以太坊深度解读
区块链1.0时代通常是指在2009年到2014年之间,以比特币为代表的区块链应用发展阶段,它们主要致力于解决货币和支付手段的去中心化问题;2014年之后,开发者们越来越注重于解决比特币在技术和扩展性方面的不足。2013年底,Vitalik Buterin发布了以太坊白皮书《以太坊:下一代智能合约和去中心化应用平台》,将智能合约引入区块链,打开了区块链在货币领域以外的应用,从而开启了区块链2.0时代。(更好的数字货币交易平台尽在“币汇”)
所谓智能合约实际上就是一种基于规定触发规则的,可自动执行的计算机合约,也可以看作是传统合约的数字版本,在20多年前,由跨领域法律学者、密码学研究工作者 Nick Szabo 提出。这项技术曾一度因为缺乏可编程数字系统和相关技术而没有被用于实际产业中,直到区块链技术和以太坊的出现为其提供了可信的执行环境。
与比特币相比,以太坊属于图灵完备的脚本语言,支持开发者在该平台创建和发布任意去中心化的应用程序,从诞生到现在,全球基于以太坊的去中心化应用已经超过了200个。
比特之窗区块链首席研究员表示:以以太坊为代表的区块链2.0时代,已逐渐将区块链技术从货币和支付领域扩展到金融领域。而随着技术的发展,以及区块链应用的愈加广泛,超越货币和金融领域的区块链3.0时代也将指日可待。文章摘自比特之窗,中国专业区块链、数字货币行业分析媒体,秉承中立、客观、辩证的态度,洞悉和解读区块链、数字货币的最新动向。
B. 以太坊简介
如何购买ETH?
如何用信用卡/借记卡购买ETH?
币安(以货币兑换为例)允许您通过浏览器无缝购买ETH。操作步骤:
也可以在P2P市场买卖ETH。你可以通过移动使用程序山念Coin向其他用户购买代币。操作步骤是:
与比特币不同,以太坊不仅用于加密货币网络。它还可以用来构建去中心化的使用,以太作为一种可交易的令牌,已经成为生态系统的燃料。所以以太的主要功能是为以太坊网络提供电力。
不仅如此,以太还可以像其他传统货币一样用来购买商品和服务。
零售商接受乙醚作为支付方式的热图
人们可以使用以太坊的原生货币ETH作为数字货币或抵押品。也有人把ETH看成和比特币一样的价值存储手段。但它不同于比特币,因为以太坊区块链的高度可编程性赋予了ETH更多的效用。也意味着以太成为去中心化金融使用、去中心化市场、交易所、游戏等使用的活力之源。
ETH不基于任何银行,也就是说你会对自己的资金负责。你可以把代币存放在交易所或你自己的钱包里。但是要记住,当你为了自保而使用钱包的时候,一定要妥善保管助记符,这样当你失去钱包的存取权的时候,你就可以追回你的钱了。
一旦数据被添加到以太坊区块链,它几乎不能被更改或删除。这意味着在交易固定之前(交易指令发出之前),必须仔细核对要发送的资金目的地址和金额。大额汇款的时候,最好是小额汇款到地址进行地址确认。
由于智能合约被黑,以太坊为了逆转恶意交易,在2016年被迫硬分叉。但是,这种反转只是特殊事件的极端措施,并不是常态。
所有加入以太坊区块链的交易对公众都是可见的。即使以太坊地址上没有显示你的真实姓名,观察者也会通过其他方法确定你的身份。
由于ETH不是一个稳定的资产,它可能会给你带来收益和损失。有些人选择长期持有以太,赌网络将来会成为全球可编程的结算层。还有的选择用乙醚与其他Altcoins(假币)交易。这两种策略也有各自的财务风险。
作为分散金融(DeFi)的主要支柱,ETH也可以用于借贷,作为贷款的抵押品,铸造合成资产,或作为未来的赌注。
一些投资者可能会长期投资比特币,他们的投资组合中不包含其他数字资产。有些投资者更加灵活,在投资组合中混合使用ETH和其他假币,或者使用一定比例的资金进行短线交易(例如日内交易或摇摆交易)。市场上没有万能的赚钱方法,每个投资者都要根据自己的实际情况选择最适合自己的策略。
目前市面上代币的存储方式有很多种,每种方式都有其优缺点。就像其他有风险的事情一样,最好的选择方式就是在可用的选项中进行多元化的选择。桐核
通常,存储解决方案要么是托管的,要么是非托管的。托管解决方案意味着您可以将资金委托给第三方(如交易所)。此时,您需要登录托管人平台进行加密资产交易。
非托管解决方案正好相反:3354使用加密货币钱包管理资金。加密钱包不像物理钱包那样装载硬币,而是提供允许您访问区块链上的资产的加密密钥。记住:当使用非托管钱包时,一定要备份你的助记符!
