当前位置:首页 » 以太坊知识 » 以太坊sha3算法

以太坊sha3算法

发布时间: 2021-09-26 02:33:36

1. Hash算法原理

散列表,它是基于高速存取的角度设计的,也是一种典型的“空间换时间”的做法。顾名思义,该数据结构能够理解为一个线性表,可是当中的元素不是紧密排列的,而是可能存在空隙。

散列表(Hash table,也叫哈希表),是依据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

比方我们存储70个元素,但我们可能为这70个元素申请了100个元素的空间。70/100=0.7,这个数字称为负载因子。

我们之所以这样做,也是为了“高速存取”的目的。我们基于一种结果尽可能随机平均分布的固定函数H为每一个元素安排存储位置,这样就能够避免遍历性质的线性搜索,以达到高速存取。可是因为此随机性,也必定导致一个问题就是冲突。

所谓冲突,即两个元素通过散列函数H得到的地址同样,那么这两个元素称为“同义词”。这类似于70个人去一个有100个椅子的饭店吃饭。散列函数的计算结果是一个存储单位地址,每一个存储单位称为“桶”。设一个散列表有m个桶,则散列函数的值域应为[0,m-1]。

(1)以太坊sha3算法扩展阅读:

SHA家族的五个算法,分别是SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512,由美国国家安全局(NSA)所设计,并由美国国家标准与技术研究院(NIST)发布;是美国的政府标准。后四者有时并称为SHA-2。

SHA-1在许多安全协定中广为使用,包括TLS和SSL、PGP、SSH、S/MIME和IPsec,曾被视为是MD5(更早之前被广为使用的杂凑函数)的后继者。但SHA-1的安全性如今被密码学家严重质疑;

虽然至今尚未出现对SHA-2有效的攻击,它的算法跟SHA-1基本上仍然相似;因此有些人开始发展其他替代的杂凑算法。

应用

SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全杂凑算法的美国联邦政府所应用,他们也使用其他的密码算法和协定来保护敏感的未保密资料。FIPS PUB 180-1也鼓励私人或商业组织使用 SHA-1 加密。Fritz-chip 将很可能使用 SHA-1 杂凑函数来实现个人电脑上的数位版权管理。

