spss去中心化后相乘
『壹』 spss中,变量去中心化是变量减去该变量的均值,那么zscore又是什么呢
中心化是减去均值,Z分数是再除以标准差,二者都是中心化的方法。
『贰』 如何做SPSS的调节效应
做SPSS的调节效应方法:
用回归,回归也有两种方法来检验调节效应,看下面的两个方程,y是因变量,x是自变量,m是调节变量,mx是调节变量和自变量的交互项,系数是a b c c'。检验两个方程的R方该变量,如果该变量显著,说明调节作用显著,也可以直接检验c'的显著性,如果显著也可以说明调节作用。
『叁』 stata如何去中心化后写交互
调节效应。
你应该是第一张放两个变量,第二张放3个变量,选择的回归方法是enter(进入)。但是spss不是按照你的顺序去放变量,而是把你所选的所有变量都加到模型里面去,在进行第一个回归的时候把多出来的变量排除,所以会有这个表格出现。如果不想出现这个表格,你就分两次做回归,第一次放中心D中心H,出了结果再放中心D中心H D乘H,分两次做就不会有了。『肆』 中介效应中一般资料调查表中的数据处理跟中介效应有什么关系
目前SPSSAU已支持中介作用、调节作用、带调节的中介作用的自动智能化分析。
SPSSAU问卷研究界面
调节作用已添加自动输出简单斜率分析、简单斜率图、模型图等。
中介作用可选择平行中介或链式中介检验,支持逐步检验法、Bootstrap抽样法,并自动输出中介作用检验结论、及效应量结果。
SPSSAU_调节作用分析
SPSSAU_中介作用分析
----------- 原文内容 -------------
在当前学术研究中,会经常遇到中介作用和调节作用,但很多小伙伴还搞不清楚什么是中介效应、什么是调节效应?以及如何区分两者?
那么闲话少叙下面就来为大家一一讲解。
1明确概念
中介效应或者调节效应并非分析方法,而是一种关系的描述,研究人员需要结合不同的数据分析方法对两种关系进行分析。
中介效应
中介作用是研究X对Y的影响时,是否会先通过中介变量M,再去影响Y;即是否有X->M->Y这样的关系,如果存在此种关系,则说明具有中介效应。比如工作满意度(X)会影响到创新氛围(M),再影响最终工作绩效(Y),此时创新氛围就成为了这一因果链当中的中介变量。
调节作用
调节作用是研究X对Y的影响时,是否会受到调节变量Z的干扰;比如开车速度(X)会对车祸可能性(Y)产生影响,这种影响关系受到是否喝酒(Z)的干扰,即喝酒时的影响幅度,与不喝酒时的影响幅度 是否有着明显的不一样。
2研究步骤
2.1中介效应
中介作用的分析较为复杂,共分为以下三个步骤:
第1步:确认数据,确保正确分析。
中介作用在进行具体研究时需要对应使用研究方法(分层回归)去实现;中介作用分析时,Y一定是定量数据。X也是定量数据,中介变量M也是定量数据。
资料来源:SPSSAU帮助手册-中介作用
第2步:中介作用检验
检验中介效应是否存在,其实就是检验X到M,M到Y的路径是否同时具有有显著性意义。
资料来源:SPSSAU帮助手册-中介作用
中介作用共分为3个模型。针对上图,需要说明如下:
模型1:自变量X和因变量(Y)的回归分析
模型2:自变量X,中介变量(M)和因变量(Y)的回归分析