如果您想在交易所存放乙醚,请遵循以下步骤:
您需要将ETH存入交易所账户,以方便各种交易活动。将ETH储存在币安上既简单又安全。币安生态系统还允许你通过贷款、职位返利、空投促销和抽奖获得收入。
如果您想从您的exchange帐户中提取ETH,您需要遵循以下步骤:
如果你想在钱包里存放ETH,那么有两种选择:热钱包和冷钱包。
以某种方式连接到互联网的加密货币钱包被称为热门钱包。它通常是一个移动或桌面使用程序,并允许您检查余额,或发送和接收令牌。因为热钱包是联网的,很容易被攻击,但是对于人们的日常使用非常方便。信任钱包是一款支持多种货币的手机钱包。
冷钱包是一种不暴露于互联网的加密钱包。因为没有网络攻击载体,被攻击的概率明显降低。不过冷钱包不如热钱包便携好用。硬件钱包和纸质钱包都是冷钱包。现在已经很少有人用过时且有风险的纸币袋了。
加密钱包分类详情请查看《解读加密钱包类型》。
维塔利克布特林设计了最初的以太坊图案。它由两个旋转求和符号组成(希腊字母中的适局唯掘马)。以太坊最终的logo(基于这个图案)被一个菱形(称为八面体)和四个三角形包围。与其他加密货币类似,以太坊由标准的Unicode符号组成,因此以太坊的价格可以很容易地显示在使用程序和网站中。就像美元是用符号$,以太坊使用的符号是
相关问答:以太币是什么意思?
以太币(ETH)是以太坊(Ethereum)的一种数字代币,以太币和其他数字货币一样,可以在交易平台上进行买卖。但是由于最近币价不稳定,所以现在很少有人炒币了!但是不一定只有炒币才能获得虚拟币ETH,通过挖矿同样可以获得,哈鱼矿工可以快速获得以太坊,那样你就可以快速了解什么是以太坊了!
C. 以太坊技术系列-以太坊数据结构
本篇文章和大家介绍一下以太坊的数据结构,上篇文章我们提到,以太坊为了实现智能合约这一功能,使用了基于账户的模型。我们来看看以太坊中数据结构。
既然是基于账户的模型,我们需要通过账户地址找到账户的状态。就像通过银行卡号可以找到你在银行中的各种信息一样。最简单的想法当然是一个简单的哈希表 key是账户地址 value是账户状态。但这里有个问题解决不了。
轻节点如何校验账户合法性?
上篇我们说过,区块链中有2类节点,全节点和轻节点,轻节点只会存储block header,所以轻节点如何才能校验账号是否合法呢?
这个思路和我们平时用的md5校验一致,我们会对区块内的信息进行hash运算从而得出区块内信息唯一确定的值,区块链所有节点中这个值都是相同的。
在这个过程中我们用到了一种数据结构Merkle Tree(哈希树),我们先看下Merkle Tree(哈希树)的示意图。
上篇文章说到区块链中的链表(哈希链)和我们平时常见链表不同的是将指针从地址改为了hash指,这里也一样,哈希树和二叉树的区别有2个
1.将地址改为了哈希值
2.只有叶子节点存储数据
回到之前的问题轻节点是如何校验1个账户或交易是否是在链上的呢?
