几个月来一直在考虑发行由国家支持的加密货币的可能性。据《耶路撒冷邮报》(Jerusalem Post)报道,一位匿名人士透露,“数字谢克尔可通过手机记录每一笔交易,使逃税更加困难。”如果推出了数字谢克尔,届时,其价值等同实体谢克尔。

    在科技创新方面,以色列的初创企业文化走在了前列。WeMark的联合创始人兼业务发展副总裁Roy Meirom指出,在以色列运营的大约300个跨国研发中心中,许多都致力实现区块链的应用。

    Roy Meirom还说,这个通常被称为“初创企业之国”的中东小国正迅速成为与区块链的发展中心。
    6.百慕大

    位于北大西洋加勒比海的英联邦成员百慕大一直在积极寻求通过加密货币相关法规,以开始建立一个适当的框架,来促进包括加密货币交易所、钱包服务和支付提供商在内的加密货币商业活动。最近,百慕大金融管理局的《虚拟货币商业法(Virtual Currency Business Act)》在英国下议院获得通过。

    百慕大已就ICO开展了相关立法活动,其形式将是对1981年《公司法》和2016年《有限责任公司法》的修定。去年年底,百慕大总理兼财政部长David Burt成立了一个区块链工作团队,该团队分为两组:区块链法律和监管工作组和区块链商业工作组。

    7.德国

    德国首都柏林也许是欧盟中对加密货币最友好的城市之一。2013年,柏林被英国《卫报》称为“欧洲比特币之都”,且一直保持着这一地位。目前,人们可用比特币在柏林购买公寓、进行假日预定、支付各种时髦的当地餐馆的餐饮费用。

    总部在瑞士的区块链应用平台应用链(Lisk)的营销主管Thomas Schouten说, 应用链在柏林设有主要的承包商办事处。Schouten表示,柏林提供了一个充满活力的初创企业和科技空间,该空间拥有庞大的人才库和充满活力的文化,使企业很容易吸引到员工。此外,他还表示,德国人和德国政府对区块链技术态度开放。

    2014年,德国成为首个接受比特币作为一种货币的国家,凸显出德国的开放态度。同样,德国央行的董事会成员也呼吁对加密货币和代币进行有效和适当的监管。事实上,德国央行董事Joachim Wuermeling已经指出在这个问题上有必要进行国际合作:
    为此,德国央行的多名决策者参与了涉及整个欧盟地区的讨论,讨论了包括通过欧洲区块链伙伴关系(European Block Chain Partnership)等方式在整个欧盟地区激励加密货币行业。(英为财情)

  2. “业内的科学家和工程师,许多是以色列精英军事情报部队的退役人员,已转业来填补行业巨大的人才需求,并得到了越来越多的区块链初创企业和支持性生态系统的支持。”

  3. “因为单个国家的监管能力显然是有限的,只有最大程度地发挥国际合作潜能才能有效地监管虚拟货币。”

Ⅶ 如何解释洛伦兹预期的双折射现象和瑞利的实验矛盾

以太之谜和迈克耳逊—莫雷实验

从十九世纪初光的波动说复活以来,物理学家一直对传光媒质以太议论不休,其中一个重要问题就是以太和可称量物质(特别是地球)的关系问题。

当时,有两种针锋相对的观点。菲涅耳在1818年认为,地球是由极为多孔的物质组成的,以太在其中运动几乎不受什么阻碍。地球表面的空气由于其折射率近于 1,因而不能或者只能极其微弱地曳引以太,可以把地球表面的以太看作是静止的。

斯托克斯认为菲涅耳的理论建立在一切物体对以太都是透明的基础之上,因而是不能容许的。他于1845年提出,在地球表面,以太与地球有相同的速度,即地球完全曳引以太。只有在离开地球表面某一高度的地方,才可以认为以太是静止的。由于菲涅耳的静止以太说能圆满地解释光行差现象(由于地球公转,恒星的麦观位置在一年内会发生变化),因而人们普遍赞同它。

假使静止以太说是正确的,那么由于地球公转速度是每秒三十公里,在地球表面理应存在“以太风”。多年来,人们做了一系列的光学和电学实验(即所谓的“以太漂移”实验),企图度量地球通过以太的相对运动。但是,由于实验精度的限制,只能度量地球公转速度和光速之比的一阶量,这些一阶实验一律给出否定的结果。