模型3:自变量X和中介变量(M)的回归分析
模型1和模型2的区别在于,模型2在模型1的基础上加入了中介变量(M),因而模型1到模型2这两个模型应该使用分层回归分析(第一层放入X,第二层放入M)。
在理解了中介分析的原理之后,接着按照中介作用分析的步骤进行,如下图:
资料来源:SPSSAU帮助手册-中介作用
第1步是数据标准化处理(对X,M,Y需要分别进行标准化处理,有时也使用中心化处理)(SPSSAU用户使用“生成变量”功能)
第2步和第3步是进行分层回归完成(分层1放入X,分层2放入M)
第4步单独进行模型3,即X对M的影响(使用回归分析或分层回归均可,分层回归只有分层1时事实上就是回归分析)
最后第5步进行中介作用检验。
检验图如下:
资料来源:SPSSAU帮助手册-中介作用
a代表X对M的回归系数;
b代表M对Y的回归系数;
c代表X对Y的回归系数(模型1中);
c’代表X对Y的回归系数(模型3中)。
第3步:SPSAU进行分析
用户可以直接按照上图流程在SPSSAU中进行分析,生成结果。具体分析步骤可参考链接页面:SPSS在线_SPSSAU_中介作用
图片来源:SPSSAU官网网站
2.2调节效应
第1步:识别X和M的数据类别,选择合适的研究方法。
调节作用在进行具体研究时需要对应使用研究方法去实现;调节作用分析时,Y一定是定量数据。通常情况下X均为定量数据(比如开车速度),调节变量Z可以为分类数据(比如是否喝酒),也可以是定量数据(比如喝酒多少)。
资料来源:SPSSAU帮助手册-调节作用
第2步:调节作用检验
资料来源:SPSSAU帮助手册-调节作用
调节作用通常是使用分层回归进行研究,如果X和Z均为分类数据,则使用多因素方差分析(通常是双因素方差分析)进行研究。针对上图,需要说明如下:
如果X或者Z也或者Y由多项表示,通常需要先计算对应项的平均值生成得到新列(SPSSAU生成变量功能)
如果X或者Z是分类数据,并且使用分层回归,则需要对X进行虚拟变量处理(哑变量处理)
对X或者Z进行标准化处理,也可以进行中心化处理均可
Y并不需要进行标准化或者中心化处理(处理也可以)
交互项是指两项相乘的意思,记住交互项不能再次进行标准化或中心化
R平方变化显著的判断,是看△F 值是否呈现出显著性,如果显著则说明R平方变化显著
R平方变化显著,正常情况下交互项也会出现显著。如果说R平方变化显著,但交互项并不显著,建议以没有调节作用作为最终结论;如果交互项显著,R平方变化显著,建议以有调节作用作为最终结论。
第3步:SPSAU进行分析
用户判断好数据类型后,直接按照上图流程,在SPSSAU中进行数据处理及分析即可。具体分析流程可参考链接页面:SPSS在线_SPSSAU_调节作用
图片来源:SPSSAU官方网站
相关学习资料:
为大家提供上述分析方法的相关学习资料,包括中介作用、调节作用以及分析过程所需的生成变量和分层回归:
SPSS在线_SPSSAU_生成变量
SPSS在线_SPSSAU_中介作用
SPSS在线_SPSSAU_调节作用
SPSS在线_SPSSAU_分层回归分析
第二次
在当前学术研究中,会经常遇到中介作用和调节作用,但很多小伙伴还搞不清楚什么是中介效应、什么是调节效应?以及如何区分两者?
