阿里云捐算力
㈠ 阿里云怎么样技术实力方面和亚马逊的云计算相比怎么样
阿里云
优点:品牌大,捆绑淘宝、支付宝等,账号注册和支付方便,产品线完善,自主化程度高;
缺点:售后服务时效性差,工单响应速度经常是半小时以上;磁盘IO是鸡肋;用的人多,公说公有理婆说婆有理;
阿里云是国内最大的云服务商,依托淘宝、天猫、阿里巴巴的多年技术经验,实力还是很雄厚。不过亚马逊作为云计算的开创者,占有全球最大的市场份额,实力不可小嘘。
在这里提一下小鸟云计算,虽然成立时间不长,品牌知名度没有前面两家那么响,但是小鸟云主打高端品质路线,他家服务器的质量很好,安全稳定有保障。
㈡ 如何在短短48小时内用云计算给地球做b超
今年杭州云栖大会上,中国馆地震局的地球物理科学家王伟涛博士在Tech Insight的数据存储技术实战专场做了一场主题分享:名为《云计算在地震学研究中的应用-利用bcs和海量数据创建虚拟地震》。 他介绍,原本需要一年计算时间的整个中国数千个地震台两两之间的五年数据的计算任务,在云计算中狂飙,48小时之内就计算完成了。
这到底是如何实现的呢?
我们的祖先凝望星河闪耀,却花费万年时间才摸索出天体运行规律。
我们的前辈坐看潮涌潮平,却历经千秋万代才能航行到大洋彼岸。
而我们自己,在这片土地上繁衍至今,却仍旧对脚下的大地懵然无知。
从观察记录到规律预测,几乎是人类科学史的全部逻辑。
但每次我们拼尽全力记下的数据,都只是抬高知识瀚海的涓涓细流。
当我们提笔开始繁复演算的时候,期待的是阿基米德跳出浴缸、牛顿举起苹果的那一刻。
王伟涛博士正是这样计算的执笔人,他来自中国地震局。他想知道的,是我们脚下大地的每个细节。
浩如烟海的计算
我们经历的每一次地震,都在提醒自己预测和预警这种灾害的迫切性。但是,我们距离这个目标还很远。
为更好的认识地震这一物理现象,需要极其的详细的地壳结构影像,而为了绘制这张地下地图,又需要详尽的数据计算。 目前为止人类打到地下最深的井是前苏联钻探的科拉超深井,约12.2公里,但是地震的震源深度往往在地下十几到几十公里,当前的科技根本无法在震源深度开展直接观测。
所以我们需要依靠分布在全国的数千个地震台来对地震波进行探测,震波在地下的传播特性,受到地质结构的影响,这也是地震波可以用来绘制地底图像的原理。这些地震台可以感知地震的“大震波”,也同样可以捕捉日常的“大地噪声”,例如海潮拍击大陆的震动。
根据地震波进行地底成像的原理
王伟涛告诉记者,像他这样的地球物理科学家几乎都是半个程序员。 因为从地震波到地底成像,中间要经过超越一般人想象的大规模程序计算。他的计算模型是这样的: 每一次震动都会由近至远依次传递到各个地震台,所以理论上来说,每个地震台都会对同一次震动做出自己的记录,这些数据既有差异有又联系。
利用这些数据,可以计算出一些“虚拟地震”。 用每两个地震台之间进行数据互相关对比计算,就可以获取研究中国地下的总体结构所需要的宝贵数据。
虚拟地震可以模拟出和真实地震一样的数据,所以可以用于本来没有发生地震的地区的地底成像 每个地震波数据都有 E,N,Z(东西,南北,垂直)三个向度的分量,全国2000多个永久和临时地震台就是 6000 个分量,每年的数据量大概是 30TB,而我们的总数据量已经到了 PB 级别。
由于我们要相互对比每一个地震台每个时间点的每个分量数据,这些计算量是呈指数级增长的。 王伟涛的智慧和经验,恰恰表现在他所设计的程序和算法之上。 但耗费很大心力完成这个算法的王伟涛博士发现,他才踏上了万里长征的第一步,还有一个巨大的困难横亘在面前。
图中每两个地震台之间的连线(灰色)都是需要计算的数据,总计算量极其庞大。如果使用单机对这些数据进行计算,大概需要七年时间。按照一个人的职业生涯二十年计算的话,我在退休前只能完成三次计算。在这种情况下,大规模分布式的云计算似乎成为了唯一的选择。