随着麦克斯韦电磁理论的发展,人们了解到,与地球公转速度和光速之比的平方有关的效应,应该能在光学和电学实验中检测到。因为麦克斯韦理论隐含着,光、电现象有一个优越的参照系,这就是以太在其中静止的参照系,以太漂移的二阶效应理应存在。但是这个实验精度要求太高,一时还难以实现。

其实,麦克斯韦早在1867年就指出,在地球上做测量光速的实验,因为光在同一路径往返,地球运动对以太的影响仅仅表现在二阶效应上。1879年,麦克斯韦在致美国航海历书事务所的信中就提出了度量太阳系相对以太运动速度的计划,当时在事务所工作的迈克耳逊采纳了这一建议。

1881年,迈克耳逊正在德国柏林赫尔姆霍兹手下留学。由于在柏林无法完成实验,迈克耳逊把别人为他建造的整个装置运到波茨坦天体物理观测站进行实验。他所期望的位移是干涉条纹的0.1,但实际测得的位移仅仅是0.004~0.005,这只不过相当于实验的误差而己。

显然,否定结果(也称“零结果”)表明,企图检测的以太流是不存在的。迈克耳逊面对事实不得不认为:“静止以太的假设被证明是不正确的,并且可以得到一个必然的结论:该假设是错误的”,“这个结论与迄今被普遍接受的光行差现象的解释直接矛盾”,“他不能不与斯托克斯1846年在《哲学杂志》发表的论文附加摘要相一致”。

不过,这次实验的精度还不够高,数据计算也有错误。1881年冬,巴黎的波蒂埃指出了计算中的错误(估计的效果比实际大了两倍),洛伦兹在1884年也指出了这些问题。因此,无论迈克耳逊还是其他人,都没有把这次实验看作是决定性的。迈克耳逊本人此后也将兴趣转移到了精密测定光速值,对1881年的实验进行改良的工作就这样搁置下去了。

1884年秋,威廉·汤姆逊访问美国,他在巴尔的摩作了多次讲演。到会听讲的迈克耳逊有机会会见了与汤姆孙一起访美的瑞利勋爵,他们就1881年的实验交换了意见。与此同时,瑞利也转达了洛伦兹的意见。瑞利的劝告给迈克耳逊以极大的勇气,他进一步改进了干涉仪,和著名的化学教授莫雷一起,于1887年7月在克利夫兰重新进行了实验,此时的迈克耳逊已是克利夫兰城凯思应用科学院的教授了。

为了维持稳定,减小振动的影响,迈克耳逊和莫雷把干涉仪安装在很重的石板上,并使石板悬浮在水银液面上,可以平稳地绕中心支轴转动。为了尽可能增大光路,尽管干涉仪的臂长已达11米,他们还是在石板上安装了多个反射镜,使钠光束来回往返八次。根据计算,这时干涉条纹的移动量应为0.37,但实测值还达不到0.01。

迈克耳逊和莫雷认为,如果地球和以太之间有相对运动,那么相对速度可能小于地球公转速度的1/60,肯定小于1/40。他们在实验报告中说:“似乎有理由确信,即使在地球和以太之间存在着相对运动,它必定是很小的,小到足以完全驳倒菲涅耳的光行差解释。”

1887年实验的否定结果对于当时的每一个人来说都是迷惑不解的,而且在很长一段时间内依然如故。

Ⅷ 以太坊(ETH)的Berlin硬叉什么时间开始

以太坊(Ethereum)挖矿

Berlin硬叉将标志着大都市时代的终结。 这是以太坊历史上的关键阶段,分两个阶段执行(拜占庭和君士坦丁堡),包括几个分支,包括亚特兰蒂斯,伊斯坦布尔,最后在Berlin达到顶峰。

Ⅸ 关于以太

十九世纪后期,科学家相信他们对宇宙的完整描述已经接近尾声。他们想象 一种叫“以太”的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电 磁信号是“以太”中的波。

然而,与空间完全充满“以太”的思想相悖的结果不久就出现了:根据“以 太”理论应得出,光线传播速度相对于“以太”应是一个定值,因此,如果你沿 与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低 ;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止 时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。

在这些实验当中,阿尔波特·迈克尔逊和埃迪沃德·莫里1887年在美国俄亥 俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直 角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球 应穿行在“以太”中,因此上述成直角的两束光线应因地球的运动而测量到不同 的速度,莫里发现,无论是昼夜或冬夏都未引起两束光线光速的不同。不论你是 否运动,光线看起来总是以相对于你同样的速度传播。