那么闲话少叙下面就来为大家一一讲解。
1明确概念
中介效应或者调节效应并非分析方法,而是一种关系的描述,研究人员需要结合不同的数据分析方法对两种关系进行分析。
中介效应
中介作用是研究X对Y的影响时,是否会先通过中介变量M,再去影响Y;即是否有X->M->Y这样的关系,如果存在此种关系,则说明具有中介效应。比如工作满意度(X)会影响到创新氛围(M),再影响最终工作绩效(Y),此时创新氛围就成为了这一因果链当中的中介变量。
调节作用
调节作用是研究X对Y的影响时,是否会受到调节变量Z的干扰;比如开车速度(X)会对车祸可能性(Y)产生影响,这种影响关系受到是否喝酒(Z)的干扰,即喝酒时的影响幅度,与不喝酒时的影响幅度 是否有着明显的不一样。
2研究步骤
2.1中介效应
中介作用的分析较为复杂,共分为以下三个步骤:
第1步:确认数据,确保正确分析。
中介作用在进行具体研究时需要对应使用研究方法(分层回归)去实现;中介作用分析时,Y一定是定量数据。X也是定量数据,中介变量M也是定量数据。
第2步:中介作用检验
检验中介效应是否存在,其实就是检验X到M,M到Y的路径是否同时具有有显著性意义。
中介作用共分为3个模型。针对上图,需要说明如下:
模型1:自变量X和因变量(Y)的回归分析
模型2:自变量X,中介变量(M)和因变量(Y)的回归分析
模型3:自变量X和中介变量(M)的回归分析
模型1和模型2的区别在于,模型2在模型1的基础上加入了中介变量(M),因而模型1到模型2这两个模型应该使用分层回归分析(第一层放入X,第二层放入M)。
在理解了中介分析的原理之后,接着按照中介作用分析的步骤进行,如下图:
第1步是数据标准化处理(对X,M,Y需要分别进行标准化处理,有时也使用中心化处理)(SPSSAU用户使用“生成变量”功能)
第2步和第3步是进行分层回归完成(分层1放入X,分层2放入M)
第4步单独进行模型3,即X对M的影响(使用回归分析或分层回归均可,分层回归只有分层1时事实上就是回归分析)
最后第5步进行中介作用检验。
检验图如下:
a代表X对M的回归系数;
b代表M对Y的回归系数;
c代表X对Y的回归系数(模型1中);
c’代表X对Y的回归系数(模型3中)。
第3步:SPSAU进行分析
用户可以直接按照上图流程在SPSSAU中进行分析,生成结果。具体分析步骤可参考链接页面:SPSS在线_SPSSAU_中介作用
2.2调节效应
第1步:识别X和M的数据类别,选择合适的研究方法。
调节作用在进行具体研究时需要对应使用研究方法去实现;调节作用分析时,Y一定是定量数据。通常情况下X均为定量数据(比如开车速度),调节变量Z可以为分类数据(比如是否喝酒),也可以是定量数据(比如喝酒多少)。
第2步:调节作用检验
调节作用通常是使用分层回归进行研究,如果X和Z均为分类数据,则使用多因素方差分析(通常是双因素方差分析)进行研究。针对上图,需要说明如下:
如果X或者Z也或者Y由多项表示,通常需要先计算对应项的平均值生成得到新列(SPSSAU生成变量功能)
如果X或者Z是分类数据,并且使用分层回归,则需要对X进行虚拟变量处理(哑变量处理)
对X或者Z进行标准化处理,也可以进行中心化处理均可
Y并不需要进行标准化或者中心化处理(处理也可以)
交互项是指两项相乘的意思,记住交互项不能再次进行标准化或中心化
R平方变化显著的判断,是看△F 值是否呈现出显著性,如果显著则说明R平方变化显著
R平方变化显著,正常情况下交互项也会出现显著。如果说R平方变化显著,但交互项并不显著,建议以没有调节作用作为最终结论;如果交互项显著,R平方变化显著,建议以有调节作用作为最终结论。
第3步:SPSAU进行分析
用户判断好数据类型后,直接按照上图流程,在SPSSAU中进行数据处理及分析即可。『伍』 如何用SPSS做中介效应与调节效应
调节变量可以是定性的,也可以是定量的。在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e 。Y 与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c 衡量了调节效应(moderating effect) 的大小。如果c 显著,说明M 的调节效应显著。 2、调节效应的分析方法 显变量的调节效应分析方法:分为四种情况讨论。当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做 Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M 的回归,得测定系数R1 2 。