数据同步完的以太坊服务器
以太坊是一个全新开放的区块链平台,它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。就像比特币一样,以太坊不受任何人控制,也不归任何人所有——它是一个开放源代码项目,由全球范围内的很多人共同创建。
和比特币协议有所不同的是,以太坊的设计十分灵活,极具适应性。在以太坊平台上创立新的应用十分简便,任何人都可以安全地使用该平台上的应用。
以太坊是可编程的区块链。它并不是给用户一系列预先设定好的操作(例如比特币交易),而是允许用户按照自己的意愿创建复杂的操作。这样一来,它就可以作为多种类型去中心化区块链应用的平台,包括加密货币在内但并不仅限于此。
以太坊狭义上是指一系列定义去中心化应用平台的协议,它的核心是以太坊虚拟机(“EVM”),可以执行任意复杂算法的编码。在计算机科学术语中,以太坊是“图灵完备的”。开发者能够使用现有的JavaScript和Python等语言为模型的其他友好的编程语言,创建出在以太坊模拟机上运行的应用。
和其他区块链一样,以太坊也有一个点对点网络协议。以太坊区块链数据库由众多连接到网络的节点来维护和更新。每个网络节点都运行着以太坊模拟机并执行相同的指令。因此,人们有时形象地称以太坊为“世界电脑”。
这个贯穿整个以太坊网络的大规模并行运算并不是为了使运算更高效。实际上,这个过程使得在以太坊上的运算比在传统“电脑”上更慢更昂贵。然而,每个以太坊节点都运行着以太坊虚拟机是为了保持整个区块链的一致性。去中心化的一致使以太坊有极高的故障容错性,保证零停机,而且可以使存储在区块链上的数据保持永远不变且抗审查。
以太坊平台本身没有特点,没有价值性。和编程语言相似,它由企业家和开发者决定其用途。不过很明显,某些应用类型较之其他更能从以太坊的功能中获益。以太坊尤其适合那些在点与点之间自动进行直接交互或者跨网络促进小组协调活动的应用。
例如,协调点对点市场的应用,或是复杂财务合同的自动化。比特币使个体能够不借助金融机构、银行或政府等其他中介来进行货币交换。以太坊的影响可能更为深远。
理论上,任何复杂的金融活动或交易都能在以太坊上用编码自动且可靠地进行。除金融类应用外,任何对信任、安全和持久性要求较高的应用场景——比如资产注册、投票、管理和物联网——都会大规模地受到以太坊平台影响。
② 以太坊技术系列-以太坊数据结构
本篇文章和大家介绍一下以太坊的数据结构,上篇文章我们提到,以太坊为了实现智能合约这一功能,使用了基于账户的模型。我们来看看以太坊中数据结构。
既然是基于账户的模型,我们需要通过账户地址找到账户的状态。就像通过银行卡号可以找到你在银行中的各种信息一样。最简单的想法当然是一个简单的哈希表 key是账户地址 value是账户状态。但这里有个问题解决不了。
轻节点如何校验账户合法性?
上篇我们说过,区块链中有2类节点,全节点和轻节点,轻节点只会存储block header,所以轻节点如何才能校验账号是否合法呢?
这个思路和我们平时用的md5校验一致,我们会对区块内的信息进行hash运算从而得出区块内信息唯一确定的值,区块链所有节点中这个值都是相同的。
在这个过程中我们用到了一种数据结构Merkle Tree(哈希树),我们先看下Merkle Tree(哈希树)的示意图。
上篇文章说到区块链中的链表(哈希链)和我们平时常见链表不同的是将指针从地址改为了hash指,这里也一样,哈希树和二叉树的区别有2个
1.将地址改为了哈希值
2.只有叶子节点存储数据
回到之前的问题轻节点是如何校验1个账户或交易是否是在链上的呢?
整个流程如上图所示
1.轻节点需要判断1个账号是否合法
2.轻节点由于只存储block header,所以拿到1个账号的时候会向全节点发出请求
3.全节点存储了所有账户状态,将账户路径中的需要计算用到的hash值返回给轻节点
4.轻节点本地进行计算根hash值,如果计算结果和自己存储一致则账户合法,不一致则不合法。
那以太坊中的账户信息的数据结构就是这样吗?