然而,云计算的机理绝不像听起来这么轻盈。记者也采访到了中国地震局的合作伙伴阿里云的童鞋们,在他们眼里,云计算和科学研究一样,集合了人类最顶尖的智慧。
所需存储空间、计算量和预计单机计算所需的时间
分布式存储:有关农场的游戏
云存储就像一个大的农场,每个服务器就像一个工人,而你的数据就是羊。阿里云存储高级专家承宗说。看来他是个牧场达人。“分布式存储”,可以看作分布式计算的基础条件。也就是说,你的羊要先放进阿里云的“农场”,它的工人才会帮你照料、喂养、剪毛、纺线。
对于王伟涛博士的数据来说,仅仅是存储在云端,就需要无数“黑科技”。
在将要进行的计算中,计算系统会对存储系统进行大规模的访问。而这些访问必须要平均地打到服务器上,绝不能存在热点。而这还不够,由于服务器的硬件故障在大规模集群中会变成一个常态事件,所以必须做好资源的实时调度和提供故障容忍能力。
例如保证在摘掉一块硬盘的时候,其余的硬盘要迅速用备份数据把存储追齐。
承宗举了以上两个例子。这两个例子换成农场的比喻,大概是如下表述: 农场对于工人的工作量要平均分配,绝不能出现“对着一个羊薅羊毛”的情况发生。另外,农场每天都有工人病倒、请假,要在最短的时间把他的工作合理分配给很多人,这样别的工人也不至于负荷过大。
整个阿里云的分布式文件系统,被命名为盘古。在承宗心里,盘古还有很多智能化的“黑科技”。
他举例了一个例子: 我们人类看到的磁盘都一样,但是盘古看到的磁盘各不相同。它会根据历史访问数据的积累,例如写入的速度和效率,对每一块磁盘的健康度进行打分。
对于健康状况不好的磁盘,就相应减轻一些工作分配。这些底层的技术,都可以为王伟涛博士下一步真正的计算做准备。
承宗说,在分布式计算中,数据带宽成为了一个重要的参数。从王伟涛博士的角度来看,如果把数据存储在自己的服务器上,仅仅利用阿里云的计算能力进行结果输出,是不能实现的。原理很简单,分布式计算的所有服务器都向一个存储单位发送数据读取请求,带宽会被瞬间堵死,再强大的算力都无法发挥。
至于具体数据,百兆光纤的带宽一般是 100Mb/s,而硬盘的带宽最高可达几Gb/s,而阿里云存储内网访问带宽(云计算系统内部)可以高达Tb/s级别。
批量计算:建造一座金字塔
接下来,王伟涛博士的数据就会进入最终计算的环节。我熟悉了自己习惯的 Linux 系统,所有的计算代码都是在这个环境中完成的,如何让我的代码在云计算的环境中发挥作用,是一个很重要的问题。
地底成像数据的计算流程
在地震科学研究方面,阿里云显然没办法提出算法建议,所以他们需要做的是,提供一个通用的接口,让王伟涛可以使用自己机房中的电脑、界面和Linux 系统,来对云上的计算进行控制。
阿里云提供的兼容和适配能力,是阿里计算专家林河山颇为骄傲的地方。 王博士在此之前没有使用过分布式集群,也没有使用过“超算”,所以直接跨越到云上,从操作和控制层面来说,对他来说会是个挑战。
我们提供的计算接口可以让单机程序不做修改就高效执行在云环境下。用户通过几句简单的命令就能在云上调动大规模的计算资源进行分析,而不需要学习复杂的分布式计算知识。其实很多从其他地方过渡到云计算的人都会有这样的问题,所以不仅是王博士,很多其他用户也会用到我们的通用计算接口。他说。 这个时候,大规模计算的障碍基本被扫清了。
不过,林河山告诉记者,云计算真正的核心技术,还在于批量计算的算力调度之上。
大规模计算的加速流程和模式 计算规模扩大之后,就会造成对存储资源的访问非常频繁,这时,对于访问的并发量的控制就要非常“小心”了。
