当前位置:首页 » 算力简介 » 门罗算力计算器

门罗算力计算器

发布时间: 2022-05-28 18:56:02

比特币矿机日收益是多少 比特币矿机收益怎么计算

首先挖比特币需要的成本基本可以分为三大块:
1、 机器成本:购买矿机的成本。
2、 电力成本:机器挖矿所消耗的电力成本。
3、 辅助成本:人员维护、网络、线缆耗材、散热等
简单举个例子,就拿市面上功耗较小的蚂蚁s9的矿机来说算力是13.5t,功耗是1400w
矿机在二十四小时运行的情况下:1.4千瓦*24=33.6度
市面上功耗较大的机器神马m3:算力是11.5t,功耗是2150w
二十四小时运行情况下单台耗电量:2.15千瓦*24=51.6度
大概就相当于比较节能的空调的用电量,但是比特币矿机是需要二十四小时不间断运行的,一年算下来就单台机器耗电量就是非常大的,家用电的阶梯电价成本太高,在行情不好的时候甚至可能收益不够电费支出的,所以目前挖矿都会选择在矿场托管,可以拿到便宜电,降低挖矿成本价,三毛以下的价格是比较理想的价格,可以保持比特币价格跌到低谷时期还有一定的收益。
就目前比特币的挖矿难度来看:
btc每t收益:1TH/S*24H=0.00007087btc
按综合12t的机器算力来算每天产量为:
0.00007087*12t=0.00085044btc
那么单台挖到一个btc的时间需要:
1/0.00085044=1175天
十台矿机挖到一个btc的时间需要:
1/0.0085044=117天
一百台矿机挖到一个btc的时间需要:
1/0.085044=11.7天
也就是说按照目前的难度来算,大概单台矿机需要三年的时间可以产出一枚比特币,十台矿机需要3.9个月可挖一个比特币,一百台矿机只需要11.7天可挖出一个比特币,投入单台机器成本价8500左右,十台在85000左右,一百台投入850000,不到一百万,一个月收入超过两枚比特币,按目前的币价来算大概价格十二万,如此看来,目前比特币挖矿的收益虽然不及之前,但相较于其他投资项目还是很可观的。
然而这些收益不包括扣除电费成本,和后期的机器维护,所以挖矿的前提也是要找好便宜电费的矿场。量大的话更需要找到一个安全靠谱、稳定的矿场,更主要的是需要便宜的电费来拉低成本价。

⑵ 霍华德·艾肯

艾肯1900年3月8日出生在美国新泽西州的霍伯。肯(Hoboken,N.J.),但在印第安那州首府印第安纳波里斯(Indianapolis, Indiana)长大。由于艾肯的家是一个单亲家庭,家境清贫,他高中就读于一所名为“阿森纳”的职高(Arsenal Technical High School),白天上学,晚上在当地一家供电和供热的公司上12个小时的夜班,负责操作开关板。后来,职高校长知道了他的情况,就专门安排了一些考试,让艾肯通过后提前毕业。

毕业以后,艾肯来到威斯康辛州首府麦迪逊,在麦迪逊煤气和电力公司(Madison Gas & Electric Co.)找到一份工作,这份工作允许他同时在威斯康辛大学上学。1923年,艾肯大学毕业,取得电气工程学士学位,并立即被提升为公司的总工程师。 1928年,他离开原公司到西屋电气和制造公司,3年以后又转到密尔沃基的线材公司(Milwaukee Line Material Co.)。1933年,艾肯感到干电气这一行是选错了专业,于是下决心辞掉了工作,重返校园学习物理,这时他已33岁。艾肯先进了芝加哥大学,但很快转至哈佛大学,1937年和1939年先后取得硕土和博土学位。

艾肯的博士论文课题是“空间电荷传导的理论”(Theory of Space Charge Conction)。这一课题的研究需要对非线性微分方程进行复杂的计算,而艾肯手头只有手摇台式计算机可用,常常为解一个方程而耗费大量时间,这导致他产生了研制自动计算机的想法。在深入研究了计算技术的先驱、英国数学家巴贝奇(Charles Babbage,1791—1871)工作的基础上,1937年艾肯提出了自动计算机的第一份建议书,即著名的文献“Proposed Automatic Calculating Machine”。在这份长达22页、而且是双面打印的文件中,艾肯提出了他的设计目标,也就是后来被称为Mark I的计算机的四个特征:

Mark 3
1.既能处理正数,也能处理负数。

2.能解各类超越函数,如三角函数、对数函数、贝塞尔函数、概率函数等。

3.全自动。即处理过程一旦开始,运算就完全自动进行,不需人的参与。

4.在计算过程中,后续的计算取决于前一步计算所获得的结果。

艾肯原指望从学校取得经费支持来研制他的计算机,但没有如愿,幸而得到商学院布朗教授(Ted Brown)和天文系夏伯利教授 (Harlow Shapley)的引荐,和IBM公司的老板沃森取得联系。有远见的沃森正致力于将IBM公司从单纯制造办公设备的公司转变为制造计算机的公司,因此对艾肯的计划给予了全力支持,于1939年3月签订了合作制造Mark I的协议。沃森把公司的主要技术骨干如莱克(Clair D.Lake,1888—1958)、哈密尔顿(Frank Hamilton,1898—1972)、杜菲(Benjamin Durfee,1897—1980)等都投入了这一项目,由莱克负责工作。

