当前位置:首页 » 算力简介 » 可靠度理论算力

可靠度理论算力

发布时间: 2022-06-11 09:32:54

㈠ 可靠性理论中平均寿命与可靠度的关系的证明

可借助图形证明
自己设一组数值,制作表格
画出关系线
即可

㈡ 简述和分析可靠性的定义

可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量叫可靠度[1] 。
寿命是指产品使用的持续期。以“寿命单位”度量。在规定的条件下和在规定的时间内,产品故障的总数与寿命单位总数之比称为“故障率”。故障率是可靠性基本参数,其倒数为平均故障间隔时间(MTBF)[1] 。
可靠性分为固有可靠性和使用可靠性。固有可靠性用于描述产品的设计和制造的可靠性水平,使用可靠性综合考虑了产品设计、制造、安装环境、维修策略和修理等因素。从设计的角度出发,把可靠性分为基本可靠性和任务可靠性,前者考虑包括与维修和供应有关的可靠性,用平均故障间隔时间(MTBF)表示;后者仅考虑造成任务失败的故障影响,用任务可靠度(MR)和致命性故障间隔任务时间(MTBCF)表示。对多数企业主要关心产品的固有可靠性和基本可靠性。对可修产品用平均故障间隔时间表示,对不可修产品用平均失效率表示,对一次性使用产品用平均寿命表示[1] 。
对产品而言,可靠度越高就越好。可靠度高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠度越高,产品可以无故障工作的时间就越长。
可靠度分析即求出各系统的运作机率的学问,例如机具的可靠度,将影响整个生产制造的流程规划及控制。此外,可靠度的讨论,也往往离不开系统的可用度(Availability)及维修度(Maintainability)。一般谈到可靠度,多是指产品的可靠程度,顾名思义,也就是将产品的好坏特别以可靠度的方法表达出来,这种定义方式对于现今许多高单价及讲求售后服务的产品而言,显得十分重要。
分类
可靠度一般可分成两个层次,首先是所谓组件可靠度(Reliability of component)。也就是将产品拆解成若干不同的零件或组件,先就这些组件的可靠度进行研究,然后再探讨整个系统、整个产品的整体可靠度,也就是系统可靠度(Reliability of system)。组件可靠度分析的方法,其实就是统计分析,至于系统可靠度分析,较为复杂,可采行的方法也较多,
①按重要程度分配可靠度。
②按复杂程度分配可靠度。
③按技术水平、任务情况等的综合指标分配可靠度。
④按相对故障率分配可靠度。
各部分有了明确的可靠性指标后,根据不同计算准则,进行零件的设计计算。主要的计算方法为:根据载荷和强度的分布计算可靠度或所需尺寸;根据载荷和寿命的分布计算可靠度或安全寿命;求出可靠度与安全系数间的定量关系,沿用常规设计方法计算所需尺寸或验算安全系数。与可靠性设计有关的载荷、强度、尺寸和寿命等数据都是随机变量,必须用概率统计方法进行处理。
数学表达式
可靠度函数可用关于时间 t 的函数表示,可表示为
R(t)=P(T>t)
其中,t 为规定的时间,T表示产品的寿命。
由可靠度的定义可知,R(t)描述了产品在(0,t)时间内完好的概率,且R(0)=1,R(+∞)=0。
可靠度工程
可靠度工程是结合管理与工程技术的一种科学,它牵涉到的工程技术主要有三方面:电子(机)工程、机械工程、及材料工程。高精密的科技产品,鲜有不与此三者有关者。惟可靠度本质上是将统计方法应用在各专业领域上的一种品保技术,并将可靠度实际设计进入产品中,方能确保产品品质。
可靠度试验
测试产品可靠度指标的试验就是可靠度试验。可靠度试验有环境试验、机械应力试验、耐气候测试试验、功能试验、EMC及安规试验等。
可靠性工程的发展
萌芽阶段:二次世界大战期间,德国在研制V1火箭中提出了系统可靠性的基本理论,据此V1火箭的可靠度达到75%。在朝鲜战争时期,美国60%的机载电子设备运到远东后不能使用,50%的电子设备在储存期间就失效。美国海军有16、7万台电子设备,每年需更换100万个电子元件,其中电子管的更换率比其他元件高5倍。1943年美国成立了“电子管研究委员会,专门研究电子管的可靠性问题。1949年美国无线电工程师学会成立了可靠性技术组——第一个可靠性专业学术组织诞生了[1] 。
可靠性工程创建阶段:20世纪50年代美国在朝鲜战争中发现,不可靠的电子设备影响战争的进行,而且需要大量的维修费用,每年的维修费是设备采购费用的2倍!军方和制造公司及学术界都卷入了可靠性的研究工作。1950年12月美国成立了“电子设备可靠性专门委员会”,到1952年3月便提出了有深远影响的建议[1] :
可靠性工程全面发展阶段:20世纪60年代,随着航空航天工业的迅速发展,可靠性设计和试验方法被接受和应用于航空电子系统中,可靠性工程得到迅速发展[1] 。主要表现在:
改善可靠性管理,建立了可靠性研究中心,美国于1965年颁发了《系统与设备的可靠性大纲要求》,可靠性工程活动与传统的设计、研制和生产相结合,获得了较好的效益。罗姆航空发展中心组建了可靠性分析中心,从事与电子设备有关的电子与机电、机械件及电子系统的可靠性研究,包括可靠性预计、可靠性分配、可靠性试验、可靠性物理、可靠性数据采集、分析等[1] 。