2、做Y对X、M 和XM 的回归得R2 2 ,若R2 2 显著高于R1 2 ,则调节效应显著。或者, 作XM 的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M 的取值分组,做 Y 对 X 的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e 的层次回归分析。 潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构 方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ 2 值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ 2 值和相应的自 由度。前面的χ 2 减去后面的χ 2 得到一个新的χ 2,其自由度就是两个模型的自由度之差。如果χ 2 检验结果是统计显著的,则调节效应显著;当调节变量和自变 量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的无约束的模型。 3.中介变量的定义 自变量X 对因变量Y 的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。 Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c 是X 对Y 的总效应,ab 是经过中介变量M 的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有 c=c′+ab,中介效应的大小用c-c′=ab 来衡量。 4、中介效应分析方法 中介效应是间接效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。步骤为:第一步检验系统c,如果c 不显著,Y 与X 相关不显著,停止中介 效应分析,如果显著进行第二步;第二步一次检验a,b,如果都显著,那么检验c′,c′显著中介效应显著,c′不显著则完全中介效应显著;如果a,b至少 有一个不显著,做Sobel 检验,显著则中介效应显著,不显著则中介效应不显著。Sobel 检验的统计量是z=^a^b/sab ,中 ^a, ^b 分别是 a, b 的估计, sab=^a2sb2 +b2sa2, sa,sb 分别是 ^a, ^b 的标准误。 5. 调节变量与中介变量的比较 调节变量M 中介变量M 研究目的 X 何时影响Y 或何时影响较大 X 如何影响Y 关联概念 调节效应、交互效应 中介效应、间接效应 什么情况下考虑 X 对Y 的影响时强时弱 X 对Y 的影响较强且稳定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之后、Y 之前 M 的功能 影响Y 和X 之间关系的方向(正或负) 和强弱 代表一种机制,X 通过它影响Y M 与X、Y 的关系 M 与X、Y 的相关可以显著或不显著(后者较理想) M 与X、Y 的相关都显著 效应 回归系数c 回归系数乘积ab 效应估计 ^c ^a^b 效应检验 c 是否等于零 ab 是否等于零 检验策略 做层次回归分析,检验偏回归系数c 的显著性(t 检验);或者检验测定系数的变化(F 检验) 做依次检验,必要时做 Sobel 检验 6. 中介效应与调节效应的SPSS 操作方法 处理数据的方法 第一做描述性统计,包括M SD 和内部一致性信度a(用分析里的scale 里的 realibility analsys) 第二将所有变量做相关,包括统计学变量和假设的X,Y,M 第三做回归分析。(在回归中选线性回归linear) 要先将自变量和M 中心化,即减去各自的平均数 1、现将M(调节变量或者中介变量)、Y 因变量,以及与自变量、因变量、M 调节变量其中任何一个变量相关的人口学变量输入indpendent 2、再按next 将X 自变量输入(中介变量到此为止) 3、要做调节变量分析,还要将X与M 的乘机在next 里输入作进一步回归。检验主要看F 是否显著
『陆』 SPSS 多元线性回归结果中,系数模型下的1,B,t,Sig.分别什么意思。在线等!!急求高手解答!!
SPSS 多元线性回归结果中,结果表格列出了自变量的显著性检验结果,结果输出表格中列出了回归模型的偏回归系数(B)及其标准误(Std.Error),标准化偏回归系数(Beta),回归系数检验的t统计量及其P值(Sig.)。
系数模型下的1表示模型的序号。
1、T表示使用单样本T检验的T值。
