以太坊怎么调用智能合约
『壹』 以太坊的智能合约是什么意思
以太坊智能合约是指,部署在以太坊上的智能合约,是一段程序,运行在以太坊的虚拟机EVM中,程序可以按照事先约定的某种规则自动执行操作,执行合约的条款。
同时,智能合约对接收到的信息进行反应,它既可以接收和储存价值,也可以向外发送信息和价值。
介绍
以太坊创始人V神指出过,以太坊智能合约中的“‘合约’不应被理解为需要执行或遵守的东西,而应看成是存在于以太坊执行环境中的‘自治代理’(autonomous agents),它拥有自己的以太坊账户,它们收到交易信息后就相当于被捅了一下,然后自动执行一段代码。”
智能合约可以调用其它的智能合约,这就是开启创立自治代理的能力,代理可以自己进行交易。在区块链上,我们存储的信息都是“状态”,而智能合约就是它用于状态转换的方式。
『贰』 智能合约的执行过程
智能合约的执行过程涉及多个关键步骤。首先,开发者使用支持智能合约的编程语言(如Solidity)编写合约代码,这些代码定义了合约的条款、条件和执行逻辑。编写完成后,合约代码被部署到区块链网络上,如以太坊等平台,此过程需要支付一定的费用(称为“燃料费”或Gas Fee)。
一旦合约被部署并激活,其执行将依赖于满足合约中预设的触发条件,这些条件可以是时间、事件或交易等。当条件满足时,智能合约将自动执行预定的操作,如转移资产、更新状态或调用其他合约等。这些操作由区块链网络上的节点进行验证,以确保执行的一致性和安全性。
执行结果随后被记录在区块链上,形成不可篡改的历史记录。由于智能合约的不可更改性和去中心化特性,整个执行过程无需人工干预,且高度透明和可靠。这种自动化和去中心化的执行方式,使得智能合约在金融、供应链管理、版权保护等多个领域具有广泛的应用前景。
『叁』 浠ュお鍧婂備綍澶勭悊鏅鸿兘鍚堢害鐨勮嚜鐢卞害闂棰
浠ュお鍧婂備綍澶勭悊鏅鸿兘鍚堢害鐨勮嚜鐢卞害闂棰橈紵
浠ュお鍧婃槸褰撳墠鏈娴佽岀殑鍖哄潡閾句箣涓锛屽叾鏅鸿兘鍚堢害鎶鏈琚骞挎硾搴旂敤浜庡悇绉嶅満鏅銆傜劧鑰岋紝鏅鸿兘鍚堢害鐨勮嚜鐢卞害闂棰樹粛鐒舵槸涓涓鍊煎緱鍏虫敞鐨勮瘽棰樸傚湪浠ュお鍧婄敓鎬佺郴缁熶腑锛屾櫤鑳藉悎绾︾殑鎵ц岀粨鏋滃彈鍒板氭柟闈㈠洜绱犵殑褰卞搷锛屽傚悎绾︿唬鐮佺殑澶嶆潅搴︺佷氦鏄撹垂鐢ㄧ殑璁剧疆銆佸悎绾﹂棿鐨勪氦浜掔瓑绛夈傛湰鏂囧皢鎺㈣ㄤ互澶鍧婂湪澶勭悊鏅鸿兘鍚堢害鑷鐢卞害闂棰樻椂閲囧彇鐨勭瓥鐣ャ
浠ュお鍧婃櫤鑳藉悎绾︾殑鑷鐢卞害涓昏佸寘鎷浠ヤ笅涓ゆ柟闈锛
涓鏄鍚堢害鐨勭紪鍐欒嚜鐢卞害銆備互澶鍧婃敮鎸佸氱嶇紪绋嬭瑷锛屽紑鍙戣呭彲浠ュ湪涓嶅悓鐨勮瑷鍜屾嗘灦閲岃嚜鐢遍夋嫨锛岃繖寰堝ぇ绋嬪害涓婂炲己浜嗗悎绾︾殑鍙鎵╁睍鎬у拰鐏垫椿鎬с傜劧鑰岋紝杩欎篃甯︽潵浜嗗畨鍏ㄦх殑鎸戞垬銆傚洜涓轰笉鍚岀殑璇瑷鍜屾嗘灦鏈韬灏卞瓨鍦ㄦ紡娲烇紝濡傛灉鍚堢害缂栧啓鑰呮病鏈変粩缁嗚冭檻杩欎簺闂棰橈紝灏卞彲鑳藉艰嚧涓ラ噸鐨勫畨鍏ㄩ棶棰樸
浜屾槸鍚堢害鐨勬搷浣滆嚜鐢卞害銆備互澶鍧婁笂鐨勬櫤鑳藉悎绾﹀彲浠ヨ鍏朵粬鍚堢害鎴栬呭栭儴璐︽埛璋冪敤锛岃繖鎰忓懗鐫鍚堢害鐨勬墽琛岀粨鏋滀細鍙楀埌鍏朵粬鍚堢害鎴栬呰处鎴风殑褰卞搷銆傛ゅ栵紝浜ゆ槗璐圭敤銆佺綉缁滄嫢濉炵瓑鍥犵礌涔熶細瀵瑰悎绾︾殑鎵ц岀粨鏋滀骇鐢熷奖鍝嶃傝繖浜涘洜绱犵殑鑷鐢卞害寰堝ぇ绋嬪害涓婂炲姞浜嗗悎绾︾殑澶嶆潅搴︼紝鍚屾椂涔熷炲姞浜嗗悎绾︽墽琛岀殑椋庨櫓銆
涓轰簡搴斿规櫤鑳藉悎绾﹁嚜鐢卞害闂棰橈紝浠ュお鍧婇噰鍙栦簡涓绯诲垪鎺鏂姐傚叾涓鏈閲嶈佺殑涓椤规槸浠ュお鍧婅櫄鎷熸満锛圗VM锛夈侲VM鏄浠ュお鍧婁笂鐨勮櫄鎷熸満锛屾棬鍦ㄥ疄鐜板悎绾︾殑蹇閫熴佸彲闈犮佸畨鍏ㄦ墽琛屻侲VM閫氳繃瀛楄妭鐮佺殑鏂瑰紡鎵ц屾櫤鑳藉悎绾︼紝閬垮厤浜嗚瑷鍜屾嗘灦鐨勯檺鍒躲傚悓鏃讹紝EVM杩樻彁渚涗簡涓瀹氱殑鏈哄埗鏉ラ槻姝㈠悎绾︽墽琛屼腑鐨勫紓甯告儏鍐碉紝姣斿傚唴瀛樻孩鍑恒侀櫎闆剁瓑銆傝繖浜涙満鍒舵湁鍔╀簬鎺у埗鏅鸿兘鍚堢害鐨勮嚜鐢卞害锛屾彁楂樺叾鎵ц岀殑鍙闈犳у拰瀹夊叏鎬с