㈢ 可靠性理论指的是什么

可靠性是产品在规定的条件下和规定的时间内完成规定功能的能力。它涉及产品、规定条件、规定时间、规定功能和能力5个因素。其中,规定时间是可靠性定义的核心,规定时间的长短随着产品对象不同和使用目的不同而异。因此,讨论可靠性时必须事先规定任务时间。规定条件是指使用产品的环境条件、使用和保障条件(如负荷条件和工作方式等)。环境条件包括温度、湿度、噪声、振动等条件;负荷条件包括工作电压、电流和机械应力等;工作方式包括连续工作方式和间断工作方式。规定条件对产品的可靠性有直接影响,在不同的使用条件下,同一产品的可靠性也可能会不一样。因此,讨论可靠性时一定要明确规定工作条件。规定功能是对产品故障规定判断的依据,常用产品的各种性能指标来描述产品的功能。能力是各种可靠性指标,这些指标是对可靠性的定量描述,以便说明产品可靠性的程度。常用的可靠性指标有“可靠度”、“平均寿命”和“失效率”等。 可靠性理论涉及面很广,需要从科研、设计、试验、制造、运输、贮存直到使用和维护等方面进行研究和实施。基本内容如表4-1所示。 产品的质量指标是一个综合性指标,它包含了可靠性指标,然而产品的可靠性的研究又是质量管理的进一步发展和深化。一切质量活动除了要保证产品的性能和经济性、安全性外,更重要的是保证产品稳定可靠。企业应在不同时期、不同的环境下开展相应的可靠性活动。

㈣ 水泥混凝土路面可靠度系数怎么计算

试述水泥混凝土路面设计理论设计指标
1、选择标准(确定可靠度系数标准)
2、交通流量调查
3、根据交通流量,换算标准轴重。确定混凝土弯拉强度标准值
4、确定混凝土抗冻深度、温差梯度
5、路面结构层组合设计(查看《公路路基路基设计规范》)
①垫层设计(最小厚度不小于150mm),主要用于排水,如果排水条件好,可以省略
②底基层设计(材料有4%水泥稳定碎石、石灰粉煤灰i碎石、石灰粉煤灰碎石土、水泥稳定碎石土。。。。。。厚度:150-250mm)
③基层设计(最小厚度150mm,5-5.5%水泥稳定或者贫混凝土稳定粒料,沥青稳定粒料等)
④水泥混凝土面层应具有足够的强度、耐久性,表面抗滑、耐磨、平整。连续配筋混凝土面层、连续配筋混凝土或横缝设传力杆的普通混凝土下面层组成的复合式路面、钢纤维混凝土面层、碾压混凝土面层。厚度210-270mm(根据等级标准选择)混凝土抗折强度4.5-5.5MPa(根据等级选择)。

㈤ 求一个系统的可靠度有哪些方法

可靠度可以通过数学方式计算。可靠度函数可用关于时间 t 的函数表示,可表示为R(t)=P(T>t)。其中,t 为规定的时间,T表示产品的寿命。由可靠度的定义可知,R(t)描述了产品在(0,t)时间内完好的概率,且R(0)=1,R(+∞)=0。