直接用这样的数据结构来存储账户信息会有2个问题
查找困难
生成hash值不确定
第1个问题应该比较容易发现,在这个树中寻找1个账号需要的复杂度是O(n),因为没有任何顺序。
第2个问题其实也是因为无序导致的,无序的组合每个节点针对同一批账户生成的hash值不一致,这就导致无法达成共识。
既然2个问题都和顺序有关,那我们类似二叉排序树一样,使用哈希排序树是不是就可以解决问题了呢?
使用排序树后会带来另外1个问题
插入困难
因为要维持树是有序的,很可能带来树结构的很大变动。
以太坊中使用了另外一种数据结构字典树。和哈希树不同,字典树应该是很多地方都有使用。我们简单来看下字典树的结构。
字典树能够较好地解决哈希树的2个缺点1.查找困难 2.生成的hash值不确定以及排序二叉树的1个缺点 插入困难。
但字典树我们可以看到可能树的深度可能由于部分元素导致整棵树深度非常深。
这时我们可以进一步优化,将相同路径进行压缩。这就是压缩字典树。
将哈希树和压缩字典树结合,就可以得到以太坊存储账户的最终数据结构-MPT。
将压缩字典树里面的指针从地址改为指针,并且将数据存储在叶子节点中即可。
介绍完状态树的数据结构,我们接下来讨论1个问题,区块中存储的账户状态是什么样的范围。有2种选择。
只保存当时区块中产生交易的账户状态。
保存全局所有的账户。
我们可以看下这2种方式,无非就是空间和时间的平衡,只保存当前区块产生的交易意味着是做懒加载(需要的时候才去寻找账户),在区块链中这个代价是非常大的,因为寻找的账户之前从未交易过,这样会遍历整个区块链。另外一种保存全局的账户方式虽然看起来空间消耗较大,但查找快捷,而且空间的问题我们可以通过其他方式优化。所以最终以太坊选择了第2种每个区块都报错全局所有账户的方式。
我们来看下以太坊中是如何保存状态树的。
可以看到以太坊中虽然每个区块都保存了全部账户,但是会将未发生变化的账户状态指向前1个节点,本身只存储发生变化的状态,这样可以较大程度优化空间占用。
介绍完以太坊中比较复杂的状态树后,我们继续来看看以太坊中的另外两棵树,交易树和收据树。
首先介绍一下,为什么需要交易树&收据树。
1.交易树
虽然以太坊是基于账户的模型,但是就像银行不仅会存储银行卡的余额,还会存储卡中的每笔钱怎么来的以及怎么花的。交易树中就存储着当前区块中的包含的所有交易。
2.收据树
由于智能合约的引入增加了不少复杂性,所以以太坊用收据树存储着一些交易操作的额外信息。比如交易过程中执行日志就包含在收据树中方便查询。收据树和交易树是一一对应的。每发生一次交易就会有一次收据。
和状态树不同交易树和收据树只维护当前区块内发生的交易,因为当时区块发生交易时不需要再去查找另外1个交易,也就之前需要可能遍历整个区块链的查找操作了。
由于以太坊中的出块速度较快,我们进行一些查询一些符合条件交易的时候会面临大量数据遍历困难的问题。收据树中引入了布隆过滤器可以帮助我们有效缓解这一困难。
布隆过滤器将大集合中每个元素进行hash运算映射到1个较小的集合,这时再来1个元素要判断是否在大集合的时候,不需要遍历整个大集合,而是去进行hash运算去小集合中寻找是否存在,如果不存在,肯定不在大集合中,如果存在则不能说明任何问题。
如上图所示,布隆过滤器只能证明某1个元素不在集合中,不能证明1个元素在结合中。
以太坊中如果我们要在较多区块中寻找某1个交易,则可以利用布隆过滤器,过滤掉肯定不存在目标交易的区块,然后进入收据树内继续利用布隆过滤器筛选,剩下的才是可能的目标交易的交易,进行一一比对即可。
我们介绍了以太坊的核心数据结构,状态树&交易树&收据树,他们都是使用相同的数据结构-哈希压缩字典树。但状态树是维护1颗全局账户树,交易树和收据树则是维护本区块内的交易或收据。
介绍完数据结构后,后面我们会用几篇文章来介绍以太坊中的一些核心算法,比如共识机制,挖矿算法等。
③ Quorum介绍
Quorum和以太坊的主要区别:
Quorum 的主要组件:
1,用其自己实现的基于投票机制的共识方式 来代替原来的 “Proof of work” 。
2,在原来无限制的P2P传输方式上增加了权限功能。使得P2P传输只能在互相允许的节点间传输。
3, 修改区块校验逻辑使其能支持 private transaction。
4, Transaction 生成时支持 transaction 内容的替换。这个调整是为了能支持联盟中的私有交易。
Constellation 模块的主要职责是支持 private transaction。Constellation 由两部分组成:Transaction Manager 和 Enclave。Transaction Manager 用来管理和传递私有消息,Enclave 用来对私有消息的加解密。
