区块链自动计算企业信誉算法
㈠ 区块链技术服务在实体产业的价值是什么
1.想一下如果在企业应用中利用区块链,提供更灵活、安全和高效的业务流程和分布式、独立的市场。区块链让资产所有者在更安全,更具透明度、私密性和自我协调能力的交易“链”上追踪和交易有价值的事物,例如未清发票。这种能力提高了现金和资产管理的速度和灵活度。比如说,你害怕买到假东西,因为一个生产商家,生产之后转移给数个中间商,然后你是通过中间商购买的,并不是生产厂家。如果所有数据都是分散的,点到点的,透明的,那么你可以直接从生产厂家购买并支付。
2.其他资产的自动化市场将是多样化的。从本质上来说,由于软件本身是受控制开放式架构,且对所有交易参与方可见,所以基于区块链的交易能够降低对第三方监管的需求。如果企业能够将价值信息发布给多个潜在买家,而对所有买家来说,其内容可以信任且真实可见,卖家也不能二次销售,那么在进行购买时就会形成开放、透明的竞争环境,卖家也可以获得更好的价格。
3.减少业务交易摩擦。管理支出对大多数机构来说是一项挑战。但区块链能够让企业为供应商和合作伙伴创建自我管理网络,实现合约自动化、即时支付、货物运输的追踪,以及整条供应链的可视性。比如说,如果一家公司用冷藏集装箱运输易腐货物,在集装箱温度超过某个阈值时,货车上的物联网传感器可能会调用区块链上的智能合约。这将会使得相应订单取消,而它还能够自动创建新的订单,从而立即发送第二批货物,装有故障冷藏设备的货车也可以前往维修处进行维修。
4.这类网络通过降低或消除人机交互,减少了交易失误及信息遗漏。而且,通过将买家与卖家直接联系起来,交易会变得更快。管理和保障去中心化私有记录。其传统的行业做法是依靠第三方,利用防火墙和受限访问保障他们的共享信息数据库。而频繁出现的数据外泄事件显示,这种做法并不十分理想。区块链的一个根本优势在于,每一个单独的数据记录或元素都是通过一位区块链成员的密钥进行加密的。网络犯罪可能需要获得每一位成员的每个密钥,才能访问所有的区块链数据。这并不是说区块链能够100%保证所有数据安全,有助于降低大量私密记录曝光的可能性。
5.一种合理的应用是员工或学生记录,雇主、教育机构甚至行业认证机构都能在有需要的情况下添加新的资格证书、成绩或工作地点。想象一下,给员工一个可以访问其所有雇员记录的密钥,作为包含人力资源的安全区块链的一部分。个体能够安全地与其他公司或教育机构共享他们的大学成绩单或就业历史,而不必依赖那些不可靠且易伪造的传真。追溯产品和原料的原产地。区块链可以通过简化在用产品和原料的追踪和定位方式,帮助确保产品质量和安全。举个例子,假如一家汽车制造商形成了包括零部件供应商、部件装配商、质量控制供应商公共管理机构(例如国家公路交通安全管理局)在内的以质量为中心的区块链。那么缺陷部件的召回流程处理速度会更快。想到每年有成千上万的人因汽车零件缺陷而丧生,这一实现非常有意义。
6.验证身份,验证已发布的信息和数据。创建更好的用户控制机制。现在的用户信息很容易被操纵,分发给第三方,甚至可以出售,从而为社交媒体平台所有者创造收入流,而这些收益流绝对不会与信息的用户分享。区块链可以破坏所有这些活动。它可以让用户控制他们自己的信息,以及它确切的位置。未经许可,任何平台都不得访问。用户可以决定谁可以访问他们的信息。他们可以按照他们的选择直接与广告商和第三方打交道,而不是像其他人那样。而且,用户可以选择与任何平台的广告商分享他们的信息,并收取费用。
所有总结来说区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构, 并以密码学方式保证的不可篡改和不可伪造的分布式账本。广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式(引用网络)
在金融方面的应用
区块链技术三大应用
区块链技术在资产证券化领域的应用
