ai三个要素算力算法
A. 下列哪个不属于智能化三要素的内容,答案
①问:智能化三要素指什么?
答:手机+休闲时间+消费
②问:三要素属于谁?
答:大家都是消费者,都 有这三样东西,所以,消费者掌握着三要素。
B. 学习人工智能AI需要哪些知识
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。
人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
C. 人工智能需要什么基础
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
D. 杜丫丫学习机里面的课程怎么样
我看到杜丫丫官网上介绍说杜丫丫早教机自主研发了AI英语课程,它的教研团队来自新东方。还根据年龄化阶段教学,这样就不用担心学到的英语太超纲,直接打消孩子学英语的积极性。不过我夸的再厉害,也比不上你买台杜丫丫学习机亲自体验下。
E. 乱花渐欲迷人眼,AI如何才能真正落地
人工智能历史上经历过数次沉浮,如今再次被引爆。
从政府、学术界、企业界、投资界到创业者们,无一不将人工智能视为未来方向;而分析师和媒体从业者们的海量分析报道,更是让人工智能快速占领了每一个普通人的视听。
于是,正如历史上每一个产业的兴起,人工智能在歌舞升平的同时,也逐渐变得有些“乱花渐欲迷人眼”。
从积极的一面来看,人工智能催生了大量新技术、新企业和新业态,为个人、企业、国家乃至全球提供了新的经济增长点,甚至将驱动第四次技术革命,创造巨大的价值。
IDC预计,全球人工智能支出到2020年将达到2758亿人民币,未来五年复合年增长率将超过50%。中国人工智能技术支出将达到325亿元,占全球整体支出的12%。
从消极的一面来看,尽管人工智能揭开了一个全新的时代,但也在不断滋生着“泡沫”,吹捧有之,跟风有之,噱头有之,近两年,数十家中美AI创业企业密集倒闭,大量AI创业项目中途夭折,不免让人感慨,人工智能是否只是“看上去很美”?
那么,人工智能的未来到底会发展成怎样?如何才能真正落地?如何才能实现规模商业化?尽管人工智能的概念的提出已经有六十余年,但理论、技术和应用、商业的结合并没有太多前人的足迹。
故而,在人工智能产业的发展中,“拓荒者”和“领头羊”的角色就显得尤为重要。
“场景驱动”是AI落地关键
在人工智能的诸多玩家中,阿里巴巴已经正在努力成为这一角色。对于AI的未来,阿里已经有了清晰的认知,以及与众不同的AI发展路径。
12月20日,在云栖大会·北京峰会上,阿里云总裁胡晓明提出了“AI for Instries”(产业AI)的理念:人工智能不应仅仅是实验室里的、PPT里的“概念上的AI”,更应是“产业AI”。
胡晓明表示,“产业AI”的提出,是基于阿里巴巴对人工智能的三个判断:
“第一,必须要有场景驱动,我们在解决什么问题,为这个社会的成本降低了多少,效率提高了多少;第二,在人工智能背后是否是有足够的数据来驱动AI能力的提升;第三,是否有足够的计算能力支撑我们的算法、深度学习;只有三个场景同时具备的前提下,人工智能才会有价值”。
阿里将“场景驱动”放在了首位,这正是阿里“产业AI”战略的核心,也是阿里独特的AI发展路径,更是阿里能够将AI实现落地的独家秘笈。
和很多企业和机构的做法不同,阿里的AI旅程并不是从实验室中的研究和讨论开始,而是反其道行之,从基础业务部门开始推动,让AI从日常场景中“长出来”。
例如,手机淘宝中能够让用户通过拍照的方式实现“以图搜图”的“拍立淘”功能,就是源于电商场景,之后通过解决一个个的技术问题,最终形成成熟的AI解决方案。
电商平台为阿里提供了AI生长的优良土壤。大量消费者普遍的、或者个性化的需求造就了不同的应用场景;海量数据为AI提供了充足的“原料”;而阿里云强大的计算能力则成为了AI实现的加速器。三要素齐备,阿里得以让人工智能快速发挥出价值。