在私有交易中,Transaction Manager 会存储私有交易的内容,并且会将这条私有交易内容与其他相关的 Transaction Manager 进行交互。同时它也会利用 Enclave 来加密或解密其收到的私有交易。
为了能更有效率的处理消息的加密与解密,Quorum 将这个功能单独拉出并命名为 Enclave 模块。Enclave 和 Transaction Manager 是一对一的关系。
在 Quorum 中有两种交易类型,”Public Transaction” 和 “Privat Transaction”。在实际的交易中,这两种类型都采用了以太坊的 Transaction 模型,但是又做了部分修改。Quorum 在原有的以太坊 tx 模型基础上添加了一个新的 “privateFor” 字段。同时,针对一个 tx 类型的对象添加了一个新的方法 “IsPrivate”。用 “IsPrivate” 方法来判断 Transaction是 public 还是 private,用 “privateFor” 来记录 事务只有谁能查看。
Public Transaction 的机理和以太坊一致。Transaction中的交易内容能被链上的所有人访问到。
Private Transaction 虽然被叫做 “Private”,但是在全网上也会出现与其相关的交易。只不过交易的明细只有与此交易有关系的成员才能访问到。在全网上看到的交易内容是一段hash值,当你是交易的相关人员时,你就能利用这个hash值,然后通过 Transaction Manager 和 Enclave 来获得这笔交易的正确内容。
Public Transaction的处理流程和以太坊的Transaction流程一致。Transaction 广播全网后,被矿工打包到区块中。节点收到区块并校验区块中的 事务 信息。然后根据 Transaction信息更新本地的区块
Private Transaction也会将 Transaction 广播至全网。但是它的 Transaction payload已经从原来的真实内容替换为一个hash值。这个hash值是由Transaction Manager提供的。
有两个共识机制:QuorumChain Consensus 和 Raft-Based Consensus。
在 Quorum 1.2 之前的 Release 版本都采用了 QuorumChain。
从 2.0 版本开始,Quorum 废弃了 QuorumChain 转而只支持 Raft-based Consensus。
QuorumChain Consensus 是一个基于投票的共识算法。其主要特点有:
相比较以太坊的POW,Raft-based 提供了更快更高效的区块生成方式。相比 QuorumChain,Raft-based 不会产生空的区块,而且在区块的生成上比前者更有效率。
要想了解Raft-based Consensus,必须先了解Raft算法
Raft算法
Raft是一种一致性算法,是为了确保容错性,也就是即使系统中有一两个服务器当机,也不会影响其处理过程。这就意味着只要超过半数的大多数服务器达成一致就可以了,假设有N台服务器,N/2 +1 就超过半数,代表大多数了。
Raft的工作模式:
raft的工作模式是一个Leader和多个Follower模式,即我们通常说的领导者-追随者模式。除了这两种身份,还有Candidate身份。下面是身份的转化示意图
1,leader的选举过程
raft初始状态时所有server都处于Follower状态,并且随机睡眠一段时间,这个时间在0~1000ms之间。最先醒来的server A进入Candidate状态,Candidate状态的server A有权利发起投票,向其它所有server发出投票请求,请求其它server给它投票成为Leader。
2,Leader产生数据并同步给Follower
Leader产生数据,并向其它Follower节点发送数据添加请求。其它Follower收到数据添加请求后,判断该append请求满足接收条件(接收条件在后面安全保证问题3给出),如果满足条件就将其添加到本地,并给Leader发送添加成功的response。Leader在收到大多数Follower添加成功的response后。提交后的log日志就意味着已经被raft系统接受,并能应用到状态机中了。
Leader具有绝对的数据产生权利,其它Follower上存在数据不全或者与Leader数据不一致的情况时,一切都以Leader上的数据为主,最终所有server上的日志都会复制成与Leader一致的状态。
Raft的动态演示: http://thesecretlivesofdata.com/raft/
安全性保证,对于异常情况下Raft如何处理:
1,Leader选举过程中,如果有两个FollowerA和B同时醒来并发出投票请求怎么办?