王博士的应用有非常多的小I/O请求,如果每一次I/O请求都直接访问云存储,由此带来的延时会对计算效率造成影响。为了进一步优化计算性能,批量计算采取了“分布式缓存”的策略,把有可能会用到的数据,提前缓存到计算节点周围。这样,就可以让计算能力不受集群规模的限制。林河山说。
而即使是这样,还远远不够,对于数据访问究竟采取多大“粒度”,是考验系统智能的重要时刻。如果一次读取过多,可能造成带宽拥堵,如果一次读取过少,又会造成频繁访问。而针对不同类型的数据,都要做出合理的预判,自动地读取,是一项艰巨的任务。
打个比方: 这如同建造一座金字塔,数万名“奴隶”要分工合作。工程师要决定:是牺牲速度一次性运输多个石块到现场,还是牺牲数量,一次快速运输一块石头到现场。
同样,面对浩瀚的金字塔工程,每时每刻要分配多少奴隶来搅拌砂浆,分配多少奴隶来搬运石块,分别分配多少奴隶来负责建造各个区块,这个即使是工程师都需要仔细考量才能完成的任务,都要交给系统自动完成,难度可想而知。
当然,如此繁复的计算过程,出错是经常会发生的。
林河山举了一个例子: 在渲染追光动画的动画片《小门神》时,阿里云的容错机制就发挥了作用。(当时在峰值有 2000台服务器参与了大规模批量计算。)一般情况下, 对于视频的渲染工作是一个连续的长流程。如果某一帧渲染中哪怕只有一个节点出问题,都会造成访问的大规模延时,造成逻辑上的拥堵,产生“热点”。
林河山说:“阿里云的做法是,在计算出错之后,在最短的时间内重跑,如果在跑的过程中确认节点存在问题,还会自动调度到另一个地方,这些对于用户来说都是没有感知的,但是在背后,我们必须做出大量的努力。
绘制地下的世界
原本需要一年计算时间的整个中国数千个地震台两两之间的五年数据的计算任务,在云计算中狂飙,48小时之内就计算完成了。
地球内部成像,恰似人体的B超
这在云计算时代来临以前是无法想象的。 从科学研究的角度来看,这些数据是原始的地震观测数据的数据产品,同时也是后续科学研究所依赖的重要数据,可以很好地支撑王伟涛进行接下来的研究。 从外界看来计算过程非常顺利,而刚才我们所感受的一切艰辛,都只发生在背后的代码世界。
借用阿里云产品总监李津的话: 当计算结果输出的时候,我们所有的技术人员都沉默了。
我们多么渴望这样的数据早几十年被计算出来,这样我们就能为人类认识地震这一自然灾害争取宝贵的时间。
抛开商业的云雾,可以看到云计算真正的的锋利所在。
王伟涛的研究并没有停止,他说: 目前为止,我只做了2011年到2015年的一个向度上的数据分析,未来还会继续把更多向度和频率上的数据进行计算。科学研究的精确度是可以一直提高的。越来越精确的地底数据,会为矿产勘探、防震减灾和地震科学研究提供非常强的支持。
科学的有趣之处,正是在于不断地尝试。有可能一觉醒来想到新的方法,就要重新改写公式和代码,通过计算进行验证。
也许有一天,属于王伟涛的那只苹果会悄然落下。那一刻,是王伟涛的胜利,也同样是人类计算力的胜利。 我们倾尽全力提高算力,把数据的涓涓细流汇聚成洪荒之力,只是因为我们不愿对脚下的大地懵然无知。
㈢ 阿里云强大的计算能力和安全防护能力已被业界和客户认证这句话有语病吗
阿里云强大的计算能力和安全防护能力已获得业界和客户的认可。
㈣ alpha-go的计算能力等同于多少台服务器
找到一篇文章
这么说吧:1997年下赢国际象棋冠军卡斯帕罗夫的“深蓝”是一台超级计算机,而即将和李世石对决围棋的AlphaGo却是谷歌旗下公司DeepMind开发出来的人工智能程序。强行把这二者拉在一起比较……少年我们还是来谈谈世界和平吧。不过AlphaGo作为程序,最终还是要运转在计算机上才能去和人类比个高下的。所以把问题换成“即将和人类下围棋的那台计算机到底比深蓝厉害多少倍?”
