去中心化redis
A. 面试问题redis有哪些集群方案
P2P模式,无中心化
把key分成16384个slot
每个实例负责一部分slot
客户端请求若不在连接的实例,该实例会转发给对应的实例。
通过Gossip协议同步节点信息
优点:
- 组件all-in-box,部署简单,节约机器资源
- 性能比proxy模式好
- 自动故障转移、Slot迁移中数据可用
- 官方原生集群方案,更新与支持有保障
缺点:
- 架构比较新,最佳实践较少
- 多键操作支持有限(驱动可以曲线救国)
- 为了性能提升,客户端需要缓存路由表信息
- 节点发现、reshard操作不够自动化
B. redis能解决什么问题
redis是内存数据库,访问速度非常快,所以能够解决的也都是些缓存类型的问题,如下:
1、会话缓存(Session Cache)
2、全页缓存(FPC)
3、队列
4、排行榜/计数器
5、发布/订阅
C. Redis和Memcached的区别
Redis与Memcached的区别
传统MySQL+ Memcached架构遇到的问题
实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:
1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。
2.Memcached与MySQL数据库数据一致性问题。
3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。
4.跨机房cache同步问题。
众多NoSQL百花齐放,如何选择
最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解决以下几种问题
1.少量数据存储,高速读写访问。此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。
2.海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。
3.这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。
4.Schema free,auto-sharding等。比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。
面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。
Redis适用场景,如何正确的使用
前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2 Redis支持数据的备份,即master-slave模式的数据备份。
3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。
在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。Redis只会缓存所有的 key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计 算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以 保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存 中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个 操作,直到子线程完成swap操作后才可以进行修改。
使用Redis特有内存模型前后的情况对比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used
当 从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行 批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程 池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。
如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。
补充的知识点:
memcached和redis的比较
1 网络IO模型
Memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接受请求后,将连接描述字pipe 传递给worker线程,进行读写IO, 网络层使用libevent封装的事件库,多线程模型可以发挥多核作用,但是引入了cache coherency和锁的问题,比如,Memcached最常用的stats 命令,实际Memcached所有操作都要对这个全局变量加锁,进行计数等工作,带来了性能损耗。
(Memcached网络IO模型)
Redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll、kqueue和select,对于单纯只有IO操作来说,单线程可以将速度优势发挥到最大,但是Redis也提供了一些简单的计算功能,比如排序、聚合等,对于这些操作,单线程模型实际会严重影响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞住的。
2.内存管理方面
Memcached使用预分配的内存池的方式,使用slab和大小不同的chunk来管理内存,Item根据大小选择合适的chunk存储,内存池的方式可以省去申请/释放内存的开销,并且能减小内存碎片产生,但这种方式也会带来一定程度上的空间浪费,并且在内存仍然有很大空间时,新的数据也可能会被剔除,原因可以参考Timyang的文章:http://timyang.net/data/Memcached-lru-evictions/