在一次选举过程中,一个Follower只能投一票,这就保证了FollowerA和B不可能同时得到大多数(一半以上)的投票。如果A或者B中其一幸运地得到了大多数投票,就能顺利地成为Leader,Raft系统正常运行下去。但是A和B可能刚好都得到一半的投票,两者都成为不了Leader。这时A和B继续保持Candidate状态,并且随机睡眠一段时间,等待进入到下一个选举周期。由于所有Follower都是随机选择睡眠时间,所以连续出现多个server竞选的概率很低。
2,Leader挂了后,如何选举出新的Leader?
Leader在正常运行时候,会周期性的向Follower节点发送数据的同步请求,同时也是起到一个心跳作用。Follower节点如果在一段时间之内(一般是2000ms左右)没有收到数据同步请求,则认为Leader已经死了,于是进入到Candidate状态,开始发起投票竞选新的Leader,每个新的Leader产生后就是一个新的任期,每个任期都对应一个唯一的任期号term。这个term是单调递增的,用来唯一标识一个Leader的任期。投票开始时,Candidate将自己的term加1,并在投票请求中带上term;Follower只会接受任期号term比自己大的request_vote请求,并为之投票。 这条规则保证了只有最新的Candidate才有可能成为Leader。
3,Follower的数据的生效时间
Follower在收到一条添加数据请求后,是否立即保存并将其应用到状态机中去?如果不是立即应用,那么由什么来决定该条日志生效的时间?
首先会检查这条数据同步请求的来源信息是否与本地保存的leader信息符合,包括leaderId和任期号term。检查合法后就将日志保存到本地中,并给Leader回复添加log成功,但是不会立即将其应用到本地状态机。Leader收到大部分Follower添加log成功的回复后,就正式将这条日志commit提交。Leader在随后发出的心跳append_entires中会带上已经提交日志索引。Follower收到Leader发出的心跳append_entries后,就可以确认刚才的log已经被commit(提交)了,这个时候Follower才会把日志应用到本地状态机。下表即是append_entries请求的内容,其中leaderCommit即是Leader已经确认提交的最大日志索引。Follower在收到Leader发出的append_entries后即可以通过leaderCommit字段决定哪些日志可以应用到状态机。
4,向raft系统中添加新机器时,由于配置信息不可能在各个系统上同时达到同步状态,总会有某些server先得到新机器的信息,有些server后得到新机器的信息。比如在raft系统中有三个server,在某个时间段中新增加了server4和server5这两台机器。只有server3率先感知到了这两台机器的添加。这个时候如果进行选举,就有可能出现两个Leader选举成功。因为server3认为有3台server给它投了票,它就是Leader,而server1认为只要有2台server给它投票就是Leader了。raft怎么解决这个问题呢?