我们还是能够简单计算一下给出大致答案的。毕竟在衡量计算机性能方面,我们已经有了一个相当统一的标准:每秒浮点运算次数,为了方便起见,我们下面一律称之为“FLOPS”。
千万别被“浮点运算”这个计算机术语吓跑,说人话的话,浮点运算其实就是带小数的四则运算,比如1.2加2.1就是一个典型的浮点运算。如果你的小学数学老师不是美国人的话,那么我们估计这会儿你早就心算出结果是3.3了。不过这对计算机来说,这个问题没那么简单。
我们知道,计算机是以0和1构成的二进制数字进行运算的,比如在基础的二进制里,1就是1,2就变成了10,3是11,4是100……这种运算方式让我们可以用最简单的电路元件组装出稳定有效的计算机器,但它也带来一个问题:计算机能够处理的数字只有整数。如果想不借助任何其他的数学方法,用0和1表示一个0.1……少年我们真的还是来谈谈世界和平吧。
解决这个问题的办法很简单:0.1可以看成是1除以10的结果,我们想让计算机计算一个带小数点的数字,只要告诉CPU这是一个被1后面加了多少个0整除的整数就行了。不过这样一来,计算机在处理小数点的时候,就多了好几个运算步骤。所以进行浮点运算的速度也就成了衡量计算机性能的标准。
拿在国际象棋上击败人类的深蓝来说,它的计算能力是11.38 GFLOPS,意思就是深蓝能在每秒钟里计算113.8亿次带小数的加减乘除。而在二战期间帮助美国设计制造原子弹的第一台通用计算机ENIAC,它的性能只有300 FLOP。
在今天看来,深蓝的性能怎么样?三个字:弱爆了。单就PC中使用的CPU来说,早在2006年,英特尔推出的第一代酷睿2就已经稳稳地超过了深蓝。这还没有算上显卡里GPU带来的效果加成,今天最普通的集成显卡,其性能也已经超过了700 GFLOPS。如果真要在性能上比个高下,深蓝这种上个世纪的超级计算机,就算组团也不一定能单挑你面前的这台笔记本电脑。
那么今天的超级计算机已经达到了什么样的性能水平?我们国家的天河二号是世界最快的超级计算机,它浮点运算能力已经达到了33.86 PFLOPS。也就是说,深蓝要在性能上增长到自身的30万倍,才能和天河二号相提并论。
不过对于深蓝来说,这样的比较实在是太不公平。因为即便在当年,深蓝也不是速度最快的超级计算机。相比之下,只有通过谷歌AlphaGo使用的电脑,我们才能比较出这20年里,我们的计算机到底经过了怎样惊人的发展。
根据谷歌团队发表在《自然》杂志上的论文, AlphaGo最初是在谷歌的一台计算机上“训练”人工智能下围棋的。按照论文里的描述,谷歌利用这台计算机,让AlphaGo的围棋水平提升到了与欧洲冠军樊麾接近的地步。不过论文除了提到这台计算机装有48个CPU和8个GPU之外,对计算机的性能连一个数字都没有提到。好在AlphaGo是在云计算平台上运行的,我们只要找来竞争对手的计算机数据比较,就可以了解到大概了。
比如说去年12月,阿里云对外开放的高性能计算服务。按照阿里云的描述,这些计算机的单机浮点运算能力是11 TFLOPS,而且同样可以用来训练人工智能自行学习。如果谷歌的计算机性能与阿里云接近的话,那么AlphaGo所驱动的硬件,性能至少是深蓝的1000倍。
但故事到这里还没有完,AlphaGo并非只有“单机版”一个版本。为了达到更高的运算能力,谷歌还把AlphaGo接入到了1202个CPU组成的网络之中。联网后的AlphaGo算力猛增24倍,一下子从“单机版”不到职业二段的水平,跳跃到了职业五段上下的水准。