莱克是IBM公司的资深工程师,1915年就从汽车行业转至IBM公司,是一个出名的发明家。但由于第二次世界大战的爆发,艾肯被应征入伍,到位于 Yorktown的海军水雷战学校(Naval Mine Warfare School)任教官,只能断断续续地进行Mark I的开发工作。幸好有一天,一位有影响的、了解艾肯情况的海军高级军官遇见艾肯,惊诧地问他为什么在这里而不去研制Mark I?艾肯回答说,不是您下命令让我在这里工作的吗?这成了一个转机:几个小时以后,新的命令下达了,委任艾肯的海军计算项目的负责人,并立刻离开海军学校回哈佛大学工作。后来艾肯开玩笑地说,他是世界上唯一一位计算机的指挥官。

机器工作中
经过艾肯和IBM公司长达5—6年的合作和努力(当然也包括难以避免的摩擦和碰撞),Mark I终于在1944年5月完工并投入使用。它用了3 000多个电机驱动的继电器,是一个重达5吨的庞然大物造价高达50万美元(有的资料甚至说超过100万美),其中IBM公司的投资占2/3,其余1/3 由海军资助。其核心是71个循环寄存器(rotating register,把运算中暂时保存操作数的设备叫做register就始于Mark工),每个可存放一个正或负的23 bit的数字。数据和指令通过穿孔卡片机输入,输出则由电传打字机实现。其加法速度是300ms乘法速度是6 s,除法速度是11.4 s。这与现代计算机当然无法相比,即使与晚它两年诞生的世界上第一台电子计算机ENIAC相比也显得十分落后,但它却实实在在是世界上第一台实现顺序控制的自动数字计算机,IBM公司方面把它命名为ASCC,即Automatic Sequence Controlled Calculator,是计算技术历史上的一个重大突破。4个专家过去用3周时间才能完成的任务,在Mark I上只要19个小时就完成了。而且它非常可靠,每周工作7天,每天工作24小时,这是初期的电子计算机无法比拟的。

Mark I主要供海军舰船局(Bureau of Ships)用于计算弹道和编制射击表,也曾在曼哈顿计划中计算有关原子弹的问题。此外,它也为哈佛大学内外的科学家服务。例如,哈佛大学经济系的著名教授列昂杰夫(Wassily Leontief)在研究输入—输出分析中就曾用Mark I解各种线性方程问题。1949年,哈佛大学的计算实验室(这是1946年艾肯正式从海军退役重回哈佛大学后创建的,艾肯任主任直至他退休)年报,即著名的Annals of the Computation Laboratory of Harvard University,公布了19个数学表,都是Mark I的成果。尤其是在贝塞尔函数(Bessel Function)的计算上,Mark I发挥了巨大的作用,因此哈佛大学的数学家给Mark I起了一个亲切的称呼,叫做“贝茜”(Bessie)。1944年10月14日American Weekly周刊在报导Mark I时,把Mark I称做“超级大脑”(super brain),说它能解物理、数学、原子结构等方面的各种问题,并且夸张地说,也许它还能解决人类起源这一难题。

Mark I工作到1958年才退役,现在还在美国被仔细地保存着。

Mark I

继Mark I之后,艾肯又先后研制成MarkⅡ(1946年)、MarkⅢ(1950年)和MarkⅣ(1952年),但IBM公司没有继续支持这些项目的开发。事情缘于在庆祝Mark I落成的典礼上,沃森受到冷遇,而且艾肯在致词中几乎把Mark I工成功的一切功劳归于自己,这使沃森万分恼怒,从而中止了对艾肯和哈佛大学的一切支持。MarkⅡ是为海军在弗吉尼亚州的Dahlgren试验场生产的,其可靠性在试验场经历了严格考验。据记载,1947年6月26日,舰艇主炮组的几门19型火炮齐发了19发,在震天动地的炮火声中,附近的MarkⅡ 没有一个继电器误动作,报告结论是炮轰对计算机的正常运行没有造成任何干扰,因此不需要任何特殊的保护措施。从MarkⅢ开始,艾肯开始采用电子元器件,其寄存器是由电子管电路组成的,数据和指令则放在磁鼓上,磁鼓容量为4350个16 bit的字以及约4000条指令。用户仍然是Dahlgren试验场。艾肯的最后一台计算机Mark Ⅳ则是为空军研制的。它加入了磁心移位寄存器和半导体二极管电路。有关Mark I到Mark Ⅳ的基本数据如表所示。(表格加不上)