爱尔兰物理学家乔治·费兹哥立德和荷兰物理学家亨卓克·洛仑兹,最早认 为相对于“以太”运动的物体在运动方向的尺寸会收缩,而相对于“以太”运动 的时钟会变慢。而对“以太”,费兹哥立德和洛仑兹当时都认为是一种真实存在 的物质。

这时候,工作在瑞士首都伯尔尼的瑞士专利局的一个名叫阿尔波特·爱因斯 坦的年轻人,插手“以太”说,并一次性永远地解决了光传播速度的问题。

在1905年的文章中,爱因斯坦指出,由于你无法探测出你是否相对于“以太 ”的运动,因此,关于“以太”的整个概念是多余的。相反,爱因斯坦认为科学 定律对所有自由运动的观察者都应有相同的形式,无论观察者是如何运动的,他 们都应该测量到同样的光速。

爱因斯坦的这个思想,要求人们放弃所有时钟测量到的那个普适的时间概念 ,结果是,每个人都有他自己的时间值:如果两个人是相对静止的,那么,他们 的时间就是一致的;如果他们间存在相互的运动,他们观察到的时间就是不同的 。

大量的实验证明了爱因斯坦的这个思想是正确的,一个绕地球旋转的精确的 时钟,与存放在实验室中的精确时钟确有时间指示上的差别。如果你想延长你的 生命,你就可以乘飞机向东飞行,这样可以叠加上地球旋转的速度,你无论如何 可以获得那零点几秒的生命延长,也可以以此弥补因你进食航空食品而带来的损 害。

爱因斯坦认为的对所有自由运动的观察者自然定律都相同这个前提,是相对 论的基础,这样说的原因是因为,这个前提隐含了只有相对运动是重要的。虽然 相对论的完美与简洁折服了许许多多科学家和哲学家,但是仍然有很多的相反意 见。爱因斯坦摒弃了19世纪自然科学的两个绝对化观念:“以太”所隐含的绝对 静止和所有时钟所测量得到的绝对或普适时间。人们不禁要问:相对论是否隐含 了任何事物都是相对的而不再会有概念上绝对的标准了?

这种不安从20世纪20年代一直持续到30年代。1921年,爱因斯坦由于对光电 效应的贡献,得到了诺贝尔物理奖【注1】,但由于相对论的复杂及有争议,诺贝 尔奖的授予只字未提相对论。

到现在我仍然每周收到2至3封信,告诉我爱因斯坦错了。尽管如此,现在相 对论被科学界完全接受,相对论的预言已经被无数的实验所证实。

相对论的一个重要结果是质量与能量的关系。爱因斯坦的假定光速对所有的 观察者是相同的,暗示了没有可以超过光速运行的事物,如果给粒子或宇宙飞船 不断地供应能量,会发生什么现象呢?被加速物体的质量就会增大,使得很难进 行再快的加速,要想把一个粒子加速到光速是不可能的,因为那需要无限大的能 量。质量与能量的等价关系被爱因斯坦总结在他的著名的质能方程“E=mc2"中 ,这或许是能被大街小巷妇孺皆知的唯一一个物理方程了。

铀原子核裂变成两个小的原子核时,由于很小一点的质量亏损,会释放出巨 大的能量。这就是质能方程众多结论中的一个。1939年,第二次世界大战正阴云 密布,一组意识到裂变反应应用的科学家说服爱因斯坦战胜自己是和平主义者的 顾忌,去给当时的美国总统富兰克林·德拉诺·罗斯福写信,劝说美国开始核研 究计划,这铸就了曼哈顿工程和1945年在广岛上空原子弹的爆炸。有人因原子弹 而责备爱因斯坦发现了质能关系,但是这种责难就像因有飞机遇难折戟而责备牛 顿发现了万有引力一样。爱因斯坦没有参与曼哈顿工程的任何过程并惊惧于那巨 大的爆炸。

尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律 不相容。牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场 的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为 相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的 。

