表面热辐射力怎么算
『壹』 辐射功率计算公式
黑体辐射
开放分类: 科学、物理、自然、自然现象、量子力学
[中文]: 黑体辐射
[英文]: blacd-body radiation
任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。
所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。黑洞也许就是理想的黑体.
基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。
普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为
B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1
B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 )
黑体光谱辐射出射度M(λ,T)与波长、热力学温度之间关系的公式:
M=c1/[λ^5(exp(c2/λT)-1)],其中c1=2πhc^2,c2=hc/k.
黑体能量密度公式:
E*dν=c1*v^3*dv/[exp(c2*v/T)-1)]
E*dv表示在频率范围(v,v+dv)中的黑体辐射能量密度。
λ—辐射波长(μm)
T—黑体绝对温度(K、T=t+273k)
C—光速(2.998×108 m·s-1 )
h—普朗克常数, 6.626×10-34 J·S
K—波尔兹曼常数(Bolfzmann), 1.380×10-23 J·K-1 基本物理常数
由图2.2可以看出:
①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关, 这就是维恩位移定律(Wien)
λm T=2.898×103 (μm·K)
λm —最大黑体谱辐射亮度处的波长(μm)
T—黑体的绝对温度(K)
根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。
当T~300K, λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。
②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是否是光谱最大辐射亮度处。
如果把B(λ,T)对所有的波长积分,同时也对各个辐射方向积分,那么可得到斯特番—波耳兹曼定律(Stefan-Boltzmann),绝对温度为T的黑体单位面积在单位时间内向空间各方向辐射出的总能量为B(T)
B(T)=δT4 (W·m-2 )
δ为Stefan-Boltzmann常数, 等于5.67×10-8 W·m-2 ·K-4
但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长, 定义发射率为该波长的一个微小波长间隔内, 真实物体的辐射能量与同温下的黑体的辐射能量之比。显然发射率为介于0与1之间的正数,一般发射率依赖于物质特性、 环境因素及观测条件。如果发射率与波长无关,那么可把物体叫作灰体(grey body), 否则叫选择性辐射体。
不知道为什么太阳也可以当作黑体来计算,它明明就那么亮...
(黑体的"黑"确实跟颜色有关!)
『贰』 具体的热辐射计算公式
Q= Qr + Qa + Qd
1= Qr / Q + Qa / Q + Qd/ Q
=r+a+d
r ——反射率; a ——吸收率; d ——透过率。
当吸收率 a=1 时,表明物体能将投射到它表面的热射线全部吸收,称为绝对黑体,简称黑体。
当反射率 r =1 时,表明物体能将投射到它表面的热射线全部反射出去,称为绝对白体,简称白体。
当是镜反射(入射角 = 反射角)则称镜体。
当 d=1 时,称为绝对透明体,简称透明体,又称介热体、透热体。
『叁』 黑体温度由27℃升高为54℃辐射力怎么求
的,黑体辐射也是热辐射。辐射主要是发生在物体的表面,而在实际生活中常常将不透明的材料制成的带有小孔的空腔物体作为黑体模型,从小孔射入空腔的电磁波在空腔内壁经过多次吸收和反射,只有极小部分能量从小孔射出,因此,能够将投射到其表面的各种波长的电磁波全部吸收而完全不发生反射和投射的物体叫做黑体,黑体的辐射和吸收主要在表面,在自然界中黑体是不存在的,可认为空腔上的小孔相当于黑体的表面,热辐射也是主要在物体的表面,所以,黑体表面比里面辐射强