整个流程如上图所示
1.轻节点需要判断1个账号是否合法
2.轻节点由于只存储block header,所以拿到1个账号的时候会向全节点发出请求
3.全节点存储了所有账户状态,将账户路径中的需要计算用到的hash值返回给轻节点
4.轻节点本地进行计算根hash值,如果计算结果和自己存储一致则账户合法,不一致则不合法。
那以太坊中的账户信息的数据结构就是这样吗?
直接用这样的数据结构来存储账户信息会有2个问题
查找困难
生成hash值不确定
第1个问题应该比较容易发现,在这个树中寻找1个账号需要的复杂度是O(n),因为没有任何顺序。
第2个问题其实也是因为无序导致的,无序的组合每个节点针对同一批账户生成的hash值不一致,这就导致无法达成共识。
既然2个问题都和顺序有关,那我们类似二叉排序树一样,使用哈希排序树是不是就可以解决问题了呢?
使用排序树后会带来另外1个问题
插入困难
因为要维持树是有序的,很可能带来树结构的很大变动。
以太坊中使用了另外一种数据结构字典树。和哈希树不同,字典树应该是很多地方都有使用。我们简单来看下字典树的结构。
字典树能够较好地解决哈希树的2个缺点1.查找困难 2.生成的hash值不确定以及排序二叉树的1个缺点 插入困难。
但字典树我们可以看到可能树的深度可能由于部分元素导致整棵树深度非常深。
这时我们可以进一步优化,将相同路径进行压缩。这就是压缩字典树。
将哈希树和压缩字典树结合,就可以得到以太坊存储账户的最终数据结构-MPT。
将压缩字典树里面的指针从地址改为指针,并且将数据存储在叶子节点中即可。
介绍完状态树的数据结构,我们接下来讨论1个问题,区块中存储的账户状态是什么样的范围。有2种选择。
只保存当时区块中产生交易的账户状态。
保存全局所有的账户。
我们可以看下这2种方式,无非就是空间和时间的平衡,只保存当前区块产生的交易意味着是做懒加载(需要的时候才去寻找账户),在区块链中这个代价是非常大的,因为寻找的账户之前从未交易过,这样会遍历整个区块链。另外一种保存全局的账户方式虽然看起来空间消耗较大,但查找快捷,而且空间的问题我们可以通过其他方式优化。所以最终以太坊选择了第2种每个区块都报错全局所有账户的方式。
我们来看下以太坊中是如何保存状态树的。
可以看到以太坊中虽然每个区块都保存了全部账户,但是会将未发生变化的账户状态指向前1个节点,本身只存储发生变化的状态,这样可以较大程度优化空间占用。
介绍完以太坊中比较复杂的状态树后,我们继续来看看以太坊中的另外两棵树,交易树和收据树。
首先介绍一下,为什么需要交易树&收据树。
1.交易树
虽然以太坊是基于账户的模型,但是就像银行不仅会存储银行卡的余额,还会存储卡中的每笔钱怎么来的以及怎么花的。交易树中就存储着当前区块中的包含的所有交易。
2.收据树
由于智能合约的引入增加了不少复杂性,所以以太坊用收据树存储着一些交易操作的额外信息。比如交易过程中执行日志就包含在收据树中方便查询。收据树和交易树是一一对应的。每发生一次交易就会有一次收据。
和状态树不同交易树和收据树只维护当前区块内发生的交易,因为当时区块发生交易时不需要再去查找另外1个交易,也就之前需要可能遍历整个区块链的查找操作了。
由于以太坊中的出块速度较快,我们进行一些查询一些符合条件交易的时候会面临大量数据遍历困难的问题。收据树中引入了布隆过滤器可以帮助我们有效缓解这一困难。