爱因斯坦从1907年就知道了这个不相容的困难,那时他还在波恩的专利局工作,但直到1911年,爱因斯坦在德国的布拉格工作时,他才深入思考这个问题。 爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对 地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被 火箭加速所造成的。(这些都发生在“星际旅行”【注2】的时代之前,爱因斯坦 是想到人处在电梯中而不是宇宙飞船中。但我们知道,如果不想让电梯碰撞的事 情发生,你不能在电梯中加速或自由坠落许久)如果地球是完全平整的,人们可 以说苹果因重力落在牛顿头上,与因牛顿与地球表面加速上升而造成了牛顿的头 撞在苹果上是等价的。但是,这种加速与重力的等价在地球是圆形的前提下不再 成立,因为在地球相反一面的人将会被反向加速,但两面观察者之间的距离却是 不变的。

1912年在转回瑞士苏黎士时,爱因斯坦来了灵感,他意识到如果真实几何中 引入一些调整,重力与加速的等价关系就可以成立。爱因斯坦想象,如果三维空 间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他 的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明。像 行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲, 因为时空被重力场弯曲了。

在他的朋友马歇尔·格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,这些抽象的理论,在玻恩哈德·瑞曼将它们发展起来时,从未想到与真实世 界会有联系。1913年,在爱因斯坦与格卢斯曼合作发表的文章中,他们提出了一 个思想:我们所认识的重力,只是时空是弯曲的事实的一种表述。但是,由于爱 因斯坦的一个失误(爱因斯坦是个真正的人,也会犯错误),他们当时未能找出 联系时空弯曲的曲率与蕴含于其中的能量质量的关系方程。

在柏林时,爱因斯坦继续就这个问题进行工作,他没有了家庭的烦扰【注3】 ,在很大程度上也未被战争所影响。1915年11月,爱因斯坦最终发现了联系时空 弯曲与蕴含其中的能量质量的关系方程式。1915年夏天,在访问哥廷根大学期间 ,爱因斯坦曾与数学家戴维·希尔波特讨论过他的这个思想,希尔波特早于爱因 斯坦几天也找到了同样的方程式。尽管如此,正如希尔波特所承认的,这种新理 论的荣誉应属于爱因斯坦,而正是爱因斯坦将重力与弯曲时空联系起来。这还应 感谢文明的德国,因为,是在那里,在当时的战争期间,这样的科学讨论及交流 仍能够得以不受影响地进行,与20年后(指二战,编者注)所发生的事形成多么 大的对比!

关于弯曲时空的新理论叫做“广义相对论”,以区别与原初不包含重力的理 论,而那个理论被改称为“狭义相对论”。1919年,“广义相对论”被以颇为壮 观的形式证明:当时的一只英国科学考察队远征到西非,在日食期间观察到天空 中太阳附近一颗恒星位置的微小移动。正如爱因斯坦所预言的:恒星所发出的光 线,在经过太阳附近时,由于太阳的引力而弯曲了。这是证明时空弯曲的一个直 接证据,从公元前300年欧几里得完成他的《原本》后,这是一个人类感知他们存 在于宇宙的最大的革命性的更新。

爱因斯坦的“广义相对论”将“时空”由被动的事件发生背景转化为动态宇 宙中的主动参与者,这导致了居于科学前沿的一个巨大困难,在20世纪结束之际 仍未解决。宇宙充满了物质,物质又导致时空弯曲而使得物体相互聚集。在用“ 广义相对论”解释静态的宇宙时,爱因斯坦发现他的方程式是无解的,为变通他 的方程式而适应静态宇宙,爱因斯坦加入了一个称为“宇宙常量”的项,这个“ 宇宙常量”将时空再弯曲,以使所有的物体分离开,“宇宙”常量引入的排斥效 果将平衡物体的相互吸引作用而允许宇宙的长久平衡。

事实上,这成了在理论物理历史上人类丧失的最大机遇之一。如果爱因斯坦 继续在这一方向上工作下去而不是变通的引入“宇宙常量”,他可能能够预言宇 宙是在扩张还是在收缩。然而,直到20年代,当坐落在威尔逊山上的100英寸的天 文望远镜观察到离我们越远的星系在以越快的速度远离我们时,宇宙依时间而变 化的可能性才被郑重地加以考虑。换一句话说,宇宙正在扩展,任何两个星系之 间的距离正在随着时间的推移而稳定地增加。爱因斯坦后来称“宇宙常量”的提 出是他一生中最严重的错误。