『肆』 表面对表面辐射传热也是固体传热的一部分吗
18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。生产力的发展为自然科学的发展和成长开辟了广阔的道路。传热学这一门学科就是在这种大背景下发展成长起来的。
导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。三种方式基本理论的确立则经历了各自独特的历程。直到20世纪初,传热学才从物理学中的热学部分独立出来而成为一门学科。目前,通过对热传导、对流和辐射三种传热方式的研究,传热学已经具备了较为完整的理论基础,形成了相对成熟的学科体系。
19世纪初,兰贝特、毕渥和傅里叶都从固体一维导热的实验研究入手开展了研究。1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。这个公式提高了对导热规律的认识,只是粗糙了一点。傅里叶在进行实验研究的同时,十分重视数学工具的运用,很有特色。他从理论解与实验的对比中不断完善他的理论公式,取得的进展令人瞩目。1807年他提出了求解场微分方程的分离变量法和可以将解表示成一系列任意函数的概念,得到学术界的重视。1812年法国科学院以“热量传递定律的数学理论及理论结果与精确实验的比较”为题设项竞奖。经过努力,傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。傅里叶被公认为导热理论的奠基人。
流体流动的理论是对流换热理论的必要前提。1823年纳维提出的流动方程可适用于不可压缩性流体。此方程1845年经斯托克斯改进为纳维—斯托克斯方程,完成了建立流体流动基本方程的任务。1880年雷诺提出了一个对流动有决定性影响的无量纲物理量群,在1880至1883年间雷诺进行了大量实验研究,发现管内流动层流向湍流的转变发生在雷诺数的数值为1800至2000之间,澄清了实验结果之间的混乱,对指导实验研究作出了重大贡献。具有突破意义的进展要推1909和1915年努谢尔特两篇论文的贡献。他对强制对流和自然对流的基本微分方程及边界条件进行量纲分析获得了有关无量纲数之间的原则关系。开辟了在无量纲数原则关系正确指导下,通过实验研究求解对流换热问题的一种基本方法,有力地促进了对流换热研究的发展。1921年波尔豪森在流动边界层概念的启发下又引进了热边界层的概念。1930年他与施密特及贝克曼合作,成功地求解了竖壁附近空气的自然对流换热。1925年的普朗特比拟,1939年的卡门比拟以及1947年马丁纳利的引伸记录着早期发展的轨迹。由于湍流问题在应用上的重要性,湍流计算模型的研究随着对湍流机理认识的不断深化而蓬勃发展,逐渐发展成为传热学研究中的一个令人瞩目的热点。它也有力地推动着理论求解向纵深发展。还应该提到,在对流换热理论的近代发展中,麦克亚当、贝尔特和埃克特先后作出了重要贡献。
在热辐射的早期研究中,认识黑体辐射的重要意义并用人工黑体进行实验研究对于建立热辐射的理论具有重要作用。1889年卢默等人测得了黑体辐射光谱能量分布的实验数据。19世纪末斯蒂芬(J,Stefan)根据实验确立了黑体辐射力正比于它的绝对温度的四次方的规律,后来在理论上被玻耳兹曼所证实。这个规律被称为斯蒂芬—玻耳兹曼定律。热辐射基础理论研究中的最大挑战在于确定黑体辐射的光谱能量分布。1896年维恩通过半理论半经验的方法推导出一个公式。这个公式虽然在短波段与实验比较符合,但在长波段则与实验显著不符。几年后,瑞利从理论上也推导出一个公式,此公式1905年又经过金斯改进,后人称它为瑞利—金斯公式。这个公式在长波段与实验结果比较符合而在短波段则与实验差距很大,而且随着频率的增高,辐射能量将增至无穷大,这显然是十分荒唐的。瑞利—金斯公式在高频部分即紫外部分遇到了无法克服的因难,简直是理论上的一场灾难,因此被称为“紫外灾难”。“紫外灾难”的出现使人们强烈地意识到,原先以为已经相当完美的经典物理学理论确实存在着问题。问题的解决有赖于观念上新的突破。普朗克决心找到一个与实验结果相符的新公式。经过艰苦努力,他终于在1900年提出了—个公式。其后的实验证实普朗克公式与实际情况在整个光谱段完全符合。在寻求这个公式的物理解释中,他大胆地提出了与经典物理学的连续性概念根本不同纳新假说,这就是能量子假说。按照量子理论确立的普朗克定律正确地揭示了黑体辐射能量光谱分布的规律,奠定了热辐射理论的基础。1935年波略克借鉴商务结算提出的净辐射法,1954年霍特尔提出、1967年又加以改进的交换因子法以及1956年奥本亥姆提出的模拟网络法,是三种受到重视的计算方法。他们分别为完善此类复杂问题的计算方法作出了贡献。