Howard Hathaway Aiken
在开发Mark计算机的同时,艾肯还致力于开展计算机的教育和培训。1947—1948学年,艾肯率先在哈佛大学开设了“大型数字计算机的组织”这一课程,其后不久又开设面向计算机的“数值分析”。在艾肯的努力下,哈佛大学成为在世界上最早引入计算机研究生课程教学与授予计算机硕士和博士学位的大学之一,艾肯本人共带出了15名博士生和更多的硕土生,这些人大多成为计算机领域早期的骨干力量,其中包括图灵奖和计算机先驱奖获得者“IBM/360之父”布鲁克斯(Frederick Phillips Brooks,Jr.)和“APL之父”艾弗逊(Kenneth Eugene Iverson),以及在1994年同样获得计算机先驱奖的荷兰学者勃浴天(Gerrit A.Blaauw)。艾肯还主办了无数有关计算机的培训班、讨论班、学术研讨会,美国和世界各国的计算机学者都从中受益匪浅,对推动与促进计算技术的发展起了重要作用。有评论认为,艾肯在这些方面所作出贡献的意义甚至比他开发Mark计算机的意义还要大。

艾肯的著作不多,1951年他和他的同事编写出版了《电子计算和控制电路的综合》(Synthesis of Electronic Computing and Control Circuits)一书,是这方面的第一本专著。但由艾肯主编、由哈佛大学出版社出版的30卷《计算实验室年报》(Annals of Computation Laboratory)则是艾肯留下的极为珍贵的财富,其中包括详细介绍和描述Mark I—MarkⅣ的3卷年报,有关大型数字计算机和开关理论的4卷会议录,以及23卷的各种数学表。此外,艾肯还向海军舰船局、原子能委员会、空军、贝尔电话实验室、美国自然科学基金会NSF、美国煤气协会和爱迪生电气学会等递交过大量有关的技术报告,总数达到140卷,其数量之多、内容之丰富和深刻令人叹为观止。

艾肯获得的荣誉与奖励很多。IEEE除了授予他计算机先驱奖外,还曾授予他John Prize奖和爱迪生奖。富兰克林学会授予他John Prize奖。海军授予他“杰出公众服务奖”(Distinguished Public Service Award),空军则授予他“特等公民服务勋章”(Decoration for Exceptional Civilian Service)。他的母校威斯康辛大学授予他“杰出专业服务奖”(Testimonial of Eminent Professional Services)。法国和比利时政府也都授予艾肯以该国公民的最高荣誉称号或奖励(法国是Chevalier de Legion d’Honneur,比利时是Officer’s Cross of the Order of the Crown)。艾肯是美国艺术和科学院院士,也是美国研究院NSC在1946年建立的高速计算机委员会的首批成员之一。此外,他还是西班牙和瑞典的国家级学术机构的名誉顾问或外籍院士。

艾肯于1961年从哈佛大学退休,移居佛罗里达州的Fort Lauderdale,受聘担任迈阿密大学信息技术教授,帮助该校制定了计算机科学的教学大纲并设计了它的计算中心,同时还创建了他自己的公司,叫做 "Aiken Instries”,主要从事技术咨询。1973年3月14日,也就是刚度过他的73岁诞辰一个星期,艾肯于密苏里州的圣路易斯因突发心脏病去世。

大器晚成的霍华德·艾肯教授 编辑本段回目录
我们回到1939年至1944年,也就是第二次世界大战期间(1939年9月希特勒侵占了波兰,英、法对德宣战)。这时在哈佛大学出现了机电式计算机,即Howard Aiken 的Harvard Mark系列计算机。这些计算机,与后来的ENIAC相比,从体系结构的观点看,还不算现代意义的大型计算机,但它们揭开了计算机时代的序幕。

??1900年3月9日霍华德·艾肯(Howard Hathaway Aiken)诞生在美国新泽西州Newark市的Hoboken镇。中学毕业后,他进入威斯康星大学读书。大学毕业后,艾肯1923年至1928年在麦迪森煤气公司(Madison Gas)工作。1928年至1931年在西屋电气制造公司(Westinghouse Electrical and Manufacturing Company)担任总工程师。1931年至1932年在线材公司(Line Material Company)任职。然后,它在哈佛大学物理系于1937年获得硕士学位,1939年获得博士学位,可以说是大器晚成。

Howard Hathaway Aiken工作中
??留校工作后,1939年至1941年担任讲师,1941年至1946年为副教授,1946年晋升为教授。1947年至1961年他一直担任哈佛计算实验室的主任。1961年艾肯离开哈佛大学,去迈阿密大学担任信息技术教授,在那里工作到1973年。1973年3月14日在密苏里州的圣路易斯逝世。