“广义相对论”彻底改变了人们对宇宙的起源及归宿的讨论方向。静止的宇 宙可能会永久存在,或者说,在过去的某个时间,当这一静止的宇宙产生时,它 就已经是现在的形态了。从另一方面来说,如果现在星系们正在彼此远离,它们 在过去的时间里应该是彼此之间更为接近的。在大约150亿年前,它们甚至可能彼 此接触,相互重叠,而且它们的密度可能是无穷大。根据“广义相对论”,宇宙 大爆炸标志着宇宙的起源,时间的开始。从这个意义上说,爱因斯坦不仅仅是过 去100年中最伟大的人物,他应该获得人们更长久的尊重。

在黑洞中,空间与时间是如此的弯曲,以至于黑洞吸收了所有的光线,没有 一丝光线可以逃逸。“广义相对论”因此预言时间应终止于黑洞中。但是,广义 相对论方程并不适用于时间的开始与终结这两种极端情形。因而这一理论并不能 揭示从大爆炸中究竟产生了什么。一些人认为这是上帝万能的一种象征,上帝可 以以他想要的方式来开创宇宙。

但是另一些人(包括我自己)认为宇宙的起源应该服从于一种任何时候都成 立的普适原理。在朝这一方向的努力中,我们已取得了一些进展,但距完全理解 宇宙的起源还相差甚远。广义相对论不能适用于大爆炸的原因在于,它与20世纪 初另一伟大的概念性的突破---量子理论并不相容。量子理论的最初提出是在 1900年,当时在柏林工作的麦克斯·普朗发现,从红热物体上发出的辐射可以解 释为光线是以有特定大小的能量单元发出的,普朗克把这种能量单元称为量子。 打一个比方,辐射像是一包包的白糖,在超级市场里,并不是你想要多少的量都 行,你只能买每袋一磅的包装。1905年,爱因斯坦在他撰写的一篇论文中,提到 普朗克的量子假设可能可以解释光电效应,即某些金属在收到光照时会释放电子 的现象。这一效应是现代光探测器和电视照相得以应用的基础,爱因斯坦也因此 获得了1921年的诺贝尔奖。

爱因斯坦对量子构想的研究直至20年代,当时哥本哈根的华纳·海森堡、剑 桥的保尔·狄拉克以及苏黎士的埃文·薛定谔提出了量子机制,从而展示了描述 现实的新画卷。根据他们的理论,小粒子不再具有确定的位置和速度,相反,小 粒子的位置测得越精确,它的速度测量就愈不准确。反之亦然。

对于这种基本定律中的任意性和不可预知性,爱因斯坦惶惑不已,他最终未 能接受量子机制。他的著名的“上帝并未在掷骰子”的格言就表达出了这一感受 。虽然如此,大多数科学家都接受了全新的量子机制定律,并对其适用性加以承 认,因为这些定律不但与实验结果吻合极好,而且可以解释许多先前无法解释的 现象。这些定律成了当代化学、分子生物学以及电子学得以发展的基础,也是在 过去半个世纪内改变整个世界的科技基石。

1933年,纳粹统治了德国,爱因斯坦离开了这个国家,也放弃了他的德国国 籍。他在新泽西州普林斯顿的尖端科学研究所度过了他生命最后22年的时光。纳 粹发起了一场反对“犹太科学”及犹太科学家的运动(犹太科学家被驱逐是德国 未能建成原子弹的原因之一),而爱因斯坦及他的相对论是这场运动的主要目标 。当被告知一本名为《反对爱因斯坦的100位科学家》的书得以出版时,爱因斯坦 回答,为什么要100位?一位就足以证明我错了,如果我真的错了的话。

二战后,他敦促盟军设立一个全球机构以控制核武器。1952年,他被刚成立 的以色列授予总统职位,但他拒绝了。“政治是暂时的,”他写道,“而方程式 是永恒的。”广义相对论方程是他最好的墓志铭和纪念碑。它们与宇宙一起永不 腐朽。

在过去的100年中,世界经历了前所未有的变化。其原因并不在于政治,也不 在于经济,而在于科学技术---直接源于先进的基础科学研究的科学技术。没 有科学家能比爱因斯坦更代表这种科学的先进性。(本文略有删节)

【注1】爱因斯坦早在1919年与他的苏黎士专门学院同学、塞尔维亚族妻子米 列娃·玛莉科离婚时,就已经答应将诺贝尔奖给予她。当时爱因斯坦已经确信自 己将可以得到诺贝尔奖,只是没有想到获奖是由于他对光电效应的贡献。