近年来,国内资产证券化(以下简称“ABS”)行业发展快速,同时资产现金流管理有待完善、底层资产监管透明性和效率有待提高、资产交易结算效率低下、增信环节成本高昂等问题也逐渐暴露出来。在ABS领域应用区块链技术,首先需要参与方共筑ABS区块链联盟,该联盟由资产方、Pre-ABS投资人、SPV(信托)、托管银行、管理人、中介机构、ABS投资人、交易所共同组成。其核心业务包括资金交易对账、交易文件管理、数据交互接口、信息发布共享、底层资产管理、智能ABS工作流等等。区块链应用至少可以在以下五个方面为ABS行业赋能。
一 改善ABS的现金流管理。
二 有利于穿透式监管。
三 可以提高金融资产的出售结算效率。
四 证券交易的效率和透明度将大大增强。
五 可以降低增信环节的转移成本。
2. 区块链技术在保险领域的应用
保险行业近年来快速增长。但随着中短期存续产品监管政策不断收紧,万能险业务规模大幅下滑。在保险产品设计环节,区块链有利于促进定制化属性较强的保险品类突破瓶颈,快速发展,如农业保险、产品质量保险等。
品质保险能够为企业信誉背书,同时保障消费者权益。但保险公司承保品质保险需要对企业、产品进行综合评估,但这些数据往往很难真实有效地收集,从而制约了品质保险的发展。基于区块链的底层技术建立产品溯源防伪应用平台,可以帮助保险公司通过平台轻松追溯产品生产、加工、销售、购买、投诉等各个环节的信息,从而有效判断相关产品的质量缺陷发生率,制定保险产品,促进消费升级和产业升级。
在保险销售环节,区块链技术的应用可以简化销售流程,节省销售成本,实现保险销售溯源。从保险公司的角度看,意愿投保人通过渠道购买保单,渠道商将投保人信息统一发送到区块链平台,平台根据分布存储的信息判断意愿投保人是否在白名单内,若符合标准,则接受购买请求,省去了以往人工传送、受理、审核、反馈等繁冗的流程。从消费者角度看,区块链技术可以实现保险销售行为可溯源,维护消费者合法权益。保险销售市场一直乱象丛生,通过欺骗、隐瞒或者诱导的方式对保险产品进行虚假宣传的现象屡禁不止。区块链技术可以将保险销售各个环节的关键动作上链,实现全流程的销售动作可追溯,从而规范保险销售行为,促进行业持续健康稳定发展。
在保险理赔环节,区块链技术的应用能够提高理赔效率,提升客户体验。理赔和损失处理流程是保险市场的重要流程。复杂的理赔流程增加了成本,降低了理赔效率,影响了客户体验。智能合约技术可以简化索偿提交程序,减少人工审查需要,缩短处理周期。同时,通过分布式账本中的历史索偿和资产来源记录,可更加容易地识别可疑行为。
在保险反欺诈领域,应用区块链技术可有效防止骗保事件的发生。保险欺诈不仅侵蚀保险公司的利润,还有损其他保险消费者的合法权益。尽管各个保险公司在保险反欺诈上都进行了不少努力,但现实情况依旧严峻。区块链技术至少可以在以下两个方面帮助保险行业缓解甚至化解这一顽疾。一是建立反欺诈共享平台,通过历史索偿信息减少欺诈和加强评估;二是通过使用可信赖的数据来源及编码化商业规则建立“唯一可识别的身份信息”,防止冒用身份。
3. 区块链技术在资产托管领域的应用
近年来,全球资产托管行业进入高速发展的快车道,托管资产规模和主要托管产品保持高速增长。,但这一规模同国际先进同业相比仍然存在一定差距,我国资产托管行业仍然存在较大的发展空间。
应用区块链中的智能合约技术,能够有效解决资产托管业务中的操作风险。可以从以下几个方面优化资产托管的业务流程:一是实现了全流程的自动化,将业务指令判断和执行规则封装到智能合约中,利用智能执行合同和提供风险提示;二是提升了流程效率,资产委托方、管理方、托管方、代销方在资产变动、交易明细等信息的实时共享,免去反复校验、确权的过程;三是保证了履约的安全性和交易的真实性,通过设置密钥保证参与方信息正式、账本信息的有限可见性及交易的可验证性;四是确保了信息的不可篡改,将投资计划的合规校验要求放在区块链上,确保每笔交易都在形成共识的基础上完成。
就目前而言,和区块链关系最紧的就是比特币了。如果你想了解更多和比特币区块链的一些消息,可以关注一些新媒体。比如说搜狐,百家号,芥末圈什么的。国外网站CCN,CoinDesk等,这些都有很庞大的信息源,对于你想了解区块链和金融会有很大帮助。以上内容,一半手写,一半引用,若有仍有疑惑,可以看一下下面链接的有关区块链应用的TED演讲,有中文字幕。希望能帮到你!
