gpu算力怎么求出来
A. 操作系统对GPU计算能力有影响吗
操作系统是不可能对GPU CP;U有什么影响。但是驱动的影响却比较大。当然有修好 显卡更重要。比如华硕980,肯定比970 960要好 。打个比方啊。
B. 有没有人测过2400G的GPU算力是多少
2400g的vega没有显存,但凡此类集成显卡,很多挖矿工具直接不能运行的,而且,就算能也没有用,人家用rx560一台机器可以接至少6块,而2400g根本不能多个一起用,一个2400g必须对应一块主板,这个成本比显卡挖高了非常多。
C. 为什么 gpu cpu 计算能力强
GPU和CPU负责的事情不同,所以GPU是不能替代CPU的。 GPU是一个图形专用芯片,只处理图形显示与运算,不能替代CPU的综合处理能力。 中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路
D. 请问下什么是GPU的浮点运算能力主要干什么的
GPU计算能力强主要是因为他的大部分电路都是进行算术计算的单元,实际上加法器乘法器这些都是相对较小的电路,即使做很多这种运算单元,都不会占用太多芯片的面积。而且由于GPU的其他部件占得面积小,它也可以有更多的寄存器和缓存来存储数据。CPU之所以那么慢,一方面是因为有大量的处理其他程序如分支循环之类的单元,并且由于cpu处理要求有一定的灵活性,那么cpu的算术逻辑单元的结构也要复杂很多。简单的说,就为了提高分支指令的处理速度,cpu的很多部件都用于做分支预测,以及在分支预测错误的时候,修正和恢复算术逻辑单元的结果。这些都大大的增加了器件的复杂度。
另外,实际上现在的CPU的设计上也在向GPU学习,就是增加并行计算的,没有那么多控制结构的浮点运算单元。例如intel的sse指令集,到目前可以实现同时进行4个浮点运算,而且增加了很多寄存器 另外,想学习GPU计算的话,去下载一个CUDA的SDK,里面有很详细的说明文档
E. 显卡怎么计算挖矿算力
可以参考下面,根据一些网吧市场常用的显卡,整理的一份相关显卡的价格和算力以及预计回本期,大概可以做个参考:
Radeon RX 580显卡
整机功耗:243W
计算力:22.4M
显卡售价:1999元
每24小时挖ETH数量:0.015
每24小时产生收益:24.48元
预计回本时间:81.66天
Radeon RX 470显卡
整机功耗:159W
计算力:24.3M
显卡售价:1599元
每24小时挖ETH数量:0.017
每24小时产生收益:27.9元
预计回本时间:57.31天
Radeon RX 480显卡
整机功耗:171W
计算力:24.4M
显卡售价:1999元
每24小时挖ETH数量:0.017
每24小时产生收益:27.87元
预计回本时间:71.73天
(5)gpu算力怎么求出来扩展阅读:
显卡(Video card,Graphics card)全称显示接口卡,又称显示适配器,是计算机最基本配置、最重要的配件之一。显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。
显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU工作,提高整体的运行速度。对于从事专业图形设计的人来说显卡非常重要。 民用和军用显卡图形芯片供应商主要包括AMD(超微半导体)和Nvidia(英伟达)2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。
F. 有ti的GPU计算能力是否比无ti的高
是的,英伟达在产品设计取型号的时候都是TI比无TI的性能要好,也可以通俗地说GPU处理能力强。有时候细节分析上有时候不带TI的会好一些,例如下图中的不太TI的加速频率和基础速率要好,但是整体性能来说带TI的会好得多。
goshes-i信息化英伟达GTX显卡TI性能比
G. 怎么获取显卡的当前算力
可以参考下面,根据一些网吧市场常用的显卡,整理的一份相关显卡的价格和算力以及预计回本期,大概可以做个参考:
Radeon RX 580显卡
整机功耗:243W
计算力:22.4M
显卡售价:1999元
每24小时挖ETH数量:0.015
每24小时产生收益:24.48元
预计回本时间:81.66天
Radeon RX 470显卡
整机功耗:159W
计算力:24.3M
显卡售价:1599元
每24小时挖ETH数量:0.017
每24小时产生收益:27.9元
预计回本时间:57.31天
Radeon RX 480显卡
H. 显卡计算力怎么看
找到自己的显卡型号,之后从这张图上找到自己的位置。达到低性能,就能玩网游流畅,达到中性能,就能低画质下玩大作(BF4这种),达到高性能就能高画质玩大作,达到最高性能就能碾压一切游戏
I. gpu计算能力1.0是什么意思
计算能力是Nvidia公司在发布CUDA(统一计算架构,Compute Unified Device Architecture,一种对GPU进行编程的语言,类似于C语言对CPU进行编程)时提出的一个概念。因为显卡本身是一个浮点计算芯片,可以作为计算卡使用,所以显卡就具有计算能力。不同的显卡具有不同的计算能力,为了以示区分,Nvidia就在不同时期的产品上提出了相应版本的计算能力x.x。计算能力1.0出现在早期的图形卡上,例如,最初的8800 Ultras和许多8000系列卡以及Tesla C/D/S870s卡,与这些显卡相应发布的是CUDA1.0。今天计算能力1.0已经被市场淘汰了。此后还有计算能力1.1,这个出现在许多9000系列图形卡上。计算能力1.2与GT200系列显卡一起出现,而计算能力1.3是从GT200升级到GT200 a/b修订版时提出的。再往后还有计算能力2.0、2.1、3.0等版本。最新发布的版本是计算能力6.1,由最新的帕斯卡架构显卡所支持,同时CUDA版本也更新到CUDA8.0。
对于普通用户无需关心显卡的计算能力,只有GPU编程人员在编写CUDA程序,对GPU的计算进行开发时才关心这个问题。只要知道自己电脑所带的显卡型号就能查询到相应的计算能力,这里贴上官方网址:https://developer.nvidia.com/cuda-gpus。