产生这个问题的根本原因是,raft系统中有一部分机器使用了旧的配置,如server1和server2,有一部分使用新的配置,如server3。解决这个问题的方法是添加一个中间配置(Cold, Cnew),这个中间配置的内容是旧的配置表Cold和新的配置Cnew。这个时候server3收到添加机器的消息后,不是直接使用新的配置Cnew,而是使用(Cold, Cnew)来做决策。比如说server3在竞选Leader的时候,不仅需要得到Cold中的大部分投票,还要得到Cnew中的大部分投票才能成为Leader。这样就保证了server1和server2在使用Cold配置的情况下,还是只可能产生一个Leader。当所有server都获得了添加机器的消息后,再统一切换到Cnew。raft实现中,将Cold,(Cold,Cnew)以及Cnew都当成一条普通的日志。配置更改信息发送Leader后,由Leader先添加一条 (Cold, Cnew)日志,并同步给其它Follower。当这条日志(Cold, Cnew)提交后,再添加一条Cnew日志同步给其它Follower,通过Cnew日志将所有Follower的配置切换到最新。
Raft算法和以太坊结合
所以为了连接以太坊节点和 Raft 共识,Quorum 采用了网络节点和 Raft 节点一对一的方式来实现 Raft-based 共识
一个Transaction完整流程
1,客户端发起一笔 Transaction并通过 RPC 来呼叫节点。
2,节点通过以太坊的 P2P 协议将节点广播给网络。
3,当前的 Raft leader 对应的以太坊节点收到了 Transaction后将它打包成区块。
区块被 编码后传递给对应的 Raft leader。
leader 收到区块后通过 Raft 算法将区块传递给 follower。这包括如下步骤:
3.1,leader 发送 AppendEntries 指令给 follower。
3.2,follower 收到这个包含区块信息的指令后,返回确认回执给 leader。
3.3,leader 收到不少于指定数量的确认回执后,发送确认 append 的指令给 follower。
3.4,follower 收到确认 append 的指令后将区块信息记录到本地的 Raft log 上。
3.5,Raft 节点将区块传递给对应的 Quorum 节点。Quorum 节点校验区块的合法性,如果合法则记录到本地链上。
参考链接: http://blog.csdn.net/about_blockchain/article/details/78684901
④ 以太链也有服务器吗
不存在
在以太坊中并不存在中心服务器,取而代之的是多个通过p2p协议连接起来的平等节点,在众多节点中存储了所有的数据。当用户发起一笔交易,会通过p2p协议将交易广播出去,矿工节点对此进行验证、打包并进一步广播至全网,在区块链内确认后,此操作即认为是不可更改的。
⑤ 以太坊合并之后还需要升级什么
以太坊合并之后还需要升级什么,相信大家都听说了以太坊开始合并了,而且以太坊的创始人v神在会上表示,合并之后仅仅完成了一陵枝半多点,剩下的又是什么,下面跟着小编一起来看看吧。
以太坊合并之后还需要升级什么
1:TheSurge(预计在2023年发生)
TheSurge是以太坊分片的引入。简而言之,分片将把整个以太坊网络分割成更小的分区。总共有64个分片链,每个分片将包含自己的交易历史,使其能够更快更容易地完成交易。
这种扩展解决方案旨在通过实现更便宜的第2层区块链基础上,进一步提高网络的可扩展性,使用户更容易操作以太坊上的节点,这将有助于确保网络安全,并降低打包交易或rollup的成本。
根据Buterin的说法,“今天的以太坊每秒可以处理大尺埋敏约15-20笔交易。包括rollup,包括分片的以太坊,它将能够每秒处理10万笔交易。”
这比当前的交易处理速度快了5000倍。
2:TheVerge
按照Buterin的说法,实现“VerkleTree”是“其功能可以与MerkleTree相同:我们可以将大量数据放入VerkleTree,并对任何单个或一组数据进行简短的证明(“见证”),这些数据由只有树的根的人进行验证。”