Redis使用现场申请内存的方式来存储数据,并且很少使用free-list等方式来优化内存分配,会在一定程度上存在内存碎片,Redis跟据存储命令参数,会把带过期时间的数据单独存放在一起,并把它们称为临时数据,非临时数据是永远不会被剔除的,即便物理内存不够,导致swap也不会剔除任何非临时数据(但会尝试剔除部分临时数据),这点上Redis更适合作为存储而不是cache。
3.数据一致性问题
Memcached提供了cas命令,可以保证多个并发访问操作同一份数据的一致性问题。 Redis没有提供cas 命令,并不能保证这点,不过Redis提供了事务的功能,可以保证一串 命令的原子性,中间不会被任何操作打断。
4.存储方式及其它方面
Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能
Redis除key/value之外,还支持list,set,sorted set,hash等众多数据结构,提供了KEYS
进行枚举操作,但不能在线上使用,如果需要枚举线上数据,Redis提供了工具可以直接扫描其mp文件,枚举出所有数据,Redis还同时提供了持久化和复制等功能。
5.关于不同语言的客户端支持
在不同语言的客户端方面,Memcached和Redis都有丰富的第三方客户端可供选择,不过因为Memcached发展的时间更久一些,目前看在客户端支持方面,Memcached的很多客户端更加成熟稳定,而Redis由于其协议本身就比Memcached复杂,加上作者不断增加新的功能等,对应第三方客户端跟进速度可能会赶不上,有时可能需要自己在第三方客户端基础上做些修改才能更好的使用。
根据以上比较不难看出,当我们不希望数据被踢出,或者需要除key/value之外的更多数据类型时,或者需要落地功能时,使用Redis比使用Memcached更合适。
关于Redis的一些周边功能
Redis除了作为存储之外还提供了一些其它方面的功能,比如聚合计算、pubsub、scripting等,对于此类功能需要了解其实现原理,清楚地了解到它的局限性后,才能正确的使用,比如pubsub功能,这个实际是没有任何持久化支持的,消费方连接闪断或重连之间过来的消息是会全部丢失的,又比如聚合计算和scripting等功能受Redis单线程模型所限,是不可能达到很高的吞吐量的,需要谨慎使用。
总的来说Redis作者是一位非常勤奋的开发者,可以经常看到作者在尝试着各种不同的新鲜想法和思路,针对这些方面的功能就要求我们需要深入了解后再使用。
总结:
1.Redis使用最佳方式是全部数据in-memory。
2.Redis更多场景是作为Memcached的替代者来使用。
3.当需要除key/value之外的更多数据类型支持时,使用Redis更合适。
4.当存储的数据不能被剔除时,使用Redis更合适。
D. memcached和redis的区别
前者是大型机器
E. redis集群中master和salve是怎么设置的
redis cluster在设计的时候,就考虑到了去中心化,去中间件,也就是说,集群中的每个节点都是平等的关系,都是对等的,每个节点都保存各自的数据和整个集群的状态。
每个节点都和其他所有节点连接,而且这些连接保持活跃,这样就保证了我们只需要连接集群中的任意一个节点,就可以获取到其他节点的数据。
F. 如何搭建redis的双主
这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性
后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。
G. 如何实现高可用的 redis 集群
Redis 因具有丰富的数据结构和超高的性能以及简单的协议,使其能够很好的作为数据库的上游缓存层。但在大规模的 Redis 使用过程中,会受限于多个方面:单机内存有限、带宽压力、单点问题、不能动态扩容等。
基于以上, Redis 集群方案显得尤为重要。通常有 3 个途径:官方 Redis Cluster ;通过 Proxy 分片;客户端分片 (Smart Client) 。以上三种方案各有利弊。
Redis Cluster( 官方 ) :虽然正式版发布已经有一年多的时间,但还缺乏最佳实践;对协议进行了较大修改,导致主流客户端也并非都已支持,部分支持的客户端也没有经过大规模生产环境的验证;无中心化设计使整个系统高度耦合,导致很难对业务进行无痛的升级。
Proxy :现在很多主流的 Redis 集群都会使用 Proxy 方式,例如早已开源的 Codis 。这种方案有很多优点,因为支持原声 redis 协议,所以客户端不需要升级,对业务比较友好。并且升级相对平滑,可以起多个 Proxy 后,逐个进行升级。但是缺点是,因为会多一次跳转,平均会有 30% 左右的性能开销。而且因为原生客户端是无法一次绑定多个 Proxy ,连接的 Proxy 如果挂了还是需要人工参与。除非类似 Smart Client 一样封装原有客户端,支持重连到其他 Proxy ,但这也就带来了客户端分片方式的一些缺点。并且虽然 Proxy 可以使用多个,并且可以动态增加 proxy 增加性能,但是所有客户端都是共用所有 proxy ,那么一些异常的服务有可能影响到其他服务。为每个服务独立搭建 proxy ,也会给部署带来额外的工作。
而我们选择了第三种方案,客户端分片 (Smart Client) 。客户端分片相比 Proxy 拥有更好的性能,及更低的延迟。当然也有缺点,就是升级需要重启客户端,而且我们需要维护多个语言的版本,但我们更爱高性能。
下面我们来介绍一下我们的Redis集群:
概貌:
如图0所示,
我们的 Redis 集群一共由四个角色组成:
Zookeeper :保存所有 redis 集群的实例地址, redis 实例按照约定在特定路径写入自身地址,客户端根据这个约定查找 redis 实例地址,进行读写。
Redis 实例:我们修改了 redis 源码,当 redis 启动或主从切换时,按照约定自动把地址写到 zookeeper 特定路径上。
Sentinel : redis 自带的主从切换工具,我们通过 sentinel 实现集群高可用。
客户端( Smart Client ):客户端通过约定查找 redis 实例在 ZooKeeper 中写入的地址。并且根据集群的 group 数,进行一致性哈希计算,确定 key 唯一落入的 group ,随后对这个 group 的主库进行操作。客户端会在Z ooKeeper 设置监视,当某个 group 的主库发生变化时,Z ooKeeper 会主动通知客户端,客户端会更新对应 group 的最新主库。
我们的Redis 集群是以业务为单位进行划分的,不同业务使用不同集群(即业务和集群是一对一关系)。一个 Redis 集群会由多个 group 组成 ( 一个 group 由一个主从对 redis 实例组成 ) 。即 group 越多,可以部署在更多的机器上,可利用的内存、带宽也会更多。在图0中,这个业务使用的 redis 集群由 2 个 group 组成,每个 group 由一对主从实例组成。
Failover
如图1所示,
当 redis 启动时,会 把自己的 IP:Port 写入到 ZooKeeper 中。其中的 主实例模式启动时会在 /redis/ 业务名 / 组名 永久节点写入自己的 IP:Port (如果节点不存在则创建)。由 主模式 变成 从模式 时,会创建 /redis/ 业务名 / 组名 /slaves/ip:port 临时节 点,并写入自己的 IP:Port (如果相同节点已经存在,则先删除,再创建)。而从实例 模式 启动时会创建 /redis/ 业务名 / 组名 /slaves/ip:port 临时节点,并写入自己的 ip:port (如果相同节点已经存在,则先删除,再创建)。由 从模式 变成 主模式 时,先删除 /redis/ 业务名 / 组名 /slaves/ip:port 临时节点,并在 /redis/ 业务名 / 组名 永久节点写入自己的 IP:Port 。
ZooKeeper 会一直保存当前有效的 主从实例 IP:Port 信息。至于主从自动切换过程,使用 redis 自带的 sentinel 实现,现设置为超过 30s 主 server 无响应,则由 sentinel 进行主从实例的切换,切换后就会触发以主、从实例通过以上提到的一系列动作,从而完成最终的切换。
而客户端侧通过给定业务名下的所有 groupName 进行一致性哈希计算,确定 key 落入哪个组。 客户端启动时,会从 ZooKeeper 获取指定业务名下所有 group 的 主从 IP:Port ,并在 ZooKeeper 中设置监视(监视的作用是当 ZooKeeper 的节点发生变化时,会主动通知客户端)。若客户端从 Zookeeper 收到节点变化通知,会重新获取最新的 主从 I:Port ,并重新设置监视( ZooKeeper 监视是一次性的)。通过此方法,客户端可以实时获知当前可访问最新的 主从 IP:Port 信息。
因为我们的所有 redis 实例信息都按照约定保存在 ZooKeeper 上,所以不需要针对每个实例部署监控,我们编写了一个可以自动通过 ZooKeeper 获取所有 redis 实例信息,并且监控 cpu 、 qps 、内存、主从延迟、主从切换、连接数等的工具。
发展:
现在 redis 集群在某些业务内存需求超过预期很多后,无法通过动态扩容进行扩展。所以我们正在做动态扩容的支持。原先的客户端我们是通过一致性哈希进行 key 的
路由策略,但这种方式在动态扩容时会略显复杂,所以我们决定采用实现起来相对简单的预分片方式。一致性哈希的好处是可以无限扩容,而预分片则不是。预分片
时我们会在初始化阶段指定一个集群的所有分片数量,这个数量一旦指定就不能再做改变,这个预分片数量就是后续可以扩容到最大的 redis 实例数。假设预分片 128 个 slot ,每个实例 10G 也可以达到 TB 级别的集群,对于未来数据增长很大的集群我们可以预分片 1024 ,基本可以满足所有大容量内存需求了。
原先我们的 redis 集群有四种角色, Smart Client, redis , sentinel , ZooKeeper 。为了支持动态扩容,我们增加了一个角色, redis_cluster_manager (以下简称 manager ),用于管理 redis 集群。主要工作是初始化集群(即预分片),增加实例后负责修改Z ooKeeper 状态,待客户端做好准备后迁移数据到新增实例上。为了尽量减少数据迁移期间对现性能带来的影响,我们每次只会迁移一个分片的数据,待迁移完成,再进行下一个分片的迁移。
如图2所示
相比原先的方案,多了 slots 、M anager Lock 、 clients 、M igrating Clients 节点。
Slots: 所有分片会把自身信息写入到 slots 节点下面。 Manager 在初始化集群时,根据设置的分片数,以及集群下的 group 数,进行预分片操作,把所有分片均匀分配给已有 group 。分片的信息由一个 json 串组成,记录有分片的状态 (stats) ,当前拥有此分片的 group(src) ,需要迁移到的 group(dst) 。分片的状态一共有三种: online 、 pre_migrate 、 migrating 。
Online 指这个分片处于正常状态,这时 dst 是空值,客户端根据 src 的 group 进行读写。