可靠度一般可分成两个层次,首先是所谓组件可靠度(Reliability of component)。也就是将产品拆解成若干不同的零件或组件,先就这些组件的可靠度进行研究,然后再探讨整个系统、整个产品的整体可靠度,也就是系统可靠度(Reliability of system)。

(5)可靠度理论算力扩展阅读

可靠性的概率度量叫可靠度,寿命是指产品使用的持续期。以“寿命单位”度量。在规定的条件下和在规定的时间内,产品故障的总数与寿命单位总数之比称为“故障率”。故障率是可靠性基本参数,其倒数为平均故障间隔时间(MTBF)。

可靠性分为固有可靠性和使用可靠性。固有可靠性用于描述产品的设计和制造的可靠性水平,使用可靠性综合考虑了产品设计、制造、安装环境、维修策略和修理等因素。从设计的角度出发,把可靠性分为基本可靠性和任务可靠性。

㈥ 可靠度的可靠性工程的发展

萌芽阶段:二次世界大战期间,德国在研制V1火箭中提出了系统可靠性的基本理论,据此V1火箭的可靠度达到75%。在朝鲜战争时期,美国60%的机载电子设备运到远东后不能使用,50%的电子设备在储存期间就失效。美国海军有16、7万台电子设备,每年需更换100万个电子元件,其中电子管的更换率比其他元件高5倍。1943年美国成立了“电子管研究委员会,专门研究电子管的可靠性问题。1949年美国无线电工程师学会成立了可靠性技术组——第一个可靠性专业学术组织诞生了 。
可靠性工程创建阶段:20世纪50年代美国在朝鲜战争中发现,不可靠的电子设备影响战争的进行,而且需要大量的维修费用,每年的维修费是设备采购费用的2倍!军方和制造公司及学术界都卷入了可靠性的研究工作。1950年12月美国成立了“电子设备可靠性专门委员会”,到1952年3月便提出了有深远影响的建议 :
可靠性工程全面发展阶段:20世纪60年代,随着航空航天工业的迅速发展,可靠性设计和试验方法被接受和应用于航空电子系统中,可靠性工程得到迅速发展 。主要表现在:
改善可靠性管理,建立了可靠性研究中心,美国于1965年颁发了《系统与设备的可靠性大纲要求》,可靠性工程活动与传统的设计、研制和生产相结合,获得了较好的效益。罗姆航空发展中心组建了可靠性分析中心,从事与电子设备有关的电子与机电、机械件及电子系统的可靠性研究,包括可靠性预计、可靠性分配、可靠性试验、可靠性物理、可靠性数据采集、分析等 。
制定可靠性试验标准,发展可靠性试验方法。主要研究设计了统计试验方案及抽样方案,颁发了《失效率抽样方案和程序》、《可靠性试验,指数分布》(1967年修改为《可靠性设计鉴定试验及产品验收试验(指数分布)》)、《寿命和可靠性试验抽样程序和表格》等 。
发展可靠性预计技术,颁发可靠性预计手册标准。在收集了大量现场和试验的失效数据后于1962年颁发了《电子设备可靠性预计手册》,次年修改后作为飞机、导弹、卫星及电子设备研制各阶段可靠性定量预计的标准 。
建立了有效的数据系统。数据采集系统、可靠性数据中心、安全中心、相继在美国军队和科研机构建立,并且于1966年形成了全国数据交换网络 。
重视维修性研究。20世纪50年代中美国每年用于武器系统维修的费用90亿美圆,占国防预算的1/4。罗姆航空发展中心在50年代末开始了3年的维修性研究计划,研究影响维修的因素、发展维修性验证和预计技术。1966年颁发了《维修性大纲要求》、《维修性鉴定、验证及评估》、《维修性预计》等标准 。
各国相继开展全面的可靠性工程研究。20世纪60年代初,苏联从技术上、组织上采取措施促进了可靠性工程的发展,1962年出版了较完善的教科书《可靠性及质量控制的统计方法》,建立了由总工程师领导的可靠性组织机构和有关的试验室,研究成果K-S统计检验法和马尔可夫过程为国际公认,采用余度技术、降额技术、提高原材料和专门电路等措施保证产品的可靠性,弥补了电子元器件的不足。他们大量引用了美国的可靠性军用标准。法国的可靠性工程强调了集中管理,重视元器件的可靠性研究,成立了“电讯委员会”,以协调各部门对电子元器件的可靠性要求。建立中心验收试验系统,在电讯委员会监督下由制造商对批生产产品进行可靠性验收试验,以节省经费。1962年在国立电讯研究中心建立了可靠性中心,负责收集、综合、出版可靠性资料,收集、分析、处理及分配可靠性数据,研究可靠性试验方法 。
可靠性工程深入发展阶段:20世纪70年代中,美国国防武器系统的寿命周期费用问题突出,人们更深切地认识到可靠性工程是减少寿命费用的重要工具,进一步得到发展,日趋成熟。阶段特点是:1建立统一的可靠性管理机构。2成立全国统一的可靠性数据交换网。3改善可靠性设计和试验方法。更严格、更符合实际、更有效的设计和试验方法被采用。发展了失效物理研究和分析技术,如FMEA发展为FMECA。更加严格的降额设计 。
我国可靠性工程发展情况:引进早,引用较扎实,有活力。20世纪60年代初电子部成立了“中国电子产品可靠性与环境试验研究所”,进行了可靠性评估的开拓性工作。1965年在钱学森科学家的建议下7机部成立了可靠性质量管理研究所。航天产品采用严格筛选的“七专”元器件。20世纪70年代中因中日海缆需要,电子部开展了高可靠元器件验证试验,发展为加速寿命试验技术。自20世纪70年代后期始,不少大学举办了可靠性学习班培训在职人员,以后开设可靠性课程,招收本科生和研究生。自1984年起,组织制定、引进、颁发了可靠性和无限小标准,形成了比较完整的体系。军工企业开展了可靠性补课工作,进行产品可靠性增长工作,军方开展了可靠性评估和分析工作,电子部5所建立了可靠性数据中心 。
可靠性工程展望:改革开放、建立现代企业制度,使国家与国家的竞争延伸为企业与企业的竞争,可靠性工程也相应快速发展,主要表现是:观念改变。企业领导的观念由过去的“要我重视可靠性工程”变为现在的“我要十分重视可靠性工程”。可靠性工程被社会广泛接受,大学把可靠性理论和技术列为许多专业的专业基础课程。可靠性知识将成为人们的基本常识。许多产品明确了可靠性定量指标和重要的广告词 。
可靠性工程从军工企业发展到民用电子信息产业、交通、服务、能源等行业,从专业变成“普业”。在质量管理体系的ISO认证过程中可靠性管理被作为审查的重要内容。有关可靠性的专业技术标准被重新梳理,纳入到质量管理体系文件之中,成为“说到的必须做到”的管理条文 。
在可靠性技术方面,发展十分迅速。我国载人航天工程自1992年起,至2003年10月“神舟”5号载人飞船圆满完成任务止,共投资190亿元。飞船的运载能力是3人、300千克、7天。可靠性为0.97,安全性为0.997。设计有自主故障判断、自主功能重组能力,在空间即使被撞击破裂,舱内压力仍可保持15分钟,确保航天员更换航天服的时间。参加研制的院所共110个,有3000多个单位参加了产品制造。总共生产了:一个试样、4个正样和5枚运载火箭。“神舟”5号飞船直径2.5米,其上共有600多台仪器、10万个元器件、8万个接点,软件共有70万条程序,其中20%用于正常运行使用,其余都是为出现故障时处置使用的。在发射上升段设计了8种故障模式,运行回收段设计了108种故障模式的处置方案 。