㈡ 区块链技术带来的一种“智能化信任”是什么
区块链用“算法证明机制”来保证这份信任。
金窝窝集团认为借助这个信任,整个系统中的所有节点能够在信任的环境下自动安全地交换数据。
与费时费钱的其他工具技术相比,它能实时自动撮合、强制执行,而且成本很低。区块链技术带来的十一中“智能化信任”
㈢ 区块链技术中的哈希算法是什么
1.1. 简介
计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:
函数参数为string类型;
固定大小输出;
计算高效;
collision-free 即冲突概率小:x != y => hash(x) != hash(y)
隐藏原始信息:例如区块链中各个节点之间对交易的验证只需要验证交易的信息熵,而不需要对原始信息进行比对,节点间不需要传输交易的原始数据只传输交易的哈希即可,常见算法有SHA系列和MD5等算法
1.2. 哈希的用法
哈希在区块链中用处广泛,其一我们称之为哈希指针(Hash Pointer)
哈希指针是指该变量的值是通过实际数据计算出来的且指向实际的数据所在位置,即其既可以表示实际数据内容又可以表示实际数据的存储位置。下图为Hash Pointer的示意图
㈣ 火热的区块链技术,在金融体系中到底有什么应用
区块链应用中心imApp2.0版本已正式上线
区块链应用中心imApp2.0版本已正式上线。imApp是全球首款全民分红的区块链应用商店,旨在打造区块链行业的超级入口,让用户更轻松的使用区块链应用。 imApp2.0版界面上更加简洁美观,功能上增加了快讯,DAPP,内容上丰富了猜猜游戏。用户通过IMAPP浏览,转发,下载,更新,打开应用均可获得IMAPP生态通证IA。imApp官方已与比特币钻石基金会达成战略合作,生态通证IA可按一定比例兑换比特币钻石BCD。
㈤ 区块链有几种共识算法
Ripple Consensus(瑞波共识算法)
使一组节点能够基于特殊节点列表达成共识。初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由“中心化”开始,它将一直是“中心化的”,而如果它开始腐化,股东们什么也做不了。
5、PBFT:Practical Byzantine Fault Tolerance(实用拜占庭容错算法)
PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。将所有的副本组成的集合使用大写字母R表示,使用0到|R|-1的整数表示每一个副本。为了描述方便,假设|R|=3f+1,这里f是有可能失效的副本的最大个数。尽管可以存在多于3f+1个副本,但是额外的副本除了降低性能之外不能提高可靠性。
PBFT算法主要特点如下:客户端向主节点发送请求调用服务操作;主节点通过广播将请求发送给其他副本;所有副本都执行请求并将结果发回客户端;客户端需要等待f+1个不同副本节点发回相同的结果,作为整个操作的最终结果。
㈥ 区块链能对传统企业起到什么作用
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链本质上是一个去中心化的数据库。
区块链的应用领域有数字货币、通证、金融、防伪溯源、隐私保护、供应链、娱乐等等,区块链、比特币的火爆,不少相关的top域名都被注册,对域名行业产生了比较大的影响。
以农业为例,区块链解决农业什么问题?
1、农产品可溯源
农产品溯源一直是农业的一个痛点问题。而区块链技术是可以对记录实现不可篡改,因此从农产品的生产端到流通端、消费者都有详实的数据,可以实现消费者明明白白消费,提高消费者购买的意愿。
农产品溯源可以提升农产品安全性以及食品的安全性。
2、信息透明
农业领域除了可溯源之外,生产者与需求方的信息也存在不透明的问题。
一旦区块链技术应用与农业。大家就可以通过大数据分析,建立种植户、采购商的信用评级参考;利用智能合约在种植户和采购商之间保证公平交易。同时,区块链技术可以提高农产品买卖双方的契约精神。
另外,随着食品供应链中区块链的出现,这可以简化这一过程,因为数据管理系统,将一系列经纪人、农民、加工商、分销商、监管机构、零售商和消费者纳入其雷达范围的数据管理系统变得更加透明。
3、降低成本
区块链技术运用之后,生产、流通等2大环节的成本会大大降低。比如,区块链技术解决信息自动存贮和数据库的功能,如此就减少了人工的投入和其他设施的投入。
