因式分解的算力
A. 因式分解十字交叉法的方法
一、因式分解的基本方法,
1、提取公因式法,
2、公式法(平方差公式和完全平方公式)。
往往在题目中多少会涉及一些其他的知识,例如配方法和十字交叉法等。
二、十字交叉法
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.
如图所示:
2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1:把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 。
因为 :1↖ ↗ - 2
↗↘
1 6
所以m²+4m-12=(m-2)(m+6)
例2:把5x²+6x-8分解因式 。
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题 。
因为: 1↖↗ -2
↗↘
5 -4
所以5x²+6x-8=(x+2)(5x-4)
例3:解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为 :1 ↖↗ -3
↗↘
1 - 5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为 : 2 ↖↗ -5
↗↘
3 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y ,2y.9y ,3y.6y
因为 :2x ↖↗ -9y
↗↘
7x -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
B. 因式分解的所有的公式
一般常用的有以下公式:
平方差公式:
a^2-b^2=(a+b)(a-b)
完全平方公式:
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
立方和(差)公式:
a^3-b^3=(a-b)(a^2+ab+b^2)
a^3+b^3=(a+b)(a^2-ab+b^2)
一元二次代数:
ax^2+bx+c=a(x-x1)(x-x2)
其中:x1=[-b+√(b^2-4ac)]/2a, x2=[-b-√(b^2-4ac)]/2a.
C. 因式分解的公式
因式分解公式:
平方差公式:(a+b)(a-b)=a²-b²
完全平方公式:(a±b)²=a²±2ab+b²
把式子倒过来:
(a+b)(a-b)=a²-b²
a²±2ab+b²=(a±b)²
就变成了因式分解,因此,我们把用利用平方差公式和完全平方公式进行因式分解的方法称之为公式法。
例:
1、25-16x²=5²-(4x)²=(5+4x)(5-4x)
2、p4-1
=(p²+1)(p²-1)
=(p²+1)(p+1)(p-1)
3、x²+14x+49
=x²+2·7·x+7²
=(x+7)²
4、(m-2n)²-2(2n-m)(m+n)+(m+n)²
=(m-2n)²+2(m-2n)²(m+n)+(m+n)²
=[(m-2n)+(m+n)]²
=(2m-n)²
(3)因式分解的算力扩展阅读
注意点:
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
D. 因式分解有哪几种计算方法是怎样的
1、提公因式法
几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
2、公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a²-b²=(a+b)(a-b);
完全平方公式:a²±2ab+b²=(a±b)²;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
(4)因式分解的算力扩展阅读
韦达首先发现了因式分解的工具性和重要性,在其《论方程的整理和修改》中,首先给出代数方程的多项式因式分解方法,并证得所有三次和三次以上的一元多项式在实数范围内皆可因式分解。
1637年笛卡儿(R. Descartes,1596-1650)在其《几何学》中,首次应用待定系数法将4次方程分解为两个2次方程求解,并最早给出因式分解定理。
笛卡儿还改进了韦达的一些数学符号,首先用x,y,z表示未知数,用a,b,c表示已知数,这些数学习惯沿用至今。有些人可能讨厌数学,就是因其有太多符号和公式。
没有数学符号,乘法公式用语言叙述是多么啰嗦。故数学的进步在于其引进了较好的符号体系,使用数学符号是近代数学发展最为明显的标志之一。
E. 因式分解的公式(全面的)有哪些
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
十字相乘法初步公式:x^2+(p+q)x+pq=(x+p)(x+q)
十字相乘法通用公式:如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d)
注意,a,b,c,p,q这些可能是常数,可能是代数式,注意观察
一个快捷的方法是余式定理:如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a,再用长除法用x-a除以f(x)降次,多用几次得到答案后,根据答案再用拆项添项的办法去做题
F. 因式分解的公式是什么
提取公因式am+an=a(m+n)
平方差(a+b)(a-b)=a^2-b^2
完全平方(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
十字相乘(x+p)(x+q)=x^2+(p+q)+pq