所以AlphaGo比深蓝厉害多少倍?估计这会你已经得出答案了:2.5万倍。从这个角度,我们也能看出来,围棋究竟是怎样复杂的一种智力游戏,以至于计算机的性能需要20年的提高,才能在象棋上战胜人类后,再在围棋棋盘面前,坐到人类顶尖选手的对面。不过归根揭底,AlphaGo最重要的成就并不是采用了性能多么优秀的电脑,而是第一次让程序可以以人类的方式思考、学习和提高。所以过几天的比赛,无论谁输谁赢,我们见证的都是一个崭新纪元的开端。
当然别忘了关注新浪科技,我们到时候会在最前方,带你迎接这个新纪元的第一道曙光。
㈤ 阿里巴巴发布第一台云电脑有多大
9月17日,阿里云发布了第一台云电脑“无影”,突破了传统电脑的物理限制,一张“小卡片”就具备普通电脑数十倍的性能。
据悉,云电脑其实是利用云计算技术在远程虚拟出一个和个人电脑相同的主机,用户网络访问时,能获得和使用个人电脑相同的使用体验。
阿里云智能总裁张建锋表示,未来每个人都可以在云上拥有一台超级电脑,可以根据需要随时随地扩充算力,无影大规模推广使用后,可以为全社会节约50%的计算资源,避免算力的浪费。
(5)阿里云捐算力扩展阅读
已有部分地方政府提出购买意向:
“无影”云电脑拥有许多种优势,比如不需要物理主机,用户可以节省空间,此外云电脑采用非常安全的加密机制,有效的杜绝了木马、病毒对用户的重要信息窃取,与阿里云数据中心具有相同的安全防护等级,非常的靠谱。
阿里云电脑“无影”还具有智慧属性,它可以根据你的工作习惯、工作内容、智能化的组合你的工作界面,让用户一打开“无影”就可以高效的完成自己的工作任务,大大的提升效率。
据悉,目前无影仅向企业办公市场发售。未来或将向个人用户提供服务,且已经有部分地方政府提出了购买意向。
㈥ 为什么阿里云肖力:“云计算大数据”应该反过来叫“云数据大计算”
人类的认知总是被碾压,而且猝不及防。没办法,名为“科技”的火车正开得越来越快 —— 中国引入互联网才23年,中国首笔互联网交易发生在9年前,智能手机也兴起才几年,这些却都已成了生活中不可或缺的一部分。如今这列火车驶向一条名为”智能“的轨道,在可预见的未来又将开始新一轮加速。
5月23日上午,在云栖大会·成都峰会上,阿里云资深总监肖力用一场名为《通往智能之路》的演讲,和在场的人聊了聊他的看法。
㈦ 在云计算领域,阿里云实力如何
(纳德拉在接受《财富》采访时直言阿里云是三大对手之一)
两个市场研究机构Gartner和IDC分别在17年和最近承认,按照排名亚马逊AWS、微软、阿里云是世界前三大云计算厂商,在业内阿里云跟亚马逊AWS、微软Azure一起被称为国际云计算市场的“3A”厂商,不过阿里云的增速是三家里最快的。当然更有说服力的是竞争对手的话:
㈧ 阿里云为什么取消了用集分宝充值 有知道的吗
您好:集分宝是由支付宝提供的积分服务,具有现金价值,但是不可以提现,可在淘宝网、天猫、良无限等网站购物,支持缴水电煤、还信用卡、捐款、兑换礼品等业务,100个集分宝抵扣1元钱。关于集分宝的使用情况,您可以直接和支付宝相关工作人员联系咨询,支付宝24小时热线是:95188,在线联系方式:http://help.alipay.com/lab/index.htm 。
温馨提示:一淘在线留言反馈页面上线啦,若有任何关于一淘网的问题,请移步至以下页面提交:http://i.etao.com/uservoice/add.html 。
感谢您对一淘网的关注与支持!