??深受巴贝奇影响

??当他在哈佛物理系作研究生时,就开始计划建一个大型计算机器。1936年艾肯就向物理系提过他的建议,系里并没有理会对计算机器的需要。系主任桑德斯(Frederick Saunders)教授告诉艾肯,实验室一位技术员Carmelo Lanza说过有一个类似的计算装置,就存放在科学中心的阁楼上。这引起艾肯的极大兴趣。Lanza带他去看了机器,原来这是100多年前英国数学家和哲学家巴贝奇(Charles Babbage,1791-1871)未完成的分析机(analytical engine)的一些黄铜齿轮部件。艾肯立刻意识到他与巴贝奇脑海里有相同的构想。巴贝奇由于没有钱、没有材料而使梦想未能实现,而艾肯相信他会幸运得多,他将有更多的成功机会。

??后来,巴贝奇的孙子把这些黄铜部件和一堆祖父的书籍送给了艾肯,这些宝贝在艾肯的办公室里占据了相当一块地方。对来访者,艾肯总是指着巴贝奇的书说:“这就是我的全部计算机教育,我正是从这些书里获益良多。”

??关于计算机的建议

Harvard Mark I
??艾肯当时研究的是真空管中空间电荷的传导理论(theory of space-charge conction in vacuum tubes),他的研究工作需要对微分方程求解,这些方程没有精确解,只能用数值方法求近似解。他需要的计算工作量是当时台式计算器根本无法满足的,大量数据用手工输入几乎是不可能的。在他的选择失败后,他决定使用穿孔卡装置来输入数据。1937年他又写了一个关于庞大的计算机器的建议。他写到:“为了节省在算术计算上的时间和精力,避免人们发生错误的倾向,这种期望就同算法科学本身那样是完全可能的”,当时计算机还被认为是“懒汉的思想”而遭到嘲笑。

??他在建议报告中描述了对这个机器的看法,特别是用于科学研究的专门设计,使之与普通穿孔卡机器有明显的不同。他列举了四条要点:

??第一,一般机器只能处理正数,而科学机器必须能同样处理负数;第二、科学机器必须能处理诸如对数、正弦、余弦、以及大量别的函数;第三、计算机应该对科学家非常有用,它一旦投入运行,就能频繁地处理大量的数值数据,直到计算完成而无须人为的干涉;第四、这种机器能计算行而不是列,这能更好地保持数学事件的顺序。

??IBM慷慨赞助

??物理系的领导终于同意给艾肯所需要的房间,但他必须首先建造这个机器。艾肯把他的第一份建议报告送给门罗计算机器公司(the Monroe Calculating Machine Co.),结果很快被退了回来,不过门罗公司也告诉他可以试试IBM公司。

Mark 3 上时代封面
??这又促使霍华德·艾肯与IBM公司接触。结果IBM的总裁沃森(Thomas J. Watson,Sr.,1874-1956)颇有远见卓识,对此一拍即合,立即斥资20万美元赞助,支持建造艾肯梦想的机器,在当时这真是一个令人吃惊的数字。

??由于老沃森的深谋远虑,使IBM 公司在同类电气电子公司中率先进入计算机领域,这个战略性的决策为IBM公司的发展奠定了牢固的基础。

??于是签约允许艾肯与IBM三位工程师合作,在位于Endicott的IBM实验室建造计算机。该机器从1937年开始建造,直到1943年底结束。工程师坎贝尔(Robert V. D. Campbell)监督了最后的机器组装工作。完成的机器有8 英尺高、51英尺长、2英尺宽。该机器重35吨,由76万个零件组成,包括2200个计数齿轮、3300个继电器和530英里长的导线。当时它称为IBM ASCC 计算机(Automatic Sequence Controlled Calculator),能完成五种运算:加、减、乘、除、以及引用先前的结果。

??Mark计算机在哈佛落户

??如上所述,艾肯的思想深受巴贝奇著作的影响,他把建造ASCC的项目看作是完成巴贝奇曾经设计但并未成功的事业。的确,ASCC与巴贝奇的分析机有许多共同之处。虽然它曾经被尊称为第一台数字计算机,但它的体系结构却与现代计算机有明显的区别。ASCC是用电力驱动的,但它的主要部件仍然是机电式的,即开关元件是通过电磁力而动作的继电器。它是由许多计算器组成的,每个计算器都在自己的控制单元引导下处理着同样的问题。即它有72个存储寄存器和处理单元来完成乘法与除法运算。机器内部既不能存储指令,又不能存储数据。ASCC由穿孔纸带上的指令序列来控制。穿孔卡则用来输入数据,而机器的输出则用穿孔卡、或者用电传打字机。该机器的字长是23位,它加、减这样的两个数用3/10秒,相乘用4秒,相除用10秒。

??ASCC计算机于1943年制造完成后,由IBM公司赠送给哈佛大学,并改名为Harvard Mark I计算机,随后就把它搬到哈佛大学。1944年8月14日哈佛大学正式启用这台计算机,它一直运行了14年之久。该机器最早计算的是物理学和天文学问题,例如电磁场分布,长焦距镜头的积分计算。后来的计算则与雷达以及新墨西哥州Los Alamos实验室关于原子弹爆炸的方程式有关。总之,这台机器为军方的计算项目做了许多工作,特别是为美国海军的射击与弹道进行了大量的计算。