2、sig表示T检验的显著性检验P值,小于0.05的则说明自变量对因变量具有显著影响。
3、B表示各个自变量在回归方程中的偏回归系数,负值表示自变量对因变量有显著的负向影响。
(6)spss去中心化后相乘扩展阅读:
由于每个自变量的量纲和取值范围不同,基于偏回归系数B并不能反映各个自变量对因变量影响程度的大小。标准化偏回归系数其意义在于通过对偏回归系数进行标准化,从而可以比较不同自变量对因变量的作用大小。标准化偏回归系数数值越大表示对自变量的影响更大。
『柒』 SPSS时间序列 频谱分析
SPSS时间序列:频谱分析
一、频谱分析(分析-预测-频谱分析)
“频谱图”过程用于标识时间序列中的周期行为。它不需要分析一个时间点与下一个时间点之间的变异,只要按不同频率的周期性成分分析整体序列的变异。平滑序列在低频率具有更强的周期性成分;而随机变异(“白噪声”)将成分强度分布到所有频率。不能使用该过程分析包含缺失数据的序列。
1、示例。建造新住房的比率是一个国家/地区经济的重要晴雨表。有关住房的数据开始时通常会表现出一个较强的季节性成分。但在估计当前数字时,分析人员需要注意数据中是否呈现了较长的周期。
2、统计量。正弦和余弦变换、周期图值和每个频率或周期成分的谱密度估计。在选择双变量分析时:交叉周期图的实部和虚部、余谱密度、正交谱、增益、平方一致和每个频率或周期成分的相位谱。
3、图。对于单变量和双变量分析:周期图和频谱密度。对于双变量分析:平方一致性、正交谱、交叉振幅、余谱密度、相位谱和增益。
4、数据。变量应为数值型。
5、假设。变量不应包含任何内嵌的缺失数据。要分析的时间序列应该是平稳的,任何
非零均值应该从序列中删除。
平稳.要用ARIMA模型进行拟合的时间序列所必须满足的条件。纯的MA序列是平稳
的,但AR和ARMA序列可能不是。平稳序列的均值和方差不随时间改变。
二、频谱图(分析-预测-频谱分析)
1、选择其中一个“频谱窗口”选项来选择如何平滑周期图,以便获得谱密度估计值。可用的平滑选项有“Tukey-Hamming”、“Tukey”、“Parzen”、“Bartlett”、“Daniell(单元)”和“无”。
1.1、Tukey-Hamming.权重为Wk = .54Dp(2 pi fk) + .23Dp(2 pi fk + pi/p) + .23Dp (2pi fk - pi/p),k = 0, ..., p,其中p是一半跨度的整数部分,Dp是阶数p的Dirichlet内核。
1.2、Tukey.权重为Wk = 0.5Dp(2 pi fk) + 0.25Dp(2 pi fk + pi/p) + 0.25Dp(2 pi fk -pi/p),k = 0, ..., p,其中p是一半跨度的整数部分,Dp是阶数p的Dirichlet内核。
1.3、Parzen.权重为Wk = 1/p(2 + cos(2 pi fk))(F[p/2] (2 pi fk))**2,k=0, ... p,其中p是一半跨度的整数部分,而F[p/2]是阶数p/2的Fejer内核。
1.4、Bartlett.谱窗口的形状,窗口上半部分的权重按如下公式计算:Wk =Fp(2*pi*fk),k = 0, ...p,其中p是半跨度的整数部分,Fp是阶数p的Fejer内核。下半部分与上半部分对称。
1.5、Daniell(单元).所有权重均等于1的频谱窗口形状。
1.6、无.无平滑。如果选择了此选项,则频谱密度估计与周期图相同。
2、跨度.一个连续值范围,在该范围上将执行平滑。通常使用奇数。较大的跨度对谱密度图进行的平滑比较小的跨度程度大。
3、变量中心化.调整序列以使在计算谱之前其均值为0,并且移去可能与序列均值关联的较大项。
4、图。周期图和谱密度对单变量分析和双变量分析均可用。其他所有选项仅对双变量分析可用。
4.1、周期图.针对频率或周期绘制的未平滑谱振幅图(绘制在对数刻度中)。低频率变动是平滑序列的特征。均匀地分布在所有频率上的变动则表示“白噪音”。
4.2、平方一致性.两个序列的增益的乘积。
4.3、正交谱.交叉周期图的虚部,是两个时间序列的异相频率成分的相关性的测量。成分的异相为pi/2弧度。
4.4、交叉振幅.余谱密度平方和正交谱平方之和的平方根。
4.5、谱密度.已进行平滑而移去了不规则变动的周期图。
4.6、余谱密度.交叉周期图的实部,是两个时间序列的同相频率分量的相关性的测量。
4.7、相位谱.一个序列的每个频率成分提前或延迟另一个序列的程度的测量。4.8、增益.用一个序列的谱密度除以跨振幅的商。这两个序列都有自己的获得值。『捌』 spss去中心化和中心化是一样的吗
对的, 各种翻译会有偏差而已