姝ゅ栵紝浠ュお鍧婅繕鎻愪緵浜嗕竴浜涢珮绾у姛鑳芥潵鎺у埗鏅鸿兘鍚堢害鐨勬墽琛屻傚叾涓鏈甯哥敤鐨勬槸鍚堢害鎵ц岀殑Gas闄愬埗銆傛瘡涓鏅鸿兘鍚堢害鎵ц岀殑鏈闀挎椂闂磋闄愬埗鍦ㄤ竴瀹氭暟閲忕殑Gas鍐咃紝杩欐牱鍙浠ラ伩鍏嶅悎绾︽墽琛岃繃闀挎椂闂磋屽艰嚧鍏朵粬鍚堢害鍜岃处鎴风殑绛夊緟銆傚悓鏃讹紝鍚堢害鎿嶄綔鐨凣as娑堣椾篃琚闄愬埗鍦ㄤ竴瀹氳寖鍥村唴锛岃繖鏈夊姪浜庨槻姝㈡伓鎰忓悎绾﹀崰鐢ㄥお澶氱殑璁$畻璧勬簮銆
鎬讳箣锛屾櫤鑳藉悎绾﹁嚜鐢卞害鏄浠ュお鍧婃櫤鑳藉悎绾﹂潰涓寸殑涓涓鎸戞垬锛屼絾杩欎篃鏄鍖哄潡閾炬妧鏈鍙戝睍鐨勫繀缁忎箣璺銆備互澶鍧婇氳繃EVM鍜孏as闄愬埗绛夋満鍒舵潵鎺у埗鍚堢害鐨勬墽琛岋紝鎻愰珮浜嗗悎绾︾殑鍙闈犳у拰瀹夊叏鎬э紝鍚屾椂涔熶负寮鍙戣呮彁渚涗簡鏇村氱殑鑷鐢卞害鍜岀伒娲绘с傜浉淇¢殢鐫鍖哄潡閾炬妧鏈鐨勪笉鏂鍙戝睍锛屾櫤鑳藉悎绾︾殑鑷鐢卞害闂棰樹篃灏嗗緱鍒版洿濂界殑瑙e喅銆
『肆』 详解 Solidity 事件Event - 完全搞懂事件的使用
Solidity中的事件是以太坊智能合约编程中用于日志管理的强大工具,以下是详解:
定义与功能:
- 定义:事件在Solidity中使用event关键字定义,类似于定义函数。
- 功能:当合约执行特定操作时,会生成日志记录在区块链上,与合约地址关联。这些日志记录便于外部程序监听和处理。
触发与使用:
- 触发:事件通过emit语句触发,通常在函数调用中使用。
- 使用:虽然事件本身在合约内部不可访问,但它们允许外部应用通过监听实现特定功能,例如实时更新用户界面。外部程序可以通过.watch方法订阅事件,实现信息的自动更新,避免频繁查询合约状态。
应用场景:
- 实时更新:在Web3与智能合约交互中,通过定义事件,当合约状态发生变化时,可以自动触发事件,外部应用通过监听这些事件来实时更新数据。
- 事件过滤器:对于高级用法,事件过滤器功能允许开发者过滤特定事件或筛选特定条件的数据,提高事件处理的效率和准确性。
重要性:
- 深入理解Solidity事件能够提升智能合约的可监控性和灵活性,是智能合约开发不可或缺的一部分。
- 通过事件,开发者可以实现更高效的智能合约交互和数据处理,提高应用的性能和用户体验。
学习资源:
- 完整的教程和示例可以在相关资源中找到,如Coursetro和Ethereum官方文档,这些资源提供了详细的事件定义、触发和使用方法,以及高级用法和最佳实践。
『伍』 以太坊的智能合约什么意思_以太坊的智能合约怎么解释
以太坊智能合约是运行在以太坊区块链上的代码,它能根据预设的规则自动执行任务,无需第三方介入。简单来说,智能合约就像是自动执行法律协议的程序。它能确保合约条款的准确执行,减少人为错误和欺诈的风险。
以太坊是一个分布式计算平台,提供了一个运行智能合约的环境。智能合约能够执行各种任务,从简单的支付转账到复杂的金融产品或服务交易,甚至可以用于管理复杂的业务流程。在以太坊上创建智能合约的过程涉及编写代码,并将这些代码部署到区块链上,确保合约能够以安全、可靠的方式执行。
智能合约具有数字形式的特点,这意味着它们是以计算机可读的代码形式存在的。这使得智能合约能够在分布式网络中运行,无需依赖中心化的机构或个人。这种去中心化的特点是智能合约的一大优势,能够提供透明、安全的交易环境。