当年机器
??编程与应用

??格瑞斯·霍普(Grace Hopper,1906-1992)从1944年开始与艾肯在Mark计算机上一道工作,她侧重在软件开发方面。

??要使机器工作,工作人员必须编写程序把问题转换成计算机能读的代码。然后这些代码再转换成穿孔纸带上的孔,用来表示简单的指令。纸带插入读孔机后,一系列的检测器能觉察到孔的存在,于是就能关闭相应的继电器。这些继电器开关把信息传给机器的其他部件,其中的寄存器就存储着数据。基于这些数据进行有关的演算,最后的结果则由自动打字机打印出来。

??最常使用的指令集合可以存储起来以备今后使用,反复调用它们就可以节省时间。格瑞斯•霍普后来发明了编程语言COBOL,率先使用了这些子程序,现在的程序员把它们称为库函数。她还在这个实验室里发现了在继电器里压碎的飞蛾,并把它称为计算机的“bug”,后来人们就把软件中的错误也称为“bug”,把排除软件中的错误称为“debug”。

??艾肯教授的研究生、1954年毕业的Anthony Oettinger博士曾描述过机器的工作情况。他说:“当机器运行时,整个物理大楼的地下室会发出轰鸣的噪声。有人说它像咔嚓作响、韵律单调的乐队,有人说它像满屋子的女人在编织机上织毛衣”。这个庞然大物每天工作24小时,无论何时它一停机,就会响起铃声,警告值班人员按下按钮或者转动旋钮使计算机进行下一步的操作。通常艾肯会从附近的办公室跑出来,看看该如何处理出现的问题。

??继续建造计算机

??艾肯机器的速度比今天最慢的计算器还要慢,但在1944年它却是难以置信的快。当时纽约时报的文章说:“根据数学家的口述,过去用普通办公室的大量计算器、众多人员和漫长时间所无法解决的方程式,现在用几个钟头就能解决。”

??1945年艾肯开始为海军的军火署建造Mark II,用于达尔格林试验场(the Dahlgreen Proving Ground)的计算工作。1947年完成了Harvard Mark II,它是完全电子式的计算机。

??1950年他完成了Mark III计算机,并称为艾肯达尔格林电子计算机(the Aiken Dahlgreen Electronic Computer,简称ADEC)。1952年艾肯又为美国空军完成了Mark IV计算机。

Mark I
??他不仅为建造计算机而工作,还把磁芯、磁鼓运用到计算机上。在哈佛计算实验室他还发表了关于数学语言学、语言自动翻译、电子学和开关理论的著作,还作过该实验室编年史的编撰工作。此外,艾肯在哈佛大学还缔造了世界上第一个完整的学位项目,即今天我们称谓的计算机科学学位。他还帮助迈阿密大学创建了类似的项目。在纽约他甚至还建立过一个Howard Aiken Instries Inc.的咨询公司。

??遗憾与荣誉

??艾肯非常热衷于计算机,但是他像当时的许多人那样没有预期到计算机将会引发的惊人变化。例如他在1947年曾经预言,只要有六台电子数字计算机就可以满足全美国对计算的需要。今天你可能认为这太幼稚可笑了,但是这却准确地反映了在那个时代人们对计算机的一般理解。在那时,计算机典型地用于政府、大公司、研究机构、教育单位的科学计算与数据处理,人们普遍相信计算机只能由专家来编程和使用。

??1964年艾肯接受了Harry M.Goode Memorial Award,这是由美国计算机学会提供的一枚奖章和2,000美元的奖金。以表彰他为开发领先的第一台大型通用自动数字计算机做出的独创性的贡献。这只是艾肯的许多荣誉之一,他的先驱性的工作得到许多国家的赞赏,除美国外,还有法国、荷兰、比利时和德国授予他的各种荣誉。格瑞斯•霍普也获得过许多荣誉称号,国防部还授予她海军少将军衔。

??60年过去了。现在Mark I的部分设备摆放在哈佛大学科学中心的大厅里,另一部分存放在美国历史的史密森尼博物馆(Smithsonian Museum of American History),最后还有一部分则放在IBM公司的历史展览中。人们永远怀念这位为迎接计算机时代的到来做出重大贡献的计算机先驱艾肯教授。

参考文献编辑本段回目录

⑶ 笔记本安装什么挖矿软件好

1.GUIMiner

GUIMiner是一款功能强大、使用简单的面向WINDOWS系统的比特币挖矿软件,该软件体积小巧、界面友好,只要用户的CPU或者GPU够强便可在界面上新建采矿器,独立采矿!另外,GUIMiner还是一款免费软件。


