当前位置:首页 » 算力简介 » 分子力怎么算

分子力怎么算

发布时间: 2023-02-18 12:06:21

⑴ 关于力的计算公式是什么

1)常见的力
1.重力G=mg
(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx
{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN
{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm
(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2
(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2
(k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq
(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ
(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ
(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:
T2/R3=K(=4π2/GM)
{R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:
F=Gm1m2/r2
(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:
GMm/R2=mg;
g=GM/R2
{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;
ω=(GM/r3)1/2;
T=2π(r3/GM)1/2
{M:中心天体质量}
5.第一(二、三)宇宙速度
V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;
V2=11.2km/s;
V3=16.7km/s
6.地球同步卫星
GMm/(r地+h)2=m4π2(r地+h)/T2
{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注 :
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s
希望对您有帮助

⑵ 什么是分子力

分子力(molecular force),又称分子间作用力、范得瓦耳斯力,是指分子间的相互作用.当二分子相距较远时,主要表现为吸引力,这种力主要来源于一个分子被另一个分子随时间迅速变化的电偶极矩所极化而引起的相互作用;当二分子非常接近时,则排斥力成为主要的,这是由于各分子的外层电子云开始重叠而产生的排斥作用.

⑶ 力怎么求

力的求算方法是F=pS等等,根据力的性质可分为重力,万有引力,弹力,摩擦力,分子力,电磁力,核力等,根据研究对象可分为外力和内力,力是物体对物体的作用。
力学(mechanics)研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。

⑷ 分子力的分子间的引力和斥力

1.分子间虽然有间隙,大量分子却能聚集在一起形成固体或液体,说明分子间存在引力;
2.用力拉伸物体,物体内要产生反抗拉伸的弹力,说明分子间存在引力;
3.两个物体能粘合在一起,说明分子间存在引力。 1.分子间有引力,却又有空隙,没有被紧紧吸在一起,说明分子间有斥力;
2.用力压缩物体,物体内要产生反抗压缩的弹力,说明分子间有斥力。
分子间引力和斥力随分子间的距离的增大而减小,随分子间的距离的减小而增大,且斥力减小或增大比引力变化要快些。
1.当r=ro(ro=10^-10米)时,分子间的引力和斥力相平衡,分子力为零,此位置叫做平衡位置;
2.当r<r0时,分子间斥力大于引力,分子力表现为斥力;
3.当r>ro时,分子间引力大于斥力,分子力表现为引力;
4.当r≥10ro时,分子间引力和斥力都十分微弱,分子力为零;
5.当r由ro→∞时,分子力(表现为引力)先增大后减小。

⑸ 请问如何计算分子间作用力要具体的计算公式

分子间力有取向力、诱导力和色散力3种类型。

1.取向力

相同元素两原子间形成的共价键为非极性键,不同元素原子间形成的共价键为极性键。极性键中,共用的电子对偏向电负性大的原子,因此电负性大的原子带部分负电荷(δ-),而电负性小的原子则带部分正电荷(δ+)。电负性差异越大,键的极性将越大。多原子分子的极性除了与各键的极性有关外,还决定于分子空间构型。若分子对称性很高,使各键极性相互抵消,则分子将无极性。如C—O是极性键,但CO2是直线型对称分子,两键极性相消是非极性分子。H2O中H—O是极性键,它是V型结构,键的极性不能抵消,因而H2O分子有极性,是极性分子。

极性分子可视作偶极子,其极性用偶极矩μ=qd来衡量,即正或负电荷电量(q)与电荷中心间距d的乘积。μ一般在10-30C·m数量级。μ=0的分子为非极性分子,μ越大,分子极性越大。测定分子偶极矩是确定分子结构的一种实验方法。德拜(P.J.W Debye,荷)因创立此方法而荣获1936年诺贝尔化学奖。

极性分子相互靠近时,因分子的固有偶极之间同极相斥异极相吸,使分子在空间按一定取向排列,使体系处于更稳定状态。这种固有的偶极间的作用力为取向力,其实质是静电力。

2.诱导力

极性分子与非极性分子相遇时,极性分子的固有偶极产生的电场作用力使非极性分子电子云变形,且诱导形成偶极子,固有偶极子与诱导偶极子进一步相互作用,使体系稳定。这种作用力为诱导力。这种作用力同样存在于极性分子间,使固有偶极矩加大。