布隆过滤器将大集合中每个元素进行hash运算映射到1个较小的集合,这时再来1个元素要判断是否在大集合的时候,不需要遍历整个大集合,而是去进行hash运算去小集合中寻找是否存在,如果不存在,肯定不在大集合中,如果存在则不能说明任何问题。
如上图所示,布隆过滤器只能证明某1个元素不在集合中,不能证明1个元素在结合中。
以太坊中如果我们要在较多区块中寻找某1个交易,则可以利用布隆过滤器,过滤掉肯定不存在目标交易的区块,然后进入收据树内继续利用布隆过滤器筛选,剩下的才是可能的目标交易的交易,进行一一比对即可。
我们介绍了以太坊的核心数据结构,状态树&交易树&收据树,他们都是使用相同的数据结构-哈希压缩字典树。但状态树是维护1颗全局账户树,交易树和收据树则是维护本区块内的交易或收据。
介绍完数据结构后,后面我们会用几篇文章来介绍以太坊中的一些核心算法,比如共识机制,挖矿算法等。
D. 建行在以太坊发行区块链债券,你看懂了吗
看不懂,转摘一份资料给大家分享:建设银行(CCB)是中国“四大”金融机构之一,它计划通过出售债券来筹集高达30亿美元的资金,个人和机构可以使用比特币和美元进行交易。
SCMP报道,中国建设银行将通过比特币出售价值30亿美元的债务,将在马来西亚交易所进行交易。
过去几个月来,随着全球确定性和通货膨胀的迫在眉睫,经验丰富的投资者和 科技 企业家(例如对冲基金经理Paul Tudor Jones和MicroStrategy首席执行官Michael Saylor)对比特币领域的兴趣日益浓厚。
中国银行的比特币 游戏
建行还以成为世界第二大银行而著称,它正在出售一种廉价的数字债券,购买者可以投资至100美元。该证券每三个月滚动一次,并支付Libor的年化利息加50个基点。
出于合法目的,债券将通过马来西亚纳闽县的建设银行分行发行和安排。由于其有利的法规和政策,该小镇成为东南亚企业的避税天堂。
该数字债券将在扶桑交易所上市,该交易所还将促进加密货币的交易。它还接受比特币作为所有购买的付款方式,然后立即将其转换为美元。
扶桑集团首席执行官张崇中指出:
“债券本质上就像是三个月的定期存款产品,向持有人支付的费用远高于大多数美元银行存款利率。这些证券可以被世界各地的投资者购买,除了美国和中国的税收居民以及伊朗和朝鲜的人民和实体。
中国建设银行马来西亚分公司首席运营和财务策略师史蒂芬·王(Steven Wong)补充说,该公司通过收取比特币付款并未违反任何法律。他说:“我们正在接受银行存款,这是我们的核心业务。”
Wong补充说,该银行认为发行债券既是试点项目,又是创新发行。但是,他也告诫不要谣言。Wong说:“银行不从事比特币或加密货币交易。”
没听说啊?自然不懂,难道以太币要起飞?
建行有区块链专利?
建行不但准备在以太坊发行债券,之前还有在比特币发行债券的说法,这说明:卖东西的,并不在乎用什么渠道去卖。
我相信,建行不是第一个银行,也不会是最后一个在虚拟货币市场发行债券的银行。
其中,有几点可以做解读:
1,为什么建行要选择在比特币以太坊发行区块链债券呢?
原因很简单。比特币区块链这两个品种玩的人比较多。在这两个币种上发行债券,可以获得这两类币种的目标人群。
这如同:你拿着一筐鸡蛋卖。镇上已经很多卖鸡蛋的了,你为了把你的鸡蛋卖出去,所以你跑到乡下,找到一个人多的地方卖。
其目的很简单,只是为了把鸡蛋卖出去而已。和那个村子没关系,重点是鸡蛋。
同理,建行在比特币以太坊上发行债券,目的只是为了把债券卖出去。
2,为什么建行不在其他币种上发行债券?