㈦ 结构的安全系数与可靠度是什么关系

可靠度当然可以通过增加安全系数来保证的。可靠度与安全系数是正相关的关系,安全系数的增加将导致可靠度的提高。然而,可靠度研究的关键在于给出定量的关系,安全系数的增加会提高多少可靠度。可靠度是一个表征失效概率的一个量,可靠度越高,失效概率越低。可靠度可以非常直接的让设计者知道结构的失效概率。这是安全系数所做不到的。安全系数概念和可靠度概念分别是结构分析旧,新两个阶段。现代各行业具体问题分析时抗力都不可能由单个标量来清晰定义。如果采用安全系数法,每个安全系数的确定都需要指定一种对应于此安全系数的抗力计算公式,这对于规范制定来说非常不便(规范中的安全系数必须是不随公式变化的),并且也限制了理论模型的发展;而用可靠度方法可以使规范中的安全性定义与抗力和相应荷载效应的任意等效公式独立。安全系数大了可靠度肯定也就被提高了。但你提高安全系数带来的是成本及其他因素如重量的增加。比如一根杆,你按照设计要求设计出来直径是10,你提高设计安全系数那可能就需要12的直径。你增加了大量重量与成本,但可靠性增加却并不明显。可靠度通常偏于学术的概念,表征失效概率,即状态方程小于零的概率。可靠度越高,失效概率越小,结构安全性越高。实际设计和工程上用的是分项系数,是利用目标可靠度进行校正得到的一系列系数,便于使用。其取值要能保证结构满足安全要求和经济要求。