【注2】星际旅行,“StarTrek"是全美正在上映的热门电视剧。

【注3】米列娃·玛莉科初陪爱因斯坦到柏林,旋即离开,携他们的两个儿子 回瑞士,三年后离婚。后爱因斯坦与有一个女儿的当时离异的表妹爱尔莎结合, 爱尔莎给予了爱因斯坦无微不至的关怀,伴他度过探索“广义相对论”的岁月。 玛莉科对爱因斯坦创立“狭义相对论”有所贡献,但她从未提起,离婚后她从事 数学和物理教学。

(End)

Ⅹ <以太之谜>是啥子

以太之谜和迈克耳逊—莫雷实验

从十九世纪初光的波动说复活以来,物理学家一直对传光媒质以太议论不休,其中一个重要问题就是以太和可称量物质(特别是地球)的关系问题。

当时,有两种针锋相对的观点。菲涅耳在1818年认为,地球是由极为多孔的物质组成的,以太在其中运动几乎不受什么阻碍。地球表面的空气由于其折射率近于 1,因而不能或者只能极其微弱地曳引以太,可以把地球表面的以太看作是静止的。

斯托克斯认为菲涅耳的理论建立在一切物体对以太都是透明的基础之上,因而是不能容许的。他于1845年提出,在地球表面,以太与地球有相同的速度,即地球完全曳引以太。只有在离开地球表面某一高度的地方,才可以认为以太是静止的。由于菲涅耳的静止以太说能圆满地解释光行差现象(由于地球公转,恒星的麦观位置在一年内会发生变化),因而人们普遍赞同它。

假使静止以太说是正确的,那么由于地球公转速度是每秒三十公里,在地球表面理应存在“以太风”。多年来,人们做了一系列的光学和电学实验(即所谓的“以太漂移”实验),企图度量地球通过以太的相对运动。但是,由于实验精度的限制,只能度量地球公转速度和光速之比的一阶量,这些一阶实验一律给出否定的结果。

随着麦克斯韦电磁理论的发展,人们了解到,与地球公转速度和光速之比的平方有关的效应,应该能在光学和电学实验中检测到。因为麦克斯韦理论隐含着,光、电现象有一个优越的参照系,这就是以太在其中静止的参照系,以太漂移的二阶效应理应存在。但是这个实验精度要求太高,一时还难以实现。

其实,麦克斯韦早在1867年就指出,在地球上做测量光速的实验,因为光在同一路径往返,地球运动对以太的影响仅仅表现在二阶效应上。1879年,麦克斯韦在致美国航海历书事务所的信中就提出了度量太阳系相对以太运动速度的计划,当时在事务所工作的迈克耳逊采纳了这一建议。

1881年,迈克耳逊正在德国柏林赫尔姆霍兹手下留学。由于在柏林无法完成实验,迈克耳逊把别人为他建造的整个装置运到波茨坦天体物理观测站进行实验。他所期望的位移是干涉条纹的0.1,但实际测得的位移仅仅是0.004~0.005,这只不过相当于实验的误差而己。

显然,否定结果(也称“零结果”)表明,企图检测的以太流是不存在的。迈克耳逊面对事实不得不认为:“静止以太的假设被证明是不正确的,并且可以得到一个必然的结论:该假设是错误的”,“这个结论与迄今被普遍接受的光行差现象的解释直接矛盾”,“他不能不与斯托克斯1846年在《哲学杂志》发表的论文附加摘要相一致”。

不过,这次实验的精度还不够高,数据计算也有错误。1881年冬,巴黎的波蒂埃指出了计算中的错误(估计的效果比实际大了两倍),洛伦兹在1884年也指出了这些问题。因此,无论迈克耳逊还是其他人,都没有把这次实验看作是决定性的。迈克耳逊本人此后也将兴趣转移到了精密测定光速值,对1881年的实验进行改良的工作就这样搁置下去了。

1884年秋,威廉·汤姆逊访问美国,他在巴尔的摩作了多次讲演。到会听讲的迈克耳逊有机会会见了与汤姆孙一起访美的瑞利勋爵,他们就1881年的实验交换了意见。与此同时,瑞利也转达了洛伦兹的意见。瑞利的劝告给迈克耳逊以极大的勇气,他进一步改进了干涉仪,和著名的化学教授莫雷一起,于1887年7月在克利夫兰重新进行了实验,此时的迈克耳逊已是克利夫兰城凯思应用科学院的教授了。