事实证明,阿里选择的这条“自下而上”、“从场景中来”、“再到场景中去”的产业AI路径方向正确,并行之有效,推动了AI技术在行业应用场景中的真正落地。
“双11”当天,机器人客服“阿里小蜜”承担了95%的客服咨询;机器智能推荐系统生成了超过567亿个专属货架;AI设计师“鲁班”在双11期间设计了4.1亿张商品海报;而阿里华北数据中心运维机器人接替了运维人员30%的重复性工作。
不仅在零售领域,阿里“产业AI”布局已经覆盖城市、金融、司法、农业、教育、航空、工业、安全、环境、医疗十大垂直领域,并已相继开花结果,目标以AI技术对垂直产业进行全局重塑。
例如,在金融领域,阿里通过云计算和智能算法,将南京银行申请贷款过程中的人工视频验证减少54%;在工业领域,阿里云ET工业大脑帮助天合光能将电池A品率提升7%;在智慧城市领域,阿里云ET城市大脑在杭州接管了128个路口的红绿灯,通过对视频等数据的全量分析来优化道路运营速度和效率,在试点区域的道路上通行时间减少了15.3%。
在胡晓明看来,过去每一次产业革命都是技术与产业的深度融合,从而引发经济和社会变革,AI也不例外。未来AI要深入各行各业,去解决生活、生产和社会环境中遇到的棘手问题,这样才能引领真正的产业革命。
通过“产业AI”布局,阿里正在这条“产业与AI深度结合”的路上渐行渐远。
“ET大脑”让行业共享AI红利
一年前,阿里云发布了人工智能ET,全面整合了阿里巴巴的语音、图像、人脸、自然语言理解等能力。在12月20日的云栖大会·北京峰会上,阿里云正式推出整合城市管理、工业优化、辅助医疗、环境治理、航空调度等全局能力为一体的ET大脑,将ET从单点的技能升级为具备全局智能的ET大脑,全面布局产业AI。
ET大脑LOGO
据阿里云机器智能首席科学家闵万里介绍,ET大脑的核心能力是“量子拓扑”,其诞生主线要追溯到1905年爱因斯坦发布的关于布朗运动的论文:“从一个巨大的网络上,怎么样从这些传播的表象上找到它最核心的路径?而这一点恰恰是ET大脑最核心的一个能力,也是与众不同的能力。”
闵万里表示,相较于其他AI产品,阿里云ET大脑将AI技术、云计算大数据能力与垂直领域行业知识相结合,基于类脑神经元网络物理架构及模糊认知反演理论,实现从单点智能到多体智能的技术跨越,打造出具备多维感知、全局洞察、实时决策、持续进化等类脑认知能力的超级智能体。
ET大脑的发布,意味着阿里云的AI能力已经从单点技术进化到面向垂直行业的全局能力,在过去的一年中,ET大脑在城市、工业、医疗等领域获得大量实践,量变引发质变,进而能够升级为各行业的“大脑”。闵万里表示,ET大脑将被设定为一个开放的生态,让创业公司、开发者和行业公司一起来分享技术的红利。
除了ET大脑,阿里云在云栖大会·北京峰会上还发布了ET航空大脑,用运筹优化、机器学习等人工智能方法分配停机位,预计每天调度1700架次航班,帮助乘客节省5000个小时,大大提高航班中转效率,从而降低延误率。
据闵万里介绍,为机场提供停机位的智能调度只是ET航空大脑的功能之一,航空大脑还希望深入航空的其他场景。此前,阿里云天池平台曾联合厦门航空、白云机场启动智慧航空AI大赛,向全球工程师发出邀请,用智能算法解决航空场景下的问题。未来,ET航空大脑将继续为航班智能恢复、机场地勤人员调度、航空公司航线规划等提供人工智能解决方案,打造智慧航空。
在云栖大会·北京峰会上,阿里云还宣布推出具备智能风控、千人千面、关系网络、智能客服等能力的智能决策金融方案——ET金融大脑。
据阿里云金融事业部总经理徐敏介绍,ET金融大脑可辅助银行、证券、保险等金融机构实现对贷款、征信、保险等业务的智能决策及风控监管,可大幅降低资损率,提高信用卡等预测准确率,促进金融机构在互联网消费金融、中小微企业金融服务等普惠金融方面的探索。