3.色散力

由于分子中电子和原子核不停地运动,非极性分子的电子云的分布呈现有涨有落的状态,从而使它与原子核之间出现瞬时相对位移,产生了瞬时偶极,分子也因而发生变形。分子中电子数愈多、原子数愈多、原子半径愈大,分子愈易变形。瞬时偶极可使其相邻的另一非极性分子产生瞬时诱导偶极,且两个瞬时偶极总采取异极相邻状态,这种随时产生的分子瞬时偶极间的作用力为色散力(因其作用能表达式与光的色散公式相似而得名)。虽然瞬时偶极存在暂短,但异极相邻状态却此起彼伏,不断重复,因此分子间始终存在着色散力。无疑,色散力不仅存在于非极性分子间,也存在于极性分子间以及极性与非极性分子间。

这3种分子间力统称为范德华力。它是在人们研究实际气体对理想气体的偏离时提出来的。分子间力有以下特点:①分子间力的大小与分子间距离的6次方成反比。因此分子稍远离时,分子间力骤然减弱。它们的作用距离大约在300~500pm范围内。分子间既保持一定接触距离又“无”电子云的重叠时,相邻两分子中相互接触的那两个原子的核间距之半称原子的范德华半径。氯原子的范德华半径为180pm,比其共价半径99pm大得多。②分子间力没有方向性和饱和性。③分子间力作用能一般在2~20kJ·mol-1,比化学键能(100~600kJ·mol-1)小约1~2数量级。

卤素分子物理性质很容易用分子间力作定性的说明:F2,Cl2,Br2,I2都是非极性分子。顺序分子量增大,原子半径增大,电子增多,因此色散力增加,分子变形性增加,分子间力增加。所以卤素分子顺序熔、沸点迅速增高,常温下F2,Cl2是气体,Br2是液体而I2则是固体。不过,HF,H2O,NH3 3种氢化物的分子量与相应同族氢化物比较明显地小,但它们的熔、沸点则反常地高,其原因在于这些分子间存在氢键。

至于计算,吸引力大约与r的-6次幂成正比;斥力大约与r的-12次幂成正比
新查到的另一份资料
五.分子间作用力与分子晶体(弱键)

分子具有多种形式:从简单的氢分子H2、水分子H2O这种类型到相当复杂的有机分子,如苯环,及至非常复杂的聚合物和生物分子,如胰岛素分子。一般而言,分子内起键合作用的是强健(主要是共价键),而分子之间的相互作用可统称为弱键.

如果分子是非极性的,即不具有电偶极矩,那么是范德瓦尔斯力在起作用。不妨以最简单的单原子分子(如惰性元素分子)为例作一说明。这类原子的原子壳层正好填满。电子颁布具有球对称性,因而并不存在电偶极矩。但由于电子在做不断的运动,导致偏离球对称分布的许多瞬间。这样一来,这些瞬间的电偶极子之间的相互作用构成了范德瓦尔斯吸引力的物理基础。如果两原子非常接近时,电子壳层间存在库仑力与泡利不相容原理导致的斥力又要占上风。因而可以用经验势函数来描述:

Φ(r)=-A/r6+B/r12

被称为Lennard-Jones势。我们不妨比较一下两个H原子间和两个He原子间的最小势能,前者为-4.6eV,而后者仅为-0.0008eV(1eV=1.602×10-19J),这表明范德瓦尔斯相互作用的确要比共价键要弱得多了。