玩其他币种的人很少。建行也担心在其他币种上卖债券,极有可能归零等现象。所以,为了杜绝风险,选择在玩的人的比特币以太坊上发债券,不会担心没人买,更不担心归零风险。
总结:建行在比特币以太坊上发行区块链债券,只是一次正常的债券销售行为,和比特币以太坊关系并不大,更不能说明很多虚拟货币就是合法的了。
E. eth挖矿是什么原理
凡是涉及到币,就一定离不开挖矿。以太坊网络中,想要获得以太坊,也要通过挖矿来实现。说到挖矿,就一定离不开共识机制。
不知道大家还记得比特币的共识机制是什么吗?比特币的共识机制是 PoW (这是英文 Proof of Work 的缩写,意思是“工作量证明机制”)。简单来说,就是多劳多得,你付出的计算工作越高,那么你就越有可能第一个找到正确的哈希值,就越有可能得到比特币奖励。
但是,比特币的PoW存在着一定的缺陷,就是它处理交易的速度太慢,矿工们需要不断地通过计算来碰撞哈希值,这是劳民伤财且效率低下的。对区块链知识有涉猎的朋友们应该看到这样一种说法:
以太坊为了弥补比特币的不足,提出了新的共识机制,名叫 PoS(这是英文的缩写,意思是“权益证明”,也有翻译成“股权证明”的)。
PoS 简单来讲,其实就跟它的字面意思一样:权益嘛,股权嘛,你持有的币越多相当于你的股权越多,你的权益越高。
以太坊的PoS就是说:你持币越多,你持有币的时间越久,你的计算难度就会降低,挖矿会容易一些。
在以太坊最初的设定中,以太坊希望能够通过阶段性的升级,在前期依旧采用PoW来构建一个相对稳定的系统,之后逐渐采用 PoW+PoS,最后完全过渡到 PoS。所以,说以太坊的共识机制是PoS,没错,但是PoS只是以太坊发布之初的一个计划或者说目标,目前以太坊还没有过渡到 PoS,以太坊采用的共识机制仍是 PoW,就是比特币那个 PoW,但是又和比特币的PoW稍稍不同。
这里的信息量有点大,
第一个信息点是:以太坊目前采用的共识机制也是PoW,但是和比特币的PoW稍稍不同。那么,和比特币的PoW到底有什么不同呢:简单来说,就是以太坊挖矿难度可以调节,比特币挖矿难度不能调节。就好比咱们高考,因为各个省份的教学情况、生源人数都不一样,所以高考分为全国卷和各省自主命题。
以太坊说我赞成这样分地区出题,比特币说:不行,必须全国同一卷,大家难度都一样!
通俗解释,就是,比特币是利用计算机算力做大量的哈希碰撞,列举出各种可能性,来找到一个正确哈希值。而以太坊系统呢,它有一个特殊的公式用来计算之后的每个块的难度。如果某个区块比前一个区块验证的更快,以太坊协议就会增加区块的难度。通过调整区块难度,就可以调整验证区块所需的时间。
以太坊协议规定,难度的动态调整方式是使全网创建新区块的时间间隔为 15 秒,网络用 15 秒时间创建区块链,这样一来,因为时间太快,系统的同步性就大大提升,恶意参与者很难在如此短的时间发动51%(也就是半数以上)的算力去修改历史数据。
第二个信息点是:以太坊最初的设定中,希望通过阶段性升级来最终实现由 PoW 向
PoS过渡的。
时间追溯到 2014 年,在以太坊发布之初,团队宣布将项目的发布分为四个阶段,即 Froniter(前沿)、Homestead(家园)、Metropolis(大都会)和 Serenity(宁静)。前三个阶段共识机制采用 PoW(工作量证明机制),第四个阶段切换到 PoS(权益证明机制)。
2015年7月30号,以太坊第一个阶段“前沿”正式发布,这个阶段只适用于开发者使用,开发人员可于在以太坊网络上编写智能合约和去中心化应用程序 DAPP,矿工开始进入以太坊网络维护网络安全并挖矿得到以太币。前沿版本类似于测试版,证明以太坊网络到底是不是可靠的。