Pre_migrate 是指这个分片被 manager 标记为需要迁移,此时 dst 仍然为空, manager 在等所有 client 都已经准备就绪,因为 ZooKeeper 回掉所有客户端有时间差,所以如果某些 client 没有准备就绪的时候 manager 进行了数据迁移,那么就会有数据丢失。
Migrating 是 manager 确认了所有客户端都已经做好迁移准备后,在 dst 写入此分片需要迁移的目标 group 。待迁移完成,会在 src 写入目标 group_name , dst 设为空, stats 设为 online 。
Manager Lock: 因为我们是每次只允许迁移一个 slot ,所以不允许超过一个 manager 操作一个集群。所以 manager 在操作集群前,会在M anager Lock 下注册临时节点,代表这个集群已经有 manager 在操作了,这样其他 manager 想要操作这个集群时就会自动退出。
Clients 和M igrating Clients 是为了让 manager 知道客户端是否已经准备就绪的节点。客户端通过 uid 代表自己,格式是 客户端语言 _ 主机名 _pid 。当集群没有进行迁移,即所有分片都是 online 的时候,客户端会在 clients 下创建 uid 的临时节点。
当某个 slot 从 online 变成 pre_migrate 后,客户端会删除 clients 下的 uid 临时节点,然后在M igrating Clients 创建 uid 临时节点。注意,因为需要保证数据不丢失,从 pre_migrate 到 migrating 期间,这个 slot 是被锁定的,即所有对这个 slot 的读写都会被阻塞。所以 mananger 会最多等待 10s ,确认所有客户端都已经切换到准备就绪状态,如果发现某个客户端一直未准备就绪,那么 mananger 会放弃此次迁移,把 slot 状态由 pre_migrate 改为 online 。如果客户端发现 slot 状态由 pre_migrate 变成 online 了,那么会删除 migrating_clients 下的 uid 节点,在 clients 下重新创建 uid 节点。还需要注意的一点是,有可能一个客户刚启动,并且正在往 clients 下创建 uid 节点,但是因为网络延迟还没创建完成,导致 manager 未确认到这个 client 是否准备就绪,所以 mananger 把 slot 改为 pre_migrate 后会等待 1s 再确认所有客户端是否准备就绪。
如果 Manager 看到 clients 下已经没有客户端的话(都已经准备就绪),会把 slot 状态改为 migrating 。 Slot 变成 migrating 后,锁定也随之解除, manager 会遍历 src group 的数据,把对应 slot 的数据迁移到 dst group 里。客户端在 migrating 期间如果有读写 migrating slot 的 key ,那么客户端会先把这个 key 从 src group 迁移到 dst group ,然后再做读写操作。即这期间客户端性能会有所下降。这也是为什么每次只迁移一个 slot 的原因。这样即使只有 128 个分片的集群,在迁移期间受到性能影响的 key 也只有 1/128 ,是可以接受的。
Manager 发现已经把 slot 已经迁移完毕了,会在 src 写入目标 group_name , dst 设为空, stats 设为 online 。客户端也删除 migrating_clients 下的 uid ,在 clients 下创建 uid 节点。
H. Redis适合存储海量小文件吗
最近学习下redis,作为一个高性能的k/v数据库,如果数据不用swap的话,redis的性能是无以伦比的。最近在做一个系统附件的缓存,试着把附件放到redis试试,写了个保存文件的方法。public class TestRedis{ Jedis redis = new Jedis("localhost");...
I. redis2 和 redis3 的区别
前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性
后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。
J. 如何实现高可用的redis集群
基于以上,Redis集群方案显得尤为重要。通常有3个途径:官方Redis Cluster;通过Proxy分片;客户端分片(Smart Client)。以上三种方案各有利弊。
Redis Cluster(官方):虽然正式版发布已经有一年多的时间,但还缺乏最佳实践;对协议进行了较大修改,导致主流客户端也并非都已支持,部分支持的客户端也没有经过大规模生产环境的验证;无中心化设计使整个系统高度耦合,导致很难对业务进行无痛的升级。
Proxy:现在很多主流的Redis集群都会使用Proxy方式,例如早已开源的Codis。这种方案有很多优点,因为支持原声redis协议,所以客户端不需要升级,对业务比较友好。并且升级相对平滑,可以起多个Proxy后,逐个进行升级。但是缺点是,因为会多一次跳转,平均会有30%左右的性能开销。而且因为原生客户端是无法一次绑定多个Proxy,连接的Proxy如果挂了还是需要人工参与。除非类似Smart Client一样封装原有客户端,支持重连到其他Proxy,但这也就带来了客户端分片方式的一些缺点。并且虽然Proxy可以使用多个,并且可以动态增加proxy增加性能,但是所有客户端都是共用所有proxy,那么一些异常的服务有可能影响到其他服务。为每个服务独立搭建proxy,也会给部署带来额外的工作。