㈧ 可靠性数学理论的结构函数

反映单元的状态及由这些单元组成的系统的状态之间的关系。假定系统由n个单元组成,单元与系统都只有两个状态:正常和失效,分别用1和0表示。用变量xi(取值0或1)表示单元i的状态,尣=(x1,x2,…,xn)是单元的状态向量,用函数φ(尣)表示系统的状态,其定义为: φ(尣)称为系统的结构函数。
通常的系统具有如下的性质:任一单元的失效不会使系统性能改善;系统中不包含多余的对其性能不发生影响的单元。这种系统称为关联系统。这一性质可用结构函数来表达:设φ(尣)是系统的结构函数。对任意的状态向量尣≤у,有φ(尣)≤φ(у),其中尣≤у表示各xi≤yi;对任意的i(1≤i≤n),存在状态向量尣使φ(0i,尣)=0,φ(1i, 尣)=1,其中(0i,尣)及(1i,尣)表示尣的第i个分量分别以0和1代替后所得的向量。
典型的关联系统有:串联系统,即其中任一单元失效则系统失效;并联系统,即当所有单元失效时,则系统失效;k-out-of-n(F)系统,即当其中k或k个以上的单元失效时系统就失效,它是串联或并联系统的推广。在实际中,常用的2-out-of-3(F)系统是由三个单元组成而按多数单元的状态进行表决的系统。这三种系统的结构函数分别为 关联系统研究的问题是复杂系统结构函数的表达式、系统可靠度的求法及其上下界等。为了反映单元和系统功能的渐变性,多状态关联系统的研究已得到重视。
网络可靠性 许多实际系统都可抽象成网络。例如计算机互联网络、通讯网络、输油输气网络等。假定一个网络的顶点和边(见图论)只有正常和失效两种状态,而失效是互相独立的,且已知每个顶点和边正常的概率。从某一顶点能把信息发送到另一个(或 k个)指定的顶点的概率,称为网络的可靠度。在网络可靠度的计算中,因其结构复杂而必须寻找简化网络的方法以及有效的算法,并比较不同算法的优劣。近年来已出现了不少较好的算法,关于计算的复杂性问题也有进展。
故障树分析 简称 FTA。用演绎法按事件发生的前后逻辑关系,找出引起系统失效或某个不希望出现的事件(称作顶端事件)发生的所有事件的可能组合。例如,研究锅炉爆炸事件T。造成爆炸的原因有诸如压力过大等种种事件A,B,…,D。若A,B,…,D之一发生就会引起T发生,则T与这些事件之间的关系就由逻辑门“或”来表示;若A、B同时发生才引起T发生,则T与A、B之间的关系就由逻辑门“与”来表示;循此下去,对A,B,…,D诸事件逐一分析,直到找出最基本的失效原因(基本事件)为止。其中 表示“或”门; 表示 “与”门; 表示事件;○表示基本事件。
对一个顶端事件T 进行故障树分析时,其基本步骤是:建立故障树;定性评定,即找出引起T发生的所有可能的基本事件的组合;定量评定,即根据基本事件发生的概率求T发生的概率。
FTA起源于20世纪60年代初,已用于宇宙航行、核电站安全分析等产业部门。由于这种方法形象直观,便于工程和管理人员使用。这一方法的弱点是建立故障树颇费时间和人力,对于复杂的系统,还难免会漏掉一些重要的失效原因。此外,评定复杂的故障树必须借助于计算机来进行。
对于包含有“非”门及其他逻辑门的故障树的评定方法以及利用计算机辅助建立故障树等,都是目前FTA研究的中心。
复杂系统可靠性分析 一个由1000个单元组成的系统是常见的,若每个单元的可靠度为0.999,单元间彼此独立,任一单元失效均使系统失效,则系统的可靠度为 可见相当之低。因此为提高系统的可靠度(可用度),可采用备件并联工作等手段,或者在系统中引入修理和更换。讨论的问题有:已知系统的结构、单元的寿命和修复(或更换)时间分布、系统中修理工数目和修理规则等,研究系统可靠性的定量指标或者探讨如何合理确定修理工数目或修理规则,使某个目标函数达到最优。通过数学模型,使用马尔可夫过程、更新过程、马尔科夫更新过程、补充变量法等分析方法进行研究,其处理手法与排队论相近。
例如,由一个单元构成的最简单的系统。若系统的寿命和修复时间有参数λ、μ的指数分布,且互相独立。设时刻t=0时系统正常,且失效后修复的系统与新的一样。则系统首次失效前的时间有参数λ的指数分布。利用马尔科夫过程或更新过程可得到时刻t的可用度 以及(0,t】中平均失效次数