至于极性分子之间,除了范德瓦尔斯力互作用外,还要加上电偶极子之间的互作用。特别值得注意的是分子之间可能存在氢键。考虑H原子与某些处于周期表右侧的非金属元素,如F、O、N等原子构成的分子,这样一来,构成共价键的电子对就会偏离H而更接近于另外的原子,其结果使分子具有强极性,H带正电,而另外的原子带负电。以HF与H2O分子为例(见图1-14),可以看出,一个分子中H与另一分子中的F或O原子形成了以虚线表示的氢键。可以说氢键是弱键中的强者,但还要比共价键小一个数量级。单个氢键也许不是太起眼,而大群氢键的集体效应就会令人刮目相看了。氢键会导致分子液体中分子之间的缔合。水的某些性能异常(如沸点高达373K,溶点以上的密度异常)是和氢键有关,而氢键在生物分子结构中起重要作用,例如,DNA与蛋白质的螺旋结构,就是靠一系列的氢键连结起来的。

根据产生的原因不同,一般从理论上将分子间力分成3个基本组成部分:取向力、诱导力和色散力。

电偶极子与电偶极子之间,由于正、负极定向排列产生的作用力(能)称为取向力(能)。显然,偶极矩愈大,取向力(能)愈大;偶极之间距离愈短,取向力(能)也愈大。理论研究表明,取向能(Ek)与偶极矩(μ)的4次方成正比,与偶极间的距离(d)的6次方成反比。

⑹ 固体与分子力

难易是相对的,对于万吨水压机来说,它挤压一大块铁锭,就像我们揉面一样可以轻易将其塑造成想要的形状。所以,固体的难压或难拉只是相对于人力而言。这就需要一些估算来说明问题。
日常所见固体其实都是靠离子键或共价键或金属健构建起来的,其键能(即拉断一对分子或原子间的一个键所需要的能量)约是几个电子伏特(eV);分子力所对应的键能要比此小约10倍。正因分子力相对较弱,常温下才几乎没有完全靠分子力构建的固体。以下估算中取一个偏大一些的分子力键能E≈1eV≈10^-19(J)。
取分子平衡距离D0≈2*10^-10(m)。由分子力f随分子间距D变化的f-D曲线可知:当D=D0时,f=0;当D增大时,f为吸引性的分子力;随D的增大,f先较快速地增大;当D≈2*D0时,f=fm(极大值);然后f开始不断减小;当D=10*D0时,f≈0。D=D0到D=10*D0之间的f-D曲线与横轴围成的面积几乎就是分子力键能E。不难看出,E≈5*D0*fm。所以,fm≈10^-19(J)/10^-9(m)=10^-10(N)。
一个能使出F=1000(N)力的人算是大力士了。我们来估算他能拉断多粗的一段固体。设固体截面为方形,边长为B,截面上有N个分子或原子。F=N*fm=(B/D0)^2*fm,所以,B=D0*(F/fm)^(1/2)≈(2*10^-10)*(1000/10^-10)^(1/2)≈7*10^-4(m)。可见大力士也只能拉断大约1毫米粗细的一段固体,而一般固体的粗细显然大于1毫米,所以谁也拉不断(掰断是另一回事儿)。所以,固体对人来说是难以拉伸的。(注意拉断固体只要使其某个截面之间从D0拉伸到大约2*D0即可,这是很短的距离;若拉不断,则相应的拉伸距离更短……)
压缩固体时,从f-D曲线可知:排斥性的分子力f随分子间距D的减小而增加的程度远比f在D=D0到D=2*D0之间变化的程度更大,或说变化更迅速得多,所以,压缩固体比拉伸固体更困难。

⑺ 高中物理力的公式

一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径®:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

热点内容
国内手机如何下载比特币钱包 发布:2024-12-27 01:15:05 浏览:850
以太坊chaindata 发布:2024-12-27 01:06:48 浏览:290
android使用eth1 发布:2024-12-27 01:05:11 浏览:171
在日本买的比特币能换人民币吗 发布:2024-12-27 00:36:59 浏览:994
虚拟货币制作冷钱包 发布:2024-12-26 23:50:28 浏览:216
币圈一个周期是多长时间 发布:2024-12-26 23:47:13 浏览:616
2020美国区块链app 发布:2024-12-26 23:27:18 浏览:625
soul年轻人社交元宇宙 发布:2024-12-26 23:20:46 浏览:291
eth挖矿多久有收益 发布:2024-12-26 23:20:41 浏览:172
币圈OTC交易风险大吗 发布:2024-12-26 23:12:44 浏览:888