首先推动安全杂凑算法出版的是已合并的数位签章标准。

SHA 杂凑函数已被做为 SHACAL 分组密码算法的基础。

2. SHA-256算法是什么

SHA 家族
SHA (Secure Hash Algorithm,译作安全散列算法) 是美国国家安全局 (NSA) 设计,美国国家标准与技术研究院 (NIST) 发布的一系列密码散列函数。正式名称为 SHA 的家族第一个成员发布于 1993年。然而现在的人们给它取了一个非正式的名称 SHA-0 以避免与它的后继者混淆。两年之后, SHA-1,第一个 SHA 的后继者发布了。 另外还有四种变体,曾经发布以提升输出的范围和变更一些细微设计: SHA-224, SHA-256, SHA-384 和 SHA-512 (这些有时候也被称做 SHA-2)。
SHA-0 和 SHA-1
最初载明的算法于 1993年发布,称做安全散列标准 (Secure Hash Standard),FIPS PUB 180。这个版本现在常被称为 "SHA-0"。它在发布之后很快就被 NSA 撤回,并且以 1995年发布的修订版本 FIPS PUB 180-1 (通常称为 "SHA-1") 取代。根据 NSA 的说法,它修正了一个在原始算法中会降低密码安全性的错误。然而 NSA 并没有提供任何进一步的解释或证明该错误已被修正。1998年,在一次对 SHA-0 的攻击中发现这次攻击并不能适用于 SHA-1 — 我们不知道这是否就是 NSA 所发现的错误,但这或许暗示我们这次修正已经提升了安全性。SHA-1 已经被公众密码社群做了非常严密的检验而还没发现到有不安全的地方,它现在被认为是安全的。
SHA-0 和 SHA-1 会从一个最大 2^64 位元的讯息中产生一串 160 位元的摘要然后以设计 MD4 及 MD5 讯息摘要算法的 MIT 教授 Ronald L. Rivest 类似的原理为基础来加密。
SHA-0 的密码分析
在 CRYPTO 98 上,两位法国研究者展示了一次对 SHA-0 的攻击 (Chabaud and Joux, 1998): 散列碰撞可以复杂到 2^61 时被发现;小于 2^80 是理想的相同大小散列函数。
2004年时,Biham 和 Chen 发现了 SHA-0 的近似碰撞 — 两个讯息可以散列出相同的数值;在这种情况之下,142 和 160 位元是一样的。他们也发现了 SHA-0 在 80 次之后减少到 62 位元的完整碰撞。
2004年8月12日,Joux, Carribault, Lemuet 和 Jalby 宣布了完整 SHA-0 算法的散列碰撞。这是归纳 Chabaud 和 Joux 的攻击所完成的结果。发现这个碰撞要复杂到 2^51, 并且用一台有 256 颗 Itanium2 处理器的超级电脑耗时大约 80,000 CPU 工作时 。
2004年8月17日,在 CRYPTO 2004 的 Rump 会议上,Wang, Feng, Lai, 和 Yu 宣布了攻击 MD5、SHA-0 和其他散列函数的初步结果。他们对 SHA-0 攻击复杂到 2^40,这意味着他们攻击的成果比 Joux 还有其他人所做的更好。该次 Rump 会议的简短摘要可以在 这里找到,而他们在 sci.crypt 的讨论,例如: 这些结果建议计划使用 SHA-1 作为新的密码系统的人需要重新考虑。
更长的变种
NIST 发布了三个额外的 SHA 变体,每个都有更长的讯息摘要。以它们的摘要长度 (以位元计算) 加在原名后面来命名:"SHA-256", "SHA-384" 和 "SHA-512"。它们发布于 2001年的 FIPS PUB 180-2 草稿中,随即通过审查和评论。包含 SHA-1 的 FIPS PUB 180-2,于 2002年以官方标准发布。这些新的散列函数并没有接受像 SHA-1 一样的公众密码社群做详细的检验,所以它们的密码安全性还不被大家广泛的信任。2004年2月,发布了一次 FIPS PUB 180-2 的变更通知,加入了一个额外的变种 "SHA-224",定义了符合双金钥 3DES 所需的金钥长度。
Gilbert 和 Handschuh (2003) 研究了新的变种并且没有发现弱点。
SHAd
SHAd 函数是一个简单的相同 SHA 函数的重述:
SHAd-256(m)=SHA-256(SHA-256(m))。它会克服有关延伸长度攻击的问题。
应用
SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全散列算法的美国联邦政府所应用,他们也使用其他的密码算法和协定来保护敏感的未保密资料。FIPS PUB 180-1 也鼓励私人或商业组织使用 SHA-1 加密。Fritz-chip 将很可能使用 SHA-1 散列函数来实现个人电脑上的数位版权管理。
首先推动安全散列算法出版的是已合并的数位签章标准。
SHA 散列函数已被做为 SHACAL 分组密码算法的基础。
SHA-1 的描述
以下是 SHA-1 算法的伪代码:
(Initialize variables:)
a = h0 = 0x67452301
b = h1 = 0xEFCDAB89
c = h2 = 0x98BADCFE
d = h3 = 0x10325476
e = h4 = 0xC3D2E1F0
(Pre-processing:)
paddedmessage = (message) append 1
while length(paddedmessage) mod 512 <> 448:
paddedmessage = paddedmessage append 0
paddedmessage = paddedmessage append (length(message) in 64-bit format)
(Process the message in successive 512-bit chunks:)
while 512-bit chunk(s) remain(s):
break the current chunk into sixteen 32-bit words w(i), 0 <= i <= 15
(Extend the sixteen 32-bit words into eighty 32-bit words:)
for i from 16 to 79:
w(i) = (w(i-3) xor w(i-8) xor w(i-14) xor w(i-16)) leftrotate 1
(Main loop:)
for i from 0 to 79:
temp = (a leftrotate 5) + f(b,c,d) + e + k + w(i) (note: all addition is mod 2^32)
where:
(0 <= i <= 19): f(b,c,d) = (b and c) or ((not b) and d), k = 0x5A827999
(20 <= i <= 39): f(b,c,d) = (b xor c xor d), k = 0x6ED9EBA1
(40 <= i <= 59): f(b,c,d) = (b and c) or (b and d) or (c and d), k = 0x8F1BBCDC
(60 <= i <= 79): f(b,c,d) = (b xor c xor d), k = 0xCA62C1D6
e = d
d = c
c = b leftrotate 30
b = a
a = temp
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
digest = hash = h0 append h1 append h2 append h3 append h4
注意:FIPS PUB 180-1 展示的构想,用以下的公式替代可以增进效能:
(0 <= i <= 19): f(b,c,d) = (d xor (b and (c xor d)))
(40 <= i <= 59): f(b,c,d) = (b and c) or (d and (b or c)))