㈨ 可靠性数学理论的可靠性的数量指标

假定系统只有正常和失效两种状态。系统在失效前的一段正常工作时间称为寿命。由于失效是随机现象,因此,寿命可用非负随机变量X 及其分布函数F(t)=P{X ≤t}(见概率分布)来描述。
对失效后不加修复的单元,其可靠性用可靠度来刻画。单元在时刻t的可靠度R(t)定义为:在一定的工作条件下在规定的时间【0,t】中完成其预定功能的概率。因此,若单元的寿命为X,相应的寿命(或失效)分布函数为F(t),则R(t)=P{x>t}=1-F(t),其中t≥0。根据上式的概率含义,可靠度R(t)又称为生存函数。
一个生存到时刻t的单元,称之为有年龄t。在其后长度为x的区间中失效的条件概率为 若 存在,则r(t)称为时刻t的(条件)失效率。当Δt很小时,r(t)Δt可解释为单元生存到t时刻的条件下,在(t,t+Δt】中失效的概率。当X是连续型随机变量,即F′(t)=ƒ(t)存在时,则有r(t)=ƒ(t)/R(t),R(t)>0,此时r(t)与R(t)之间有如下的基本关系R(t)= 因此,F(t)、R(t)或r(t中任意一个都可用来描述不可修复单元的寿命特征。
对失效后可修复的系统,其状态随时间的进程是正常与失效相交替的一个随机过程。它的可靠性由不同的指标来描述:系统首次失效前的时间T的概率分布及均值;任一时刻t系统正常的概率,即可用度;(0,t】中系统失效次数的分布和均值等。
寿命数据统计分析、寿命分布及分布类、结构函数、网络可靠性、故障树分析、复杂系统可靠性分析以及可靠性中的最优化等,是可靠性数学理论的主要研究内容。

㈩ 优秀的可靠度工程师需要具备哪些技能和素质

1.优秀的可靠度工程师(Reliability Engineer )需要具备的技能和素质:1)熟知可靠度的理论:结构在规定的时间内,在规定的条件下,完成预定功能的能力,它包括结构的安全性,适用性和耐久性,当以概率来度量时,称可靠度.
可靠度也叫可靠性,指的是结产品在规定的时间内,在规定的条件下,完成预定功能的能力,它包括结构的安全性,适用性和耐久性,当以概率来度量时,称可靠度.
根据国家标准的规定,产品的可靠度是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。
对产品而言,可靠度越高就越好。可靠度高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠度越高,产品可以无故障工作的时间就越长。
2)精通结构理论3)精通概率算法4)精通英语5)熟悉结构可靠度理论 6)掌握可靠度测试技能 7)能够计算可靠度指标 2.在苏州地区一个转正后的可靠度工程师的月薪能有7000元左右!1

热点内容
G41主板支持矿机显卡1060吗 发布:2024-11-20 18:43:49 浏览:932
给你推销一款元宇宙游戏的目的 发布:2024-11-20 18:24:37 浏览:188
地下城堡2挖矿是不够 发布:2024-11-20 18:19:18 浏览:987
手机移动式挖矿社交网络 发布:2024-11-20 18:00:55 浏览:738
adc挖矿怎么报警 发布:2024-11-20 17:57:48 浏览:626
菠萝1挖矿 发布:2024-11-20 17:57:47 浏览:483
比特币创始人卖了 发布:2024-11-20 17:56:54 浏览:835
算力1MH 发布:2024-11-20 17:43:39 浏览:204
比特币拓扑基金 发布:2024-11-20 17:36:20 浏览:656
ltc在哪个位置 发布:2024-11-20 17:28:30 浏览:269