2016年3月14日,以太坊进入到第二个阶段“家园”,这一阶段,以太坊提供了钱包功能,让普通用户也可以方便体验和使用以太坊。其他方面没有什么明显的技术提升,只是表明以太坊网络已经可以平稳运行。
2017 年 9 月,以太坊已经进行到第三个阶段“大都会”。“大都会”由拜占庭和君士坦丁堡两次升级组成,这个阶段的的目标是希望能够引入 PoW 和 PoS 的混合链模式,为 PoW向PoS的顺滑过渡做准备。最近比较热门的“以太坊君士坦丁堡升级”升级的就是这个,在君士坦丁堡升级中呢,以太坊将对底层协议和算法做一些改变,来为实现 PoW 和
PoS奠定良好的基础。
以太坊挖矿会得到对多少奖励呢?赢得区块创建竞争成功的矿工会得到这么几项收入:
1、 静态奖励,5个以太坊;
2、 区块内所花费的燃料成本,也就是Gas,这部分我们上一期内容讲过;
3、 作为区块组成部分,包含“叔区块”的额外奖励,叔就是叔叔的叔,每个叔区块可以得到挖矿报酬的1/32作为奖励,也就是5乘以1/32,等于0.15625 个以太坊。这里我们简单解释一下“叔区块”,“叔区块”这个概念是以太坊提出来的,为什么要引进叔块的概念?这还要从比特币说起。在比特币协议中,最长的链被认为是绝对的正确。如果一个块不是最长链的一部分,那么它被称为是“孤块”。一个孤立的块是一个块,它也是合法的,但是可能发现的稍晚,或者是网络传输稍慢,而没有能成为最长的链的一部分。在比特币中,孤块没有意义,随后将被抛弃掉,发现这个孤块的矿工也拿不到采矿相关的奖励。
但是,以太坊不认为孤块是没有价值的,以太坊系统也会给与发现孤块的矿工回报。在以太坊中,孤块被称为“叔块”(uncle block),它们可以为主链的安全作出贡献。 以太坊十几秒的出块间隔太快了,会降低安全性,通过鼓励引用叔块,使引用主链获得更多的安全保证(因为孤块本身也是合法的) ,而且,支付报酬给叔块,还能激发矿工积极挖矿,积极引用叔块,所以,以太坊认为,它是有价值的。
F. 近有消息称以太坊开发者保守将在2021年底结束PoW挖矿,怎么解读
如下:
回顾ETH2.0的发展是这样的:V神从2015年便开始研究把以太坊切换到PoS,并在2018年正式提出 2.0计划,后来进展非常缓慢,直到2020爆发的各类DeFi项目。
导致链上GAS费用从平时的20-30Gwei,一度涨到500Gwei以上,链上生态体验非常差,最后不得已于2020年底启动了ETH2.0升级(0阶段)。
由于ETH2.0已经说了很久,各种关于升级周期的分析文章也很多,普遍认为大概要升级2-3年,因为当中有半年至壹年时间要PoS和PoW双链并行,以检验PoS是否真的安全可靠,大概到2022年-2023年才会合并双链,完全结束PoW,保留PoS。
但现在突然公告加速,出乎所有人的预料,尤其是矿工们的预期,毕竟持币和持有矿机的人的心态是不一样的,矿工对PoS非常敏感。从星火昨天发文的公告来看,就是要求以太坊官方再明确一次升级预期,别找一个非核心开发员发短短的一句话就算,会引起很多误读。
之前大家一直以为ETH2.0升级在技术上非常复杂且庞大,然而现在我的解读是,大伙都高估了升级的复杂性,我猜官方团队其实已基本掌握核心要点,毕竟ETH不是第一个吃PoS共识的螃蟹,可供参考借鉴的例子很多。
以前升级进度缓慢,其实是官方一直在迁就和照顾矿工们的利益,直到去年才迫不得已才启动升级,然后又模糊地公布一个升级计划和时间表。
到了今年一看,情势不对,别家的生态链发展迅速,如火如荼,手续费低,交易速度快,使用体验不是一般地好,官方很担心,怕再这样下去生态会崩,于是不管了,在没有任何吹风的情况下,直接让一个开发人员发布消息,然后官方再转发确认消息,我的天,这是不好意思的表现吗?