3. 以太坊挖矿算法ethash是怎样的

the stone back. Now the big

4. 服务器证书SHA1和SHA2算法有和区别

SHA1算法是为了兼容部分低版本的服务器,而在几年前SHA1算法逐渐淘汰,由于发展,SHA1算法已经满足不了安全需求,从而有更高版本SHA2替代。SHA2算法的证书更加安全,目前能够兼容xp sp3以上的客户端系统。如果需要安装SHA2算法可以找天威诚信的技术人员进行安装。

5. 安全哈希算法sha1和sm3算法的区别

sha1是一种杂凑算法,通俗的说即对数据使用sha1算法进行计算,得到的结果就是sha1值(校验值),可用于数字签名、验签。
sm3是国密算法,2010年国家密码管理局发布,也是一种杂凑算法,功能和sha1算法相似,但算法实现不一样,破解难度比sha1更大,能达到sha256的水平(sha256是比特币的加密方式),也可用于数字签名、验签。

6. sha1算法

代码库里有
/*
Christophe Devine
[email protected]
http://www.cr0.net:8040/code/crypto/
*/
/*
* FIPS-180-1 compliant SHA-1 implementation
*
* Copyright (C) 2001-2003 Christophe Devine
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <string.h>

#include "sha1.h"
/* uncomment the following line to run the test suite */

/* #define TEST */

#define GET_UINT32(n,b,i) \
{ \
(n) = ( (uint32) (b)[(i) ] << 24 ) \
| ( (uint32) (b)[(i) + 1] << 16 ) \
| ( (uint32) (b)[(i) + 2] << 8 ) \
| ( (uint32) (b)[(i) + 3] ); \
}

#define PUT_UINT32(n,b,i) \
{ \
(b)[(i) ] = (uint8) ( (n) >> 24 ); \
(b)[(i) + 1] = (uint8) ( (n) >> 16 ); \
(b)[(i) + 2] = (uint8) ( (n) >> 8 ); \
(b)[(i) + 3] = (uint8) ( (n) ); \
}

void sha1_starts( sha1_context *ctx )
{
ctx->total[0] = 0;
ctx->total[1] = 0;

ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}

void sha1_process( sha1_context *ctx, uint8 data[64] )
{
uint32 temp, W[16], A, B, C, D, E;

GET_UINT32( W[0], data, 0 );
GET_UINT32( W[1], data, 4 );
GET_UINT32( W[2], data, 8 );
GET_UINT32( W[3], data, 12 );
GET_UINT32( W[4], data, 16 );
GET_UINT32( W[5], data, 20 );
GET_UINT32( W[6], data, 24 );
GET_UINT32( W[7], data, 28 );
GET_UINT32( W[8], data, 32 );
GET_UINT32( W[9], data, 36 );
GET_UINT32( W[10], data, 40 );
GET_UINT32( W[11], data, 44 );
GET_UINT32( W[12], data, 48 );
GET_UINT32( W[13], data, 52 );
GET_UINT32( W[14], data, 56 );
GET_UINT32( W[15], data, 60 );

#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))

#define R(t) \
( \
temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ \
W[(t - 14) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)

#define P(a,b,c,d,e,x) \
{ \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}

A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];

#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999

P( A, B, C, D, E, W[0] );
P( E, A, B, C, D, W[1] );
P( D, E, A, B, C, W[2] );
P( C, D, E, A, B, W[3] );
P( B, C, D, E, A, W[4] );
P( A, B, C, D, E, W[5] );
P( E, A, B, C, D, W[6] );
P( D, E, A, B, C, W[7] );
P( C, D, E, A, B, W[8] );
P( B, C, D, E, A, W[9] );
P( A, B, C, D, E, W[10] );
P( E, A, B, C, D, W[11] );
P( D, E, A, B, C, W[12] );
P( C, D, E, A, B, W[13] );
P( B, C, D, E, A, W[14] );
P( A, B, C, D, E, W[15] );
P( E, A, B, C, D, R(16) );
P( D, E, A, B, C, R(17) );
P( C, D, E, A, B, R(18) );
P( B, C, D, E, A, R(19) );