“与以太坊今天使用的相比,这会使证明尺寸减少超过2-30倍。”Buterin补充道。
最终,“VerkleTrees”将允许用户成为以太坊验证者,并且无需在设备上存储大量数据,这将可以减少节点大小,优化网络存储。该新实现是以太坊可扩展性和去中心化的另一个机会。
3:ThePurge
ThePurge这个名字来自2013年的电影。它是关于清除以太坊旧网络历史数据和坏帐的。
引入ThePurge的目的是减少以太坊验证者所需的硬盘空间,并通过清除旧的网络液羡历史来简化协议,最终有助于减少网络拥塞。
4:TheSplurge
根据Buterin所说,TheSplurge是“所有其他有趣的东西”。
这将是一系列较小的升级和微调,旨在确保整个以太坊网络在之前的4次升级(Merge、Surge、Verge和Purge)后尽可能平稳地运行。
⑥ 以太坊是什么丨以太坊开发入门指南
以太坊是什么丨以太坊开发入门指南
很多同学已经跃跃欲试投入到区块链开发队伍当中来,可是又感觉无从下手,本文将基于以太坊平台,以通俗的方式介绍以太坊开发中涉及的各晦涩的概念,轻松带大家入门。
以太坊是什么
以太坊(Ethereum)是一个建立在区块链技术之上, 去中心化应用平台。它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。
对这句话不理解的同学,姑且可以理解为以太坊是区块链里的Android,它是一个开发平台,让我们就可以像基于Android Framework一样基于区块链技术写应用。
在没有以太坊之前,写区块链应用是这样的:拷贝一份比特币代码,然后去改底层代码如加密算法,共识机制,网络协议等等(很多山寨币就是这样,改改就出来一个新币)。
以太坊平台对底层区块链技术进行了封装,让区块链应用开发者可以直接基于以太坊平台进行开发,开发者只要专注于应用本身的开发,从而大大降低了难度。
目前围绕以太坊已经形成了一个较为完善的开发生态圈:有社区的支持,有很多开发框架、工具可以选择。
智能合约
什么是智能合约
以太坊上的程序称之为智能合约, 它是代码和数据(状态)的集合。
智能合约可以理解为在区块链上可以自动执行的(由事件驱动的)、以代码形式编写的合同(特殊的交易)。
在比特币脚本中,我们讲到过比特币的交易是可以编程的,但是比特币脚本有很多的限制,能够编写的程序也有限,而以太坊则更加完备(在计算机科学术语中,称它为是“图灵完备的”),让我们就像使用任何高级语言一样来编写几乎可以做任何事情的程序(智能合约)。
智能合约非常适合对信任、安全和持久性要求较高的应用场景,比如:数字货币、数字资产、投票、保险、金融应用、预测市场、产权所有权管理、物联网、点对点交易等等。
目前除数字货币之外,真正落地的应用还不多(就像移动平台刚开始出来一样),相信1到3年内,各种杀手级会慢慢出现。
编程语言:Solidity
智能合约的默认的编程语言是Solidity,文件扩展名以.sol结尾。
Solidity是和JavaScript相似的语言,用它来开发合约并编译成以太坊虚拟机字节代码。
还有长像Python的智能合约开发语言:Serpent,不过建议大家还是使用Solidity。
Browser-Solidity是一个浏览器的Solidity IDE, 大家可以点进去看看,以后我们更多文章介绍Solidity这个语言。
运行环境:EVM
EVM(Ethereum Virtual Machine)以太坊虚拟机是以太坊中智能合约的运行环境。
Solidity之于EVM,就像之于跟JVM的关系一样,这样大家就容易理解了。
以太坊虚拟机是一个隔离的环境,在EVM内部运行的代码不能跟外部有联系。
而EVM运行在以太坊节点上,当我们把合约部署到以太坊网络上之后,合约就可以在以太坊网络中运行了。
合约的编译
以太坊虚拟机上运行的是合约的字节码形式,需要我们在部署之前先对合约进行编译,可以选择Browser-Solidity Web IDE或solc编译器。
合约的部署
在以太坊上开发应用时,常常要使用到以太坊客户端(钱包)。平时我们在开发中,一般不接触到客户端或钱包的概念,它是什么呢?