进阶法(ax+p)(bx+q)=abx^2+(aq+bp)x+pq
G. 因式分解的万能公式是什么
你所说的万能公式,只是针对一元二次因式的分解。 ax^2 + b x +c =0 先凑完全平方,再用平方差公式。 x^2 +bx/a +c/a =0 x^2 +bx/a +b^2/4a^2 - b^2/4a^2 + c/a = 0 (x - b/2a)^2 - (b^2-4ac)/4a^2=0 [ x - b/2a +根号 (b^2-4ac)/2a]*[x-b/2a-根号(b^2-4ac)/2a]=0 或许你想要的万能公式就是上面这个吧。
H. 因式分解是怎么算的
因式分解,也叫分解因式,
是把多项式,变成一个个式子相乘的形式;
如果需要示意图,就看看汉字
“目”、“月”
和
“朋”、“用”,
“月”
和
“目”
就是长为
3,宽分别是
a、b
的两个长方形,
写成
3a
+
3b
像
“朋”
就是一个两项式,
如果
“月”
和
“目”
拼成一个
“用”,就是
3(a
+
b)
的一个长方形,
把
3a
+
3b
两项相加的式子变成
3(a+b)
乘积的式子就是因式分解。
分解因式最简单的方法,就是提公因式,
不过要注意,公因式不仅是系数、字母,还会是一个式子,例如
(a+b)(3m+2n)
+
(2m+3n)(a+b),公因式是
(a+b)
=
(a+b)(
3m
+
2n
+
2m
+
3n
)
=
(a
+
b)(
5m
+
5n
)
这样再提系数
5
=
5(
a
+
b
)(
m
+
n
)
公式法,
就是平方差、完全平方、立方和、立方差的公式倒过来用
a"
-
b"
=
(a
-
b)(a
+
b)
a"
+
2ab
+
b"
=
(a
+
b)"
a"
-
2ab
+
b"
=
(a
-
b)"
a"'
+
b"'
=
(a
+
b)(a"
-
ab
+
b")
a"'
-
b"'
=
(a
-
b)(a"
+
ab
+
b")
分组分解法,十字相乘法,
公式就是
x"
+
(
a
+
b
)x
+
ab
=
(
x
+
a
)(
x
+
b
)
两个方法最好结合起来用,
二次三项式,先把一次项一分为二,
接下来把四个项,分开两组提公因式,做起来就轻松多了;
Q
关键是一次项怎样一分为二,就由常数项的正负来决定,
先看看完全平方式,把
2ab
拆开两个
ab
做起来也觉得更加可靠。
例如
x"
+
10x
+
25
=
x"
+
5x
+
5x
+
25
=
x(
x
+
5
)
+
5(
x
+
5
)
=
(
x
+
5
)"
这样也看到,完全平方式的
b"
必然是正数
x"
-
10x
+
25
=
x"
-
5x
-
5x
+
25
=
x(
x
-
5
)
-
5(
x
-
5
)
=
(
x
-
5
)"
Q
如果常数项是正数,
一次项就是拆开两个绝对值比原来小的两个项;
x"
+
10x
+
24
=
x"
+
4x
+
6x
+
24
=
x(
x
+
4
)
+
6(
x
+
4
)
=
(
x
+
4
)(
x
+
6
)
常数项
24
不变,一次项
±
10x
就都是拆开
4x
与
6x,还有
x"
-
10x
+
24
=
x"
-
4x
-
6x
+
24
=
x(
x
-
4
)
-
6(
x
-
4
)
=
(
x
-
4
)(
x
-
6
)
Q
中间一次项不变,常数项的绝对值也不变,
只要常数项变成相反数,一次项就要改变一分为二的方式
x"
-
10x
-
24
=
x"
-
12x
+
2x
-
24
=
x(
x
-
12
)
+
2(
x
-
12
)
=
(
x
+
2
)(
x
-
12
)
常数项
-24
不变,一次项
±
10x
就都是拆开
2x
与
12x,还有
x"
+
10x
-
24
=
x"
+
12x
-
2x
-
24
=
x(
x
+
12
)
-
2(
x
+
12
)
=
(
x
-
2
)(
x
+
12
)
Q
如果常数项是负数,
一次项系数就是分开两个项的相差数;
看到了吧,一次项和常数项,绝对值都是
10x
和
24,
分解因式却有
4
种结果,会不会看得晕头转向呢?
怎么办?只要这样一步一步地写出来,就肯定不会出错了。
x"
±
5x
±
6
x"
±
10x
±
24
x"
±
15x
±
54
x"
±
20x
±
96
x"
±
25x
±
150
都是这样有
4
种结果,
使用这个分解因式的方法,你自己也试一试吧。
只要熟悉这个方法,就连二次项系数不是
1
也同样方便,
例如
4x"
-
31x
-
45
对着
31,我们恐怕不知道怎样分开两项
可是看到
-45,我们都会想到
4X9=36,5X9=45,那么
=
4x"
-
36x
+
5x
-
45
=
4x(
x
-
9
)
+
5(
x
-
9
)
=
(
x
-
9
)(
4x
+
5
)
或者
=
4x"
+
5x
-
36x
-
45
=
x(
4x
+
5
)
-
9(
4x
+
5
)
=
(
x
-
9
)(
4x
+
5
)
I. 因式分解的所有公式
因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。
而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
(9)因式分解的算力扩展阅读:
原则:
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;
5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);
8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
参考资料来源:网络-因式分解-分解方法