#undef K
#undef F

#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1

P( A, B, C, D, E, R(20) );
P( E, A, B, C, D, R(21) );
P( D, E, A, B, C, R(22) );
P( C, D, E, A, B, R(23) );
P( B, C, D, E, A, R(24) );
P( A, B, C, D, E, R(25) );
P( E, A, B, C, D, R(26) );
P( D, E, A, B, C, R(27) );
P( C, D, E, A, B, R(28) );
P( B, C, D, E, A, R(29) );
P( A, B, C, D, E, R(30) );
P( E, A, B, C, D, R(31) );
P( D, E, A, B, C, R(32) );
P( C, D, E, A, B, R(33) );
P( B, C, D, E, A, R(34) );
P( A, B, C, D, E, R(35) );
P( E, A, B, C, D, R(36) );
P( D, E, A, B, C, R(37) );
P( C, D, E, A, B, R(38) );
P( B, C, D, E, A, R(39) );

#undef K
#undef F

#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC

P( A, B, C, D, E, R(40) );
P( E, A, B, C, D, R(41) );
P( D, E, A, B, C, R(42) );
P( C, D, E, A, B, R(43) );
P( B, C, D, E, A, R(44) );
P( A, B, C, D, E, R(45) );
P( E, A, B, C, D, R(46) );
P( D, E, A, B, C, R(47) );
P( C, D, E, A, B, R(48) );
P( B, C, D, E, A, R(49) );
P( A, B, C, D, E, R(50) );
P( E, A, B, C, D, R(51) );
P( D, E, A, B, C, R(52) );
P( C, D, E, A, B, R(53) );
P( B, C, D, E, A, R(54) );
P( A, B, C, D, E, R(55) );
P( E, A, B, C, D, R(56) );
P( D, E, A, B, C, R(57) );
P( C, D, E, A, B, R(58) );
P( B, C, D, E, A, R(59) );

#undef K
#undef F

#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6

P( A, B, C, D, E, R(60) );
P( E, A, B, C, D, R(61) );
P( D, E, A, B, C, R(62) );
P( C, D, E, A, B, R(63) );
P( B, C, D, E, A, R(64) );
P( A, B, C, D, E, R(65) );
P( E, A, B, C, D, R(66) );
P( D, E, A, B, C, R(67) );
P( C, D, E, A, B, R(68) );
P( B, C, D, E, A, R(69) );
P( A, B, C, D, E, R(70) );
P( E, A, B, C, D, R(71) );
P( D, E, A, B, C, R(72) );
P( C, D, E, A, B, R(73) );
P( B, C, D, E, A, R(74) );
P( A, B, C, D, E, R(75) );
P( E, A, B, C, D, R(76) );
P( D, E, A, B, C, R(77) );
P( C, D, E, A, B, R(78) );
P( B, C, D, E, A, R(79) );

#undef K
#undef F

ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}

void sha1_update( sha1_context *ctx, uint8 *input, uint32 length )
{
uint32 left, fill;

if( ! length ) return;

left = ctx->total[0] & 0x3F;
fill = 64 - left;

ctx->total[0] += length;
ctx->total[0] &= 0xFFFFFFFF;

if( ctx->total[0] < length )
ctx->total[1]++;

if( left && length >= fill )
{
memcpy( (void *) (ctx->buffer + left),
(void *) input, fill );
sha1_process( ctx, ctx->buffer );
length -= fill;
input += fill;
left = 0;
}

while( length >= 64 )
{
sha1_process( ctx, input );
length -= 64;
input += 64;
}

if( length )
{
memcpy( (void *) (ctx->buffer + left),
(void *) input, length );
}
}

static uint8 sha1_padding[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

void sha1_finish( sha1_context *ctx, uint8 digest[20] )
{
uint32 last, padn;
uint32 high, low;
uint8 msglen[8];

high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );

PUT_UINT32( high, msglen, 0 );
PUT_UINT32( low, msglen, 4 );

last = ctx->total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );

sha1_update( ctx, sha1_padding, padn );
sha1_update( ctx, msglen, 8 );

PUT_UINT32( ctx->state[0], digest, 0 );
PUT_UINT32( ctx->state[1], digest, 4 );
PUT_UINT32( ctx->state[2], digest, 8 );
PUT_UINT32( ctx->state[3], digest, 12 );
PUT_UINT32( ctx->state[4], digest, 16 );
}