如今,ET金融大脑已经在南京银行、浙商银行、广发银行等金融机构得到应用,在智能风控、“千人千面”的金融服务、开拓“新金融”商业模式中大显身手。
推落地促生态,让AI“普惠”大众
从《终结者》、《黑客帝国》到《西部世界》,人类表达了对于人工智能的隐忧,未来,人工智能是否将代替人类?MIT人类动力学实验室主任、《智慧社会》的作者Alex Pentland曾经指出,其实我们要忧虑的并非是全球化人工智能本身,而是它的幕后操纵者。
人工智能是人类创造的工具。如今,业界更乐于将人工智能定位于“增强智能”,其目标不是为了代替人类,而是增强人类的能力,为人类生产生活服务。故而,人工智能不应被封闭在实验室之中,而是要与人类生产生活紧密结合,普惠大众。
阿里所提倡的“产业AI”,正是一种将其AI能力开放,普惠大众的做法。阿里AI能力相继在城市、工业、汽车、零售、金融、家居、航空等领域落地,在破解行业难题的同时,也切实为普通消费者的生活带来了改变,让消费者切实能够从AI中获益。
阿里也正在通过开放合作,让AI能力惠及更多的行业和消费者。
在云栖大会·北京峰会上,阿里云和中国电信在安全领域展开合作,双方将于明年共同推出定制化DDoS防护服务,为中小企业提供普惠安全;新华书店携手阿里云,布局智慧书店,在消费侧与顾客建立紧密连接,打造全新的“悦读生活”理念,满足消费者多元化、个性化的需求。
同时,阿里云同隆平高科、中信云宣布达成战略合作,计划将ET大脑推进到农业领域,主要用于筛选育种、基建数据化、农事管理、基地选址及农作物生产预测。阿里云与宝马中国正式对外宣布,双方将基于物联网,为宝马车主提供从家到车的一站式无缝连接的远程服务,实现查询汽车实时状态以及远程控制车辆的智能生活。
除了将AI技术和行业深入结合,普惠大众,阿里还在积极参与人工智能生态的建设和人才的培养,推动人工智能在中国的加速落地。
在云栖大会·北京峰会上,阿里云联合掌通家园、贝聊、智慧树、小蚁科技、得图等厂商发布了“AI视觉守护联盟”,希望将人工智能、视频技术和工业、农业、教育等行业深度结合。
阿里云深度融入了国家大数据战略,包括深度参与两个由政府发起的大数据国家工程实验室;阿里云“天池”大数据平台已经聚集了超过11万名开发者;阿里亦已和307所中国大学开启了普惠计划,将云计算、大数据、人工智能等新技术带进高校,培养人才。
综上,中国人工智能的发展和落地,既需要“拓荒者”和“领头羊”,也需要整个生态的繁荣和健康发展。在这个过程中,阿里及其所布局的“产业AI”,都扮演了关键的角色。
F. 人工智能需要什么基础
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 [1] 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
G. 人工智能技术发展有哪些难题
人工智能是对人脑智能的模拟,而人工智能的发展还面临三大挑战:首先,人脑智能的产生原理尚未研究清楚,“脑科学”研究还处于摸索阶段;其次,尽管计算机的发展迅速,但在数学和算法研究上还有待突破;最后,和人类学习知识一样,人工智能也需要通过学习大量数据来提升,这需要人工智能与产品和产业相结合,通过“实践”来提高人工智能水平。中国人工智能研究要想突破,就要从三个方面攻关。第一是开展脑科学、神经科学和人工智能等基础理论研究;第二是加强数学算法和统计识别模块等计算领域研究;第三是人工智能要与产业发展相结合,依托研究院所和企业开发人工智能应用,积累实验数据。此问题由colorreco回到。
H. 人工智能三要素包括
人工智能的三要素:数据、算力和算法。这三要素缺一不可,都是人工智能取得成就的必备条件。
人工智能英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。