⑷ XMRcpu挖矿内存多大好

XMR不吃内存,任意足够系统用就行。
XMR吃CPU缓存,CPU,二级和三级缓存越大算力越高,
AMD 的FX8300,FX8350,英特尔至强E5这些算力较高。

⑸ 请问什么是巨型计算机

巨型计算机是一种超大型电子计算机。具有很强的计算和处理数据的能力,主要特点表现为高速度和大容量,配有多种外部和外围设备及丰富的、高功能的软件系统。

巨型计算机实际上是一个巨大的计算机系统,主要用来承担重大的科学研究、国防尖端技术和国民经济领域的大型计算课题及数据处理任务。如大范围天气预报,整理卫星照片,原子核物的探索,研究洲际导弹、宇宙飞船等,制定国民经济的发展计划,项目繁多,时间性强,要综合考虑各种各样的因素,依靠巨型计算机能较顺利地完成。

对巨型计算机的指标一些家这样规定:首先,计算机的运算速度平均每秒1000万次以上;其次,存贮容量在1000万位以上。如我国研制成功的"银河"计算机,就属于巨型计算机。巨型计算机的发展是电子计算机的一个重要发展方向。它的研制水平标志着一个国家的科学技术和工业发展的程度,体现着国家经济发展的实力。一些发达国家正在投入大量资金和人力、物力,研制运算速度达几百亿次的超级大型计算机。

在一定时期内速度最快、性能最高、体积最大、耗资最多的计算机系统。巨型计算机是一个相对的概念,一个时期内的巨型机到下一时期可能成为一般的计算机;一个时期内的巨型机技术到下一时期可能成为一般的计算机技术。现代的巨型计算机用于核物理研究、核武器设计、航天航空飞行器设计、国民经济的预测和决策、能源开发、中长期天气预报、卫星图像处理、情报分析和各种科学研究方面,是强有力的模拟和计算工具,对国民经济和国防建设具有特别重要的价值。

据统计,计算机的性能与使用价值的平方成正比,即所谓平方律。按照这一统计规律,计算机性能越高,相对价格越便宜。因此,随着大型科学工程对计算机性能要求的日益提高,超高性能的巨型计算机将获得越来越大的经济效益。

一、巨型计算机的发展概况

50年代中期的巨型机有 UNIVAC公司的LARC机和 IBM公司的 STretch机。这两台计算机分别采用了指令先行控制、多个运算单元、存储交叉访问、多道程序和分时系统等并行处理技术。60年代的巨型机有CDC6600机和7600机,它们都配置有多台外围处理机,主机的中央处理器含有多个独立并行的处理单元。70年代出现了现代巨型计算机,其指令执行速度每秒已达5000万次以上,或每秒可获得2000万个以上的浮点结果。

现代巨型机经历了三个发展阶段。第一阶段有美国ILLIAC-Ⅳ(1973年)、STAR-100(1974年)和ASC(1972年)等巨型机。ILLIAC-Ⅳ机是一台采用64个处理单元在统一控制下进行处理的阵列机,后两台都是采用向量流水处理的 向量计算机 。1976年研制成功的CRAY-1机标志着现代巨型机进入第二阶段。这台计算机设有向量、标量、地址等通用寄存器,有12个运算流水部件,指令控制和数据存取也都流水线化;机器主频达80兆赫,每秒可获得8000万个浮点结果; 主存储器 容量为100~400万字(每字64位),外存储器容量达10 9 ~10 11 字;主机柜呈圆柱形,功耗达数百千瓦;采用氟里昂冷却。图中为这种机器的逻辑结构。中国的“银河“亿次级巨型计算机(1983年)也是多通用寄存器、全流水线化的巨型机。运算流水部件有18个,采用双向量阵列结构,主存储器容量为200~400万字(每字64位),并配有磁盘海量存储器。这些巨型机的系统结构都属于单指令流多数据流(SIMD)结构。80年代以来,采用多处理机(多指令流多数据流MIMD)结构、多向量阵列结构等技术的第三阶段的更高性能巨型机相继问世。例如,美国的CRAY-XMP、CDCCYBER205,日本的S810/10和20、VP/100和200、S×1和S×2等巨型机,均采用超高速门阵列芯片烧结到多层陶瓷片上的微组装工艺,主频高达50~160兆赫以上,最高速度有的可达每秒5~10亿个浮点结果,主存储器容量为400~3200万字(每字64位),外存储器容量达10 12 字以上。

还有一类专用性很强的巨型机。例如,美国哥德伊尔宇航公司的巨型并行处理机MPP,由16384个处理器组成128×128的方阵,专用于卫星图像信息的高速处理,8位整数加的处理速度可达每秒60亿次,32位浮点加可达每秒1.6亿次。英国ICL公司研制的分布式阵列处理机专用系统DAP,由 4096个一位 微处理器 和一台大型系列机2900组成,最高速度可达每秒1亿个64位的浮点结果。