#ifdef TEST

#include <stdlib.h>
#include <stdio.h>

/*
* those are the standard FIPS-180-1 test vectors
*/

static char *msg[] =
{
"abc",
"",
NULL
};

static char *val[] =
{
"",
"",
""
};

int main( int argc, char *argv[] )
{
FILE *f;
int i, j;
char output[41];
sha1_context ctx;
unsigned char buf[1000];
unsigned char sha1sum[20];

if( argc < 2 )
{
printf( "\n SHA-1 Validation Tests:\n\n" );

for( i = 0; i < 3; i++ )
{
printf( " Test %d ", i + 1 );

sha1_starts( &ctx );

if( i < 2 )
{
sha1_update( &ctx, (uint8 *) msg,
strlen( msg ) );
}
else
{
memset( buf, 'a', 1000 );

for( j = 0; j < 1000; j++ )
{
sha1_update( &ctx, (uint8 *) buf, 1000 );
}
}

sha1_finish( &ctx, sha1sum );

for( j = 0; j < 20; j++ )
{
sprintf( output + j * 2, "%02x", sha1sum[j] );
}

if( memcmp( output, val, 40 ) )
{
printf( "failed!\n" );
return( 1 );
}

printf( "passed.\n" );
}

printf( "\n" );
}
else
{
if( ! ( f = fopen( argv[1], "rb" ) ) )
{
perror( "fopen" );
return( 1 );
}

sha1_starts( &ctx );

while( ( i = fread( buf, 1, sizeof( buf ), f ) ) > 0 )
{
sha1_update( &ctx, buf, i );
}

sha1_finish( &ctx, sha1sum );

for( j = 0; j < 20; j++ )
{
printf( "%02x", sha1sum[j] );
}

printf( " %s\n", argv[1] );
}

return( 0 );
}

#endif

/*
Christophe Devine
[email protected]
http://www.cr0.net:8040/code/crypto/
*/
#ifndef _SHA1_H
#define _SHA1_H

#ifndef uint8
#define uint8 unsigned char
#endif

#ifndef uint32
#define uint32 unsigned long int
#endif

typedef struct
{
uint32 total[2];
uint32 state[5];
uint8 buffer[64];
}
sha1_context;

void sha1_starts( sha1_context *ctx );
void sha1_update( sha1_context *ctx, uint8 *input, uint32 length );
void sha1_finish( sha1_context *ctx, uint8 digest[20] );

#endif /* sha1.h */

7. sm3杂凑算法和SHA-1有什么不同

首先名称不同,接着是具体算法不同

8. 求SHA-3加密算法 c语言实现的源程序 要可运行的!谢谢!急!!

我这有,你要pc代码还是keil的?

9. 比特币算法原理

比特币算法主要有两种,分别是椭圆曲线数字签名算法和SHA256哈希算法。

椭圆曲线数字签名算法主要运用在比特币公钥和私钥的生成过程中,该算法是构成比特币系统的基石。SHA-256哈希算法主要是运用在比特币的工作量证明机制中。

比特币产生的原理是经过复杂的运算法产生的特解,挖矿就是寻找特解的过程。不过比特币的总数量只有2100万个,而且随着比特币不断被挖掘,越往后产生比特币的难度会增加,可能获得比特币的成本要比比特币本身的价格高。

比特币的区块由区块头及该区块所包含的交易列表组成,区块头的大小为80字节,由4字节的版本号、32字节的上一个区块的散列值、32字节的 Merkle Root Hash、4字节的时间戳(当前时间)、4字节的当前难度值、4字节的随机数组成。拥有80字节固定长度的区块头,就是用于比特币工作量证明的输入字符串。不停的变更区块头中的随机数即 nonce 的数值,并对每次变更后的的区块头做双重 SHA256运算,将结果值与当前网络的目标值做对比,如果小于目标值,则解题成功,工作量证明完成。

比特币的本质其实是一堆复杂算法所生成的一组方程组的特解(该解具有唯一性)。比特币是世界上第一种分布式的虚拟货币,其没有特定的发行中心,比特币的网络由所有用户构成,因为没有中心的存在能够保证了数据的安全性。

10. SHA算法应用及实现(VC实现)

采用.NET的SHA算法类吧:SHA1Managed,直接完成,然后在VC++中设法调用

热点内容
机房一起挖矿 发布:2024-11-18 14:47:21 浏览:287
哥伦布大陆挖矿 发布:2024-11-18 14:28:27 浏览:784
明星炒比特币 发布:2024-11-18 14:19:41 浏览:585
比特币提币地址 发布:2024-11-18 14:10:40 浏览:293
明日之后挖矿副资源提升的食物 发布:2024-11-18 14:07:48 浏览:435
区块链的怎么挖矿 发布:2024-11-18 13:45:00 浏览:5
虚拟币圈热点事件 发布:2024-11-18 13:44:43 浏览:932
币圈统计资产软件 发布:2024-11-18 13:08:06 浏览:863
我的世界pe版有连锁挖矿吗 发布:2024-11-18 13:03:24 浏览:302
玩区块链钱怎么追回自己的钱 发布:2024-11-18 13:02:28 浏览:611