智能合约的实现通常涉及多个方面,包括达成协议、合约执行以及特定的协议选择。在实现时,合约的内容被编译成计算机可执行的代码,这使得合约的执行过程既高效又准确。选择适合的协议对于智能合约的性能和安全性至关重要,这通常取决于被交易资产的性质。
智能合约的应用范围广泛,包括但不限于:多签名账户管理、执行合同条款、自动执行金融服务、管理协议、存储应用程序信息等。通过智能合约,可以在去中心化的环境中实现自动化、可信的交易和服务。
在以太坊上,智能合约的开发和部署涉及到以太币(Ether)作为交易费用。用户或开发者需要购买以太币,以便支付节点的运行费用,这些节点执行智能合约并维护以太坊网络的正常运行。基于以太坊的项目或应用可能还需要用户使用以太币支付服务费用。
总之,以太坊的智能合约是一种强大的工具,能够实现自动化、去中心化的交易和协议执行。通过智能合约,可以创建出更安全、高效、透明的业务流程,为各种应用提供支持,从金融到物联网、供应链管理,智能合约的潜力在不断扩展。
『陆』 以太坊虚拟机(EVM)是什么
以太坊是一个可编程的区块链。与比特币不同,以太坊并没有给用户提供一组预定义的操作(比如比特币交易),而是允许用户创建他们自己的操作,这些操作可以任意复杂。这样,以太坊成为了多种不同类型去中心化区块链的平台,包括但是不限于密码学货币。
EVM为以太坊虚拟机。以太坊底层通过EVM模块支持智能合约的执行和调用,调用时根据合约的地址获取到代码,生成具体的执行环境,然后将代码载入到EVM虚拟机中运行。通常目前开发智能合约的高级语言为Solidity,在利用solidity实现智能合约逻辑后,通过编译器编译成元数据(字节码)最后发布到以坊上。
EVM架构概述
EVM本质上是一个堆栈机器,它最直接的的功能是执行智能合约,根据官方给出的设计原理,EVM的主要的设计目标为如下几点:
简单性
确定性
空间节省
为区块链服务
安全性保证
便于优化
针对以上几点通过对EVM源代码的阅读来了解其具体的设计思想和工程实用性。
EVM存储系统机器位宽
EVM机器位宽为256位,即32个字节,256位机器字宽不同于我们经常见到主流的64位的机器字宽,这就标明EVM设计上将考虑一套自己的关于操作,数据,逻辑控制的指令编码。目前主流的处理器原生的支持的计算数据类型有:8bits整数,16bits整数,32bits整数,64bits整数。一般情况下宽字节的计算将更加的快一些,因为它可能包含更多的指令被一次性加载到pc寄存器中,同时伴有内存访问次数的减少。目前在X86的架构中8bits的计算并不是完全的支持(除法和乘法),但基本的数学运算大概在几个时钟周期内就能完成,也就是说主流的字节宽度基本上处理器能够原生的支持,那为什么EVM要采用256位的字宽。主要从以下两个方面考虑:
时间,智能合约是否能执行得更快
空间,这样是否整体字节码的大小会有所减少
gas成本
时间上主要体现在执行的效率上,我们以两个整型数相加来对比具体的操作时间消耗。32bits相加的X86
的汇编代码
mov eax, dword [9876ABCD] //将地址9876ABCD中的32位数据放入eax数据寄存器
add eax, dword [1234DCBA] //将1234DCBA地址指向32位数和eax相加,结果保存在eax中
64bits相加的X86汇编代码
mov rax, qword [123456789ABCDEF1] //将地址指向的64位数据放入64位寄存器
add rax, qword [1020304050607080] //计算相加的结果并将结果放入到64位寄存器中
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。