以太坊客户端(钱包)
以太坊客户端,其实我们可以把它理解为一个开发者工具,它提供账户管理、挖矿、转账、智能合约的部署和执行等等功能。
EVM是由以太坊客户端提供的。
Geth是典型的开发以太坊时使用的客户端,基于Go语言开发。 Geth提供了一个交互式命令控制台,通过命令控制台中包含了以太坊的各种功能(API)。Geth的使用我们之后会有文章介绍,这里大家先有个概念。
Geth控制台和Chrome浏览器开发者工具里的面的控制台是类似,不过是跑在终端里。
相对于Geth,Mist则是图形化操作界面的以太坊客户端。
如何部署
智能合约的部署是指把合约字节码发布到区块链上,并使用一个特定的地址来标示这个合约,这个地址称为合约账户。
以太坊中有两类账户:
· 外部账户
该类账户被私钥控制(由人控制),没有关联任何代码。
· 合约账户
该类账户被它们的合约代码控制且有代码与之关联。
和比特币使用UTXO的设计不一样,以太坊使用更为简单的账户概念。
两类账户对于EVM来说是一样的。
外部账户与合约账户的区别和关系是这样的:一个外部账户可以通过创建和用自己的私钥来对交易进行签名,来发送消息给另一个外部账户或合约账户。
在两个外部账户之间传送消息是价值转移的过程。但从外部账户到合约账户的消息会激活合约账户的代码,允许它执行各种动作(比如转移代币,写入内部存储,挖出一个新代币,执行一些运算,创建一个新的合约等等)。
只有当外部账户发出指令时,合同账户才会执行相应的操作。
合约部署就是将编译好的合约字节码通过外部账号发送交易的形式部署到以太坊区块链上(由实际矿工出块之后,才真正部署成功)。
运行
合约部署之后,当需要调用这个智能合约的方法时只需要向这个合约账户发送消息(交易)即可,通过消息触发后智能合约的代码就会在EVM中执行了。
Gas
和云计算相似,占用区块链的资源(不管是简单的转账交易,还是合约的部署和执行)同样需要付出相应的费用(天下没有免费的午餐对不对!)。
以太坊上用Gas机制来计费,Gas也可以认为是一个工作量单位,智能合约越复杂(计算步骤的数量和类型,占用的内存等),用来完成运行就需要越多Gas。
任何特定的合约所需的运行合约的Gas数量是固定的,由合约的复杂度决定。
而Gas价格由运行合约的人在提交运行合约请求的时候规定,以确定他愿意为这次交易愿意付出的费用:Gas价格(用以太币计价) * Gas数量。
Gas的目的是限制执行交易所需的工作量,同时为执行支付费用。当EVM执行交易时,Gas将按照特定规则被逐渐消耗,无论执行到什么位置,一旦Gas被耗尽,将会触发异常。当前调用帧所做的所有状态修改都将被回滚, 如果执行结束还有Gas剩余,这些Gas将被返还给发送账户。
如果没有这个限制,就会有人写出无法停止(如:死循环)的合约来阻塞网络。
因此实际上(把前面的内容串起来),我们需要一个有以太币余额的外部账户,来发起一个交易(普通交易或部署、运行一个合约),运行时,矿工收取相应的工作量费用。
以太坊网络
有些着急的同学要问了,没有以太币,要怎么进行智能合约的开发?可以选择以下方式:
选择以太坊官网测试网络Testnet
测试网络中,我们可以很容易获得免费的以太币,缺点是需要发很长时间初始化节点。
使用私有链
创建自己的以太币私有测试网络,通常也称为私有链,我们可以用它来作为一个测试环境来开发、调试和测试智能合约。
通过上面提到的Geth很容易就可以创建一个属于自己的测试网络,以太币想挖多少挖多少,也免去了同步正式网络的整个区块链数据。
使用开发者网络(模式)
相比私有链,开发者网络(模式)下,会自动分配一个有大量余额的开发者账户给我们使用。
使用模拟环境
另一个创建测试网络的方法是使用testrpc,testrpc是在本地使用内存模拟的一个以太坊环境,对于开发调试来说,更方便快捷。而且testrpc可以在启动时帮我们创建10个存有资金的测试账户。
进行合约开发时,可以在testrpc中测试通过后,再部署到Geth节点中去。
更新:testrpc 现在已经并入到Truffle 开发框架中,现在名字是Ganache CLI。
Dapp:去中心化的应用程序
以太坊社区把基于智能合约的应用称为去中心化的应用程序(DecentralizedApp)。如果我们把区块链理解为一个不可篡改的数据库,智能合约理解为和数据库打交道的程序,那就很容易理解Dapp了,一个Dapp不单单有智能合约,比如还需要有一个友好的用户界面和其他的东西。