二、巨型计算机的组成

巨型机主机由高速运算部件和大容量快速主存贮器构成。由于巨型机加工数据的吞吐量很大,只有主存是不够的,一般有半导体快速扩充存贮器和海量(磁盘)存贮子系统来支持。对大规模数据处理系统的用户,常需大型联机磁带子系统或光盘子系统作为大量信息数据进/出的媒介 。巨型机主机一般不直接管理慢速的输入/输出(I/O)设备,而是通过I/O接口通道联结前端机,由前端机做I/O的工作,包括用户程序和数据的准备、运算结果的打印与绘图输出等。前端机一般用小型机。I/O的另一种途径是通过网络,网上的用户借助其端机(微机、工作站、小型大型机)通过网来使用巨型机,I/O均由用户端机来做。网络方式可大大提高巨型机的利用率。

三、巨型机技术

并行处理是巨型机技术的基础。为提高系统性能,现代巨型机都在系统结构、硬件、软件、工艺和电路等方面采取各种支持并行处理的技术。

数据类型为便于高速并行处理, 中央处理器 的数据类型除传统的各类标量外,都增加了向量或数组类型。向量或数组运算的实质,是相继或同时执行一批同样的运算,而标量运算只处理一个或一对操作数,故向量运算速度一般比标量运算速度快得多。

硬件结构现代巨型机硬件大多采用流水线、多功能部件、阵列结构或多处理机等各种技术。流水线是把整个部件分成若干段,使众多数据能重叠地在各段操作,特别适于向量运算,性能-价格比高,应用普遍。多功能部件可以同时进行不同的运算,每个部件内部又常采用流水线技术,既适合向量运算又适合标量运算。中国的“银河”机和日本的 VP/200、S810/20机进一步将每个向量流水部件或向量处理机加倍,组成双向量阵列,又把向量运算速度提高了两倍。美国CYBER-205机的向量处理机可按用户需要组成一、二或四条阵列式的流水线,技术上又有所发展。多处理机系统以多台处理机并行工作来提高系统的处理能力,各台处理机可以协作完成一个作业,也可以独立完成各自的作业。每台处理机内部也可采用各种适宜的并行处理技术。在任务的划分与分配、多处理机之间的同步与通信和 互连网络 的效益等方面,多处理机系统尚存在不少问题有待解决。现代巨型机采用的主要还是双处理机系统(如CRAY-XMP)和四处理机系统(如HEP)。

向量寄存器为降低存储流量和频带宽度的要求,并解决短向量运算速度低的问题,第二阶段的巨型机采取了向量寄存器技术。CRAY-1机设有8个向量寄存器,所有向量运算指令都面向向量寄存器和其他通用寄存器。为更有力地支持各运算流水部件高度并行地进行各自的向量运算,日本的VP/100和S810等第三阶段的巨型机设有庞大的向量寄存器,总容量达64K字节。

标量运算标量运算速度对巨型机系统综合速度的影响极大。为此,除增设标量寄存器、标量后援寄存器或标量 高速缓冲存储器 以及采用先进的标量控制技术(如先行控制等)外,还可采用专作标量运算的功能部件和标量处理机等技术。例如,CRAY-1机的多功能部件中,有6个专作标量和地址运算,3个兼作标量浮点运算,标量运算速度可达每秒2000万次以上;CYBER205机专设标量处理机,含5个运算部件,标量运算速度可达每秒5000万次以上。在提高向量运算速度的同时,进一步提高标量运算速度,尽可能缩小两者的差距,已成为改善巨型机系统性能的重要研究课题。

主存储器为使复杂系统的三维处理成为可能,要求主存储器能容纳庞大的数据量。80年代的巨型机容量已达256兆字节。为与运算部件的速度相匹配,主存储器必须大大提高信息流量。为此,主要的措施是:①采取较成熟的多模块交叉访问技术,模块数量一般取2n,有的巨型机采用素数模新技术,以尽量避免向量访问的冲突;②不断减小每个模块的存取周期,如CRAY-XMP机的存取周期为38纳秒,S810机虽用静态MOS存储器,也只有40纳秒,与双极存储相当;③增加主存储器的访问端口,如CRAY-XMP机的每台处理机与CRAY-1机相比,访问端口由一个增加到四个,解决了存储访问的瓶颈问题。

输入输出通道巨型机不但配有数量较多的输入输出通道,如16~32个,而且具有较高的通道传输率。如CRAY-XMP机除一般通道外,还有两个传输率为每秒100兆字节的通道和一个传输率高达每秒1250兆字节的通道。

固态海量存储器为适应特大算题的大量数据在主存储器和外存储器之间的频繁调度,新型的巨型机采用固态海量存储器作为超高速外存储器。CRAY-XMP机的固态存储器采用MOS技术,容量为64~256兆字节,传输率比磁盘快50~100倍。S810机的固态存储器容量为256~1024兆字节,传输率达每秒1000兆字节。