那么结论来了(我们只关心结论),年底前真能结束PoW吗?有人说是假消息,有人说肯定会跳票,前者基本否定,后者呢?
如我上面解读,就是不会跳票啊,你以前有看过官方说得这么明确和肯定吗?没有。这次还用了conservatively(保守地)这个词,意思是就是只会提前,不会跳票。我认为这种可能高达90%。
还没投资显卡的建议可以缓一下。或者把钱定投ETC吧,估计年底有大量算力转移到ETC上面,估计对币价利好。有朋友说可能未必转移算力,可能卖显卡,我认为这种比例不会太高,毕竟显卡算力是多年累积下来,如果在同一时间点集中抛售,卖不了几个钱,矿工们的更优选择是挖别的币种。
以上为个人看法,自己独立思考最重要,钱是自己的。
G. 【深度知识】以太坊数据序列化RLP编码/解码原理
RLP(Recursive Length Prefix),中文翻译过来叫递归长度前缀编码,它是以太坊序列化所采用的编码方式。RLP主要用于以太坊中数据的网络传输和持久化存储。
对象序列化方法有很多种,常见的像JSON编码,但是JSON有个明显的缺点:编码结果比较大。例如有如下的结构:
变量s序列化的结果是{"name":"icattlecoder","sex":"male"},字符串长度35,实际有效数据是icattlecoder 和male,共计16个字节,我们可以看到JSON的序列化时引入了太多的冗余信息。假设以太坊采用JSON来序列化,那么本来50GB的区块链可能现在就要100GB,当然实际没这么简单。
所以,以太坊需要设计一种结果更小的编码方法。
RLP编码的定义只处理两类数据:一类是字符串(例如字节数组),一类是列表。字符串指的是一串二进制数据,列表是一个嵌套递归的结构,里面可以包含字符串和列表,例如["cat",["puppy","cow"],"horse",[[]],"pig",[""],"sheep"]就是一个复杂的列表。其他类型的数据需要转成以上的两类,转换的规则不是RLP编码定义的,可以根据自己的规则转换,例如struct可以转成列表,int可以转成二进制(属于字符串一类),以太坊中整数都以大端形式存储。
从RLP编码的名字可以看出它的特点:一个是递归,被编码的数据是递归的结构,编码算法也是递归进行处理的;二是长度前缀,也就是RLP编码都带有一个前缀,这个前缀是跟被编码数据的长度相关的,从下面的编码规则中可以看出这一点。
对于值在[0, 127]之间的单个字节,其编码是其本身。
例1:a的编码是97。
如果byte数组长度l <= 55,编码的结果是数组本身,再加上128+l作为前缀。
例2:空字符串编码是128,即128 = 128 + 0。
例3:abc编码结果是131 97 98 99,其中131=128+len("abc"),97 98 99依次是a b c。
如果数组长度大于55, 编码结果第一个是183加数组长度的编码的长度,然后是数组长度的本身的编码,最后是byte数组的编码。
请把上面的规则多读几篇,特别是数组长度的编码的长度。
例4:编码下面这段字符串:
The length of this sentence is more than 55 bytes, I know it because I pre-designed it
这段字符串共86个字节,而86的编码只需要一个字节,那就是它自己,因此,编码的结果如下:
184 86 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前三个字节的计算方式如下:
184 = 183 + 1,因为数组长度86编码后仅占用一个字节。
86即数组长度86
84是T的编码
例5:编码一个重复1024次"a"的字符串,其结果为:185 4 0 97 97 97 97 97 97 ...。
1024按 big endian编码为004 0,省略掉前面的零,长度为2,因此185 = 183 + 2。
规则1~3定义了byte数组的编码方案,下面介绍列表的编码规则。在此之前,我们先定义列表长度是指子列表编码后的长度之和。
如果列表长度小于55,编码结果第一位是192加列表长度的编码的长度,然后依次连接各子列表的编码。
注意规则4本身是递归定义的。
例6:["abc", "def"]的编码结果是200 131 97 98 99 131 100 101 102。
其中abc的编码为131 97 98 99,def的编码为131 100 101 102。两个子字符串的编码后总长度是8,因此编码结果第一位计算得出:192 + 8 = 200。