Truffle
Truffle是Dapp开发框架,他可以帮我们处理掉大量无关紧要的小事情,让我们可以迅速开始写代码-编译-部署-测试-打包DApp这个流程。
总结
我们现在来总结一下,以太坊是平台,它让我们方便的使用区块链技术开发去中心化的应用,在这个应用中,使用Solidity来编写和区块链交互的智能合约,合约编写好后之后,我们需要用以太坊客户端用一个有余额的账户去部署及运行合约(使用Truffle框架可以更好的帮助我们做这些事情了)。为了开发方便,我们可以用Geth或testrpc来搭建一个测试网络。
注:本文中为了方便大家理解,对一些概念做了类比,有些严格来不是准确,不过我也认为对于初学者,也没有必要把每一个概念掌握的很细致和准确,学习是一个逐步深入的过程,很多时候我们会发现,过一段后,我们会对同一个东西有不一样的理解。
⑦ 以太坊矿池有哪些
1. Ethpool(Ethermine)ETHpool.org是第一个官方的以太坊矿池。此前由于工作量超负荷,该矿池不接受新用户,只接受老客户。因此,许多新矿工被迫转向单独挖矿,因为那时还没有其他可替代的矿池。在Ethpool上挖矿,必须安装以太坊的C++ETH版本。? 市场占有率:23%? 当前矿池算力:399.1GH / s? 挖矿奖励结算模式:PPLNS? 费率:1.0%? 网址:https://ethpool.org/2. NanopoolNanopool虽然是新矿池,但已经是目前以太坊上最大的矿池之一。份额(Share)的复杂性是静态的,相当于50亿。在该矿池上进行挖矿的最低哈希率仅为5 Mhesh / s。此外,此矿池根据PPLNS方案计算挖矿奖励,其中N是最近10分钟内所有接受的份额。(注:PPLNS全称Pay Per Last N Shares,即根据最近的N个股份来支付收益。)Nanopool的服务器遍及全球,官网页面简洁直观。但是这个矿池的最低支付门槛相对较高,建议连接3个服务器,避免等待长时间的付款期。? 市场占有率:8%? 当前矿池算力:16,176.3GH / s? 挖矿奖励结算模式:PPLNS? 费用:1.0%? 网址:https://eth.nanopool.org/3. F2Pool(鱼池)F2Pool是2019年最受欢迎的矿池之一。F2pool的服务器主要位于中国、其他亚洲国家和美国。F2pool.com因其开放性,可访问性和易用性而备受矿工喜爱。矿工在F2Pool上注册后才可以挖矿。以太坊挖矿需要一个显卡矿机。 ? 市场占有率:10%? 当前矿池算力:19.38TH / s? 挖矿奖励结算模式:PPS+? 费率:2.5%? 网址:https://www.f2pool.com/4. Sparkpool(星火矿池)在ETH,GRIN和BEAM生态系统中,最强大的中国资源库是Sparkpool,它是与全球矿工合作的开放资源。在挖矿之前,你需要配置矿机。基于AMD GPU处理器的以太坊挖矿收益更高。它需要闪存改进的BIOS并调整MSI Afterburner或AMD驱动程序设置中的超频选项。 ? 市场占有率:29%? 当前矿池算力:56.96TH / s? 挖矿奖励结算模式:PPS +? 费用:1.0%? 网址:https://www.sparkpool.com/5. Dwarfpool在DwarfPool,矿工的信用等级分为RBPPS或HBPPS。使用RBPPS,只要有A值,你就可以获得对应奖励(死块除外)。HBPPS计提算法是基于时间的股份支付。每小时计算一次所有推广和发现的区块。该矿池具有经过优化的最佳挖矿引擎,拒绝率较低,透明且详细的统计信息。每小时进行一次支付结算,服务器遍布世界各地。? 市场占有率:6%? 当前矿池算力:2377109 MH / s? 挖矿奖励结算模式:HBPPS? 费用:1.0%? 网址:https://dwarfpool.com/6. MiningPoolHubMiningPoolHub允许矿工通过挖矿获利,并根据不同支付系统的汇率来交易数字货币。该矿池使用PPLNS算法确定用户奖励。提款手续费为0.9%。? 市场份额:3.7%? 当前矿池算力:7.05T / s? 挖矿奖励类型:PPLNS? 费用:1.0%?