为了维持稳定,减小振动的影响,迈克耳逊和莫雷把干涉仪安装在很重的石板上,并使石板悬浮在水银液面上,可以平稳地绕中心支轴转动。为了尽可能增大光路,尽管干涉仪的臂长已达11米,他们还是在石板上安装了多个反射镜,使钠光束来回往返八次。根据计算,这时干涉条纹的移动量应为0.37,但实测值还达不到0.01。

迈克耳逊和莫雷认为,如果地球和以太之间有相对运动,那么相对速度可能小于地球公转速度的1/60,肯定小于1/40。他们在实验报告中说:“似乎有理由确信,即使在地球和以太之间存在着相对运动,它必定是很小的,小到足以完全驳倒菲涅耳的光行差解释。”

1887年实验的否定结果对于当时的每一个人来说都是迷惑不解的,而且在很长一段时间内依然如故。人们并没有认为该实验是判决性的,就连迈克耳逊自己对他的结果也大失所望,他称自己的实验是一次“失败”,以致放弃了在实验报告中许下的诺言(每五天进行六小时测量,连续重复三个月,以便消除所有的不确定性),不愿再进行长期的观察,而把干涉仪用来于其他事去了。

迈克耳逊并不认为自己的实验结果有什么重要意义,他觉得实验之所以有意义,是因为设计了一个灵敏的干涉仪,并以此自我安慰。直到晚年,他还亲自对爱因斯坦说,他自己的实验引起了相对论这样一个“怪物”,他实在是有点懊悔的。

洛伦兹对迈克耳逊实验的结果也感到郁郁不乐,他在1892年写给瑞利的信中说:“我现在不知道怎样才能摆脱这个矛盾,不过我仍然相信,如果我们不得不抛弃菲涅耳的理论,……我们就根本不会有一个合适的理论了”。洛伦兹对1887年的实验结果依然疑虑重重:“在迈克耳逊先生的实验中,迄今还会有一些仍被看漏的地方吗?”

瑞利在1892年的一篇论文中认为:“地球表面的以太是绝对的静止呢,还是相对的静止呢?”这个问题依然悬而未决。他觉得迈克耳逊得到的否定结果是“一个真正令人扫兴的事情”,并敦促迈克耳逊再做一次实验。威廉·汤姆孙直到本世纪开头还不甘心实验的否定结果。

顺便说说,迈克耳逊的实验工作和爱因斯坦的相对论在历史上并无什么直接联系。但是在1900年前后,他的“以太漂移”实验对洛伦兹等人的电子论却产生了毋庸置疑的影响。尽管学术界对该实验的历史作用仍有不同的看法,但迈克耳逊本人晚年仍念念不忘“可爱的以太”。直到1927年,他在自己最后一本书中谈到相对论己被人们承认时,仍然对新理论疑虑重重。

迈克耳逊—莫雷实验似乎排除了菲涅耳的静止以太说,而静止以太说不仅为电磁理论所要求,而且也受到光行差现象和斐索实验的支持。为了摆脱这个恼人的困境,斐兹杰拉德和洛伦兹分别在1889年和1892年各自独立地提出了所谓的“收缩假设”。

他们认为,由于干涉仪的管在运动方向上缩短了亿分之一倍的线度,这样便补偿了地球通过静止以太时所引起的干涉条纹的位移,从而得到了否定的结果。洛伦兹基于电子论进而认为,这种收缩是真实的动力学效应,对于物质来说具有普遍意义。拉摩也十分赞同这一看法,他证明如果物质由电子组成,这种情况便能够发生。

热点内容
btc杠杆收益怎么算 发布:2025-01-11 08:02:04 浏览:452
聚享游挖矿外挂 发布:2025-01-11 07:57:27 浏览:465
币圈老猫发新 发布:2025-01-11 07:55:27 浏览:53
币圈ido是什么意思 发布:2025-01-11 07:43:58 浏览:431
冒险与挖矿的挖矿玩法 发布:2025-01-11 07:37:27 浏览:975
区块链柏拉图登陆 发布:2025-01-11 07:31:42 浏览:480
eth原装软件 发布:2025-01-11 07:30:51 浏览:90
比特币最小单位叫什么用 发布:2025-01-11 07:21:47 浏览:886
基督徒可以玩比特币嘛 发布:2025-01-11 07:18:09 浏览:625
ebc教育区块链官方网站 发布:2025-01-11 07:14:29 浏览:74