如果列表长度超过55,编码结果第一位是247加列表长度的编码长度,然后是列表长度本身的编码,最后依次连接各子列表的编码。
规则5本身也是递归定义的,和规则3相似。
例7:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
的编码结果是:
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前两个字节的计算方式如下:
248 = 247 +1
88 = 86 + 2,在规则3的示例中,长度为86,而在此例中,由于有两个子字符串,每个子字符串本身的长度的编码各占1字节,因此总共占2字节。
第3个字节179依据规则2得出179 = 128 + 51
第55个字节163同样依据规则2得出163 = 128 + 35
例8:最后我们再来看个稍复杂点的例子以加深理解递归长度前缀,
["abc",["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]]
编码结果是:
248 94 131 97 98 99 248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
列表第一项字符串abc根据规则2,编码结果为131 97 98 99,长度为4。
列表第二项也是一个列表项:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
根据规则5,结果为
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
长度为90,因此,整个列表的编码结果第二位是90 + 4 = 94, 占用1个字节,第一位247 + 1 = 248
以上5条就是RPL的全部编码规则。
各语言在具体实现RLP编码时,首先需要将对像映射成byte数组或列表两种形式。以go语言编码struct为例,会将其映射为列表,例如Student这个对象处理成列表["icattlecoder","male"]
如果编码map类型,可以采用以下列表形式:
[["",""],["",""],["",""]]
解码时,首先根据编码结果第一个字节f的大小,执行以下的规则判断:
1.如果f∈ [0,128),那么它是一个字节本身。
2.如果f∈[128,184),那么它是一个长度不超过55的byte数组,数组的长度为 l=f-128
3.如果f∈[184,192),那么它是一个长度超过55的数组,长度本身的编码长度ll=f-183,然后从第二个字节开始读取长度为ll的bytes,按照BigEndian编码成整数l,l即为数组的长度。
4.如果f∈(192,247],那么它是一个编码后总长度不超过55的列表,列表长度为l=f-192。递归使用规则1~4进行解码。
5.如果f∈(247,256],那么它是编码后长度大于55的列表,其长度本身的编码长度ll=f-247,然后从第二个字节读取长度为ll的bytes,按BigEndian编码成整数l,l即为子列表长度。然后递归根据解码规则进行解码。
以上解释了什么叫递归长度前缀编码,这个名字本身很好的解释了编码规则。
(1) 以太坊源码学习—RLP编码( https://segmentfault.com/a/1190000011763339 )
(2)简单分析RLP编码原理
( https://blog.csdn.net/itchosen/article/details/78183991 )
H. 以太坊区块链ETH目前存在哪些问题
以太坊区块链目前暴露出三大问题,长时间以来其创始人Vitalik
Buterin一直无力解读。第一是以太坊区块链整体很低的性能和TPS;第二是资源不隔离,CryptoKitties虚拟猫咪的事件,一度占据了整个以太坊
20%
的流量,直接造成以太坊网络用户无法展开及时的交易,就是资源不隔离最大的痛点;第三个问题在于以太坊治理结构的体现,区块链作为去中心化的分布式账本,以太坊过去以来,创始人团队主导了其网络发展,过于中心化的治理模式,让目前的以太坊出现了ETH、ETC、ETF等分叉,以太坊社区目前进入四分五裂的治理状态。而以太坊网络目前出现的各种弊病,在「aelf」创始人与CEO马昊伯看来,这是无法接受的。于是,「aelf」定位,就是为对标以太坊的下一代去中心化底层计算平台,重点解决目前以太坊存在的性能不足、资源不隔离、治理结构三方面的问题而诞生的。