一百多年来,传热学研究者们对传热现象进行了广泛深入的研究,发表了大量的科学论著和研究报告,并出版了大量有价值的学术专著。研究成果在工业、农业、空间和生物技术等各个领域都有着广泛的应用,在提高传热效率、降低材料消耗和产品成本方面产生了重大的经济效益。总结和概括一下现有的工作,包括传热学的’基本概念和基本规律,指出存在的问题和今后的发展方向有着十分重要的意义总之,传热学本身是一门跨行业专业技术的基础性交叉学科,它是在数学(主要是微分方程理论)、热力学、流体力学和量子力学的基础上发展起来的,同时它还必须建立在实验的基础上。因此传热学的发展一方面依赖数学、热力学、流体力学和量子力学理论的进展,另一方面还需不断发展的科学测量技术来配合
『伍』 热辐射的基本定律有哪些
热量总是从高温物体向低温物体辐射,物体因自身的温度直接向外发射能量的方式,叫做热辐射,温度越高,辐射越强。其辐射时发出能量满足方程w=ks1s2(t1-t2)/r2,其中k为热辐射常数,t1-t2为温度差,s1为高温物体面积,s2为低温物体面积,r为两物体之间距离。
热辐射的基本定律:
一、黑体辐射定律
黑体具有最大的吸收力(α=1),同时亦具有最大的辐射力(ε=1)。
在实际物体中不存在绝对黑体,为此引出人工黑体,几乎全部入射能量都被空腔吸收殆尽。腔内空间的辐射场系由腔内表面的发射和反射叠加而成,是各向同性的,而且必定和从小孔选出的辐射具有相同的性质。
二、普朗克(M.Planck)定律
该规律描述了黑体单色辐射力随波长及温度的变化规律。在一定温度下,黑体在不同波长范围内辐射能量各不相同。
三、斯蒂芬-玻尔兹曼定律
Eb=σbT4W/m2;
σb=5.67*10-8W/(m2K4)
描述了黑体辐射力随表面温度的变化规律。也可以计算某一波长范围内的辐射力。
四、兰贝特(Lambert)余弦定律
包括的内容:
半球空间上,黑体的辐射强度与方向无关。而各朝向辐射同性的表面称为漫辐射表面。漫辐射表面的辐射力是辐射强度的π倍。
五、维恩位移定律
随着温度T增高,最大单色辐射力Ebλ,max所对应的峰值波长λmax逐渐向短波方向移动。λmaxT=2897.6μK。
『陆』 太阳表面尘埃粒子的辐射压力怎么计算
太阳常数*4πr^2(r取值日地距离)得出太阳总辐射通量;
太阳总辐射通量/4πr^2(r取值太阳线半径)得出太阳辐射出射度.
其中4πr^2是球的表面积公式.
『柒』 热辐射强度和温度具体的关系是什么
发热体的热辐射与其表面的温度(绝对温度,即凯氏温度)的四次方程正比。
『捌』 热辐射能量计算:假设是一铁块 面积是1平方米 表面温度是500度 怎样计算它所具有的热能量
建议你看看大学物理中有关黑体辐射的内容,具体的公式我已经记不得了,应该是看有关σ的一个公式。希望能够帮到你
『玖』 怎么用常见物体的辐射系数算温度
计算的定律:根据红外辐射的基本定律可知:一个被测物体的表面辐射系数一定时,它的辐射功率与其绝对温度T的四次方成正比。
辐射功率的相关因素:物体的辐射功率是与它的材料、结构、尺寸、形状、表面性质、加热条件及周围的环境和其内部是否有故障、缺陷等诸因素是密切相关的。当被测物体其他条件不变的情况下,仅仅是产生了故障和缺陷,那么它的表面温度场分布将会发生相应变化;若被测物体的材料特性发生异常,其表面的温度也相应改变,因而应用红外进行温度的检测,可以为分析被测目标的现有状态提供极好的信息。
辐射系数ε在红外测温中的重要性
红外测温中的一个重要参数是辐射率。它直接影响测温结果,也称“发射率”或辐射系数。
物体的辐射率是表征物体表面辐射能力强弱的一个参数,是物体在一定温度下辐射的热能与黑体在同温度下辐射能量的比值。在红外测温中,只有确定了物体在所测定温度范围内的辐射率后,才能用光学或电子方法进行补偿,得出被测物的表面温度。如果测温时对c值一无所知,则无法确定测温结果与真实温度相差多少,若设置的辐射系数有误差,则将对测温结果引起误差,分析如下:
设一被测物表面的温度为T0,真实辐射系数为ε0,测出温度为T1,设定辐射系数为ε1,则
辐射能 W=ε0δ6T04=ε1δT14
温度测量误差 △T=|T1-T0|
辐射系数设定误差: △ε=|ε1-ε0|
则 △T=T0[1-(1-△ε/ε1)]1/4
△T/T0=1-(1-△ε/ε1)1/4
结果表明温度测量相对误差与辐射相对误差的关系,计算结果列于表12-3中。