大规模集成电路巨型机的 逻辑电路 都采用超高速ECL电路,门级延迟约为0.25~0.5纳秒,芯片门数为几十至一千以上;1984年日本已研制成功4K门阵列常温砷化镓芯片,级延迟约为50皮秒;用于向量寄存器的超高速双极随机存取存储器的访问时间为3.5~5.5纳秒。

组装工艺缩短机内走线长度和提高机器主频,是提高巨型机速度的基础。现代巨型机主频有的已达 250兆赫以上。为此,除提高芯片的集成度和速度外,还采用微组装等高密度多层组装工艺。由此而来的散热问题很突出,需要采取特殊的冷却措施。

并行算法和软件技术为充分发挥巨型机的系统性能,必须研究各种并行算法并研制并行化的软件系统。针对特大型科学计算的特点,巨型机通常配置如下软件:具有多重处理能力的批处理分布式 操作系统 、高效的汇编语言、向量FORTRAN或PASCAL、ADA语言和向量识别器、并行化标准子程序库、科学子程序库和应用程序库、系统 实用程序 、诊断程序等。

⑹ 币印矿池的官网是什么

币印矿池网址www.poolin.com,目前支持BTC, BCH, BSV, ZEC, LTC, ETN, DCR, DASH, XMR等多个币种。官方复制过来的
他们服务还是非常可以的

⑺ gtx1060挖门罗币算力多少

我是1060(3G),之前使用过市面上的所有挖矿软件,算力都很低,因为这些软件都抽水,挖的都被平台抽走了!

后来才找到哈鱼矿工这款软件,软件不抽水,下面是我的收益和算力,你可以参考下,6G显卡的话收益会更高!

⑻ 为什么挖门罗GPU不工作

《我的爱对你说》由田少波执导,余文乐、杨蓉、潘彦妃、朱一龙等领衔主演的都市爱情剧,说实话,演员没有大牌吧!杨蓉演技还算行,但是也是千年老二,其他的不怎么熟悉!
再者,该剧由乐视影视会员独播,可见其影响力了!一般会员独播剧都挺会影响起收视率的,况且乐视会员受众更少,很难传播出来!
第三点,该剧的剧情结构独特,没有采用偶像剧惯用的“霸道总裁”、“男强女弱”的传统模式,反而让男主角余文乐化身“宅男”,而他追求的女主角杨蓉则是一位富家千金。但是可能是现代爱情故事题材泰国平凡,而且女强男弱的话题本身也不是很有吸引力的。
该剧没有超级大牌吸粉,没有大的推广力度,没有新颖剧情!我们看过,但是说实话,我现在了解了一下,还是不想看!
不知道大家有没有看过,这也是我自己的看法吧!

⑼ 矿难什么时候来啊,想买张显卡比当初新卡还贵,还是二手的

显卡矿难大概什么时候结束,保守一年后才会结束,届时所有的卡价格全部腰斩。

知识延展:
对于矿难,取决于几个因素:
1. 这一波山寨币大涨几十倍,何时开始掉头往下,一旦高潮褪去,回调带来的暴跌是必然的。而一旦收益都不能付的起电费,则绝大部分小玩家就此退出,当水电站玩家都扛不住的时候,就重演当年的矿难。
2. ETH转POS,门罗、ZCash等其他主力显卡币能否顶住强大的算力继续获得收益。。而这里面真正有实力的达世币已经出ASIC矿机了,一旦ETH收益大跌,大家都要去抢最佳盈利比的挖矿方案,Zcash能顶得住千万张显卡切换过来的算力压力吗?
3. AMD在加大产能,新的算力不断涌入市场,算力和难度增加,币的价格确实会增高,但是单卡收益却会下降,这一波算力上涨,收益必然摊薄。
4. 山寨币ASIC矿机的疯狂,ETH现在的收益显然是值得开发ASIC的,哪怕是用FPGA也应该是值得的,当然如果收益能持续这么高的话,在这么高的收益面前,这么大的市场面前,天才和疯子总是不缺的。
5. 就目前的山寨币收益来看,确实也到了一个比较高的水平,预计最多7-8月可能就要开始回调价格,回本周期就要继续延长,等到年底估计保证电费成本都是勉强的时候,矿难已经出现了。

热点内容
代买比特币 发布:2024-10-06 08:20:22 浏览:433
程序员眼中的区块链技术 发布:2024-10-06 08:15:17 浏览:936
比特币能买1000块吗 发布:2024-10-06 08:04:25 浏览:251
区块链专利申请情况 发布:2024-10-06 07:54:52 浏览:266
小矿币是百倍币 发布:2024-10-06 07:54:42 浏览:170
蚂蚁矿机s9能挖几种币 发布:2024-10-06 07:37:09 浏览:893
比特币最少买多少币 发布:2024-10-06 07:28:47 浏览:43
比特币在四川的分布 发布:2024-10-06 07:24:23 浏览:61
a卡矿机驱动 发布:2024-10-06 07:06:57 浏览:428
币圈盲盒是什么 发布:2024-10-06 06:51:50 浏览:961