另外,区块链及应用实现万物互联,帮助生产商和渠道商降低各项开支。同时,生产和流通成本的降低,也会降低农产品的价格,最终还是消费者获利。
当然,除了以上3个原因之外,还有农业补贴、土地登记等方面也可以应用区块链技术,解决贪污、权益等问题。
因此,区块链技术在农业领域的应用等到各级人士的认同。
区块链技术的核心优势是去中心化,能够通过运用数据加密、时间戳、分布式共识和经济激励等手段,在节点无需互相信任的分布式系统中实现基于去中心化信用的点对点交易、协调与协作,从而为解决中心化机构普遍存在的高成本、低效率和数据存储不安全等问题提供了解决方案。
区块链的未来发展和应用场景
1.数字身份
很多人开各种证明时会遇到“证明我奶奶是成年人”、“我妈是我妈”的窘境,有了区块链,就再也不用担心了。原来我们的出生证、房产证、婚姻证等等,需要一个中心节点,大家才能承认。一旦跨国,合同和证书可能就失效了,因为缺少全球性的中心节点。
区块链技术不可篡改的特性从根本上改变了这一情况,我们的出生证、房产证、婚姻证都可以在区块链上公证,变成全球都信任的东西,当然也可以轻松证明 “证明我奶奶是成年人”、“我妈是我妈”。
2.卫生保健
简单说就是利用区块链建立有时间戳的通用记录存储库,进而达到不同数据库都可提取数据信息的目的。
3.旅行消费
旅游时,我们经常会用携程、美团等app来寻找并下单入住酒店和其他服务,各个平台从中获得提成。而区块链的应用正是除去中间商,并为服务提供商和客户创建安全、分散的方式,以达到直接进行连接和交易的目的。
4.更便捷的交易
区块链可以让支付和交易变得更高效、更便捷。区块链平台允许用户创建在满足某些条件时变为活动的智能合约,这意味着当交易双方同意满足其条件时,可以释放自动付款。
5.严把产品质量关
假如你买了一个苹果,在区块链技术下,你可以知道从果农的生产到流通环节的全过程。在这其中有政府的监管信息、有专业的检测数据、有企业的质量检验数据等等。智慧的供应链将使我们日常吃到的食物、用到的商品更加安全,让我们更加放心。
6.产权保护艺术
创作者把自己的作品放在区块链上,一旦有人使用了他的作品,他就能立刻知道。相应的版税,也会自动支付给创作者。区块链技术既保护了版权,也有助于创作者更好更直接地向消费者售卖自己的作品,而不再需要发行公司的协助。
㈦ okcoin币行徐明星解析区块链信任的机器是怎样运行的
区块链作为“信任的机器”这个名字起源于《经济学人》的一篇文章。从宏观层面来看,互联网它是一个传输信息的网络,我们今天可以通过互联网购物,可以发微信。现在全球很多技术专家、传统的金融行业的人士,把区块链视为一个革命性的技术是因为区块链是一个传输交易的网络,因此美国有一个很著名的VC说区块链是金融的底层协议。
假设有一个用户A想给另外一个用户B转帐,在传统金融网络和区块链网络里会有什么不一样的地方呢?在今天现有的金融网络里面,比如从工商银行转帐到招商银行,用户可以首先通过工商银行的网银或者ATM机接入数据库,数据库可以经过区块链中心的清算公司到另外一家银行的数据库之中,之后用户收到这笔钱。如果是在区块链上做这笔交易,首先这笔交易会被广播到一个去中心化的网络上,或者P2P网络上,这个交易会被网络上通过一些数学机制所选举出来的记账者做校验,校验这笔交易是不是真的,它通过数学算法,从原理上保证交易不能被伪造。当记账者同意这笔交易有效以后,它会形成一个账册,把这个账册再广播到网络上所有的人,这当然包括收款人。
中心化网络,这是最早最原始的网络。我们今天的互联网是这样的,是一个分布式网络。它有很多小中心,通过骨干网连接起来,形成一个分布式网络。区块链的网络其实是一个很低效的网络,因为这个网络有很多的数据冗余,传输不是很有效的,但随着时间的发展,传输变强以后,这个冗余问题已经不是很大的问题了。
区块链网络没有强有力的中心能够控制或者篡改这个网络里面的数据,我们可以理解成,去中心化的网络是建立在分布式网络之上的一种网络。在很多国家,像英国央行做的很多报告里面,也把区块链翻译成分布式帐本,区块链它最早是源于比特币。现在很多传统的金融企业开始研究区块链,开始尝试区块链,例如像RIPPLE、R3联盟等。
如果我们认真分析区块链这样的分布式帐本的作用可以发现,它的应用还是很多的。像个人金融领域里面,有很多基于区块链的支付公司、汇款公司等等,在政治层面,有把区块链技术运用到选举中的,能够从技术上保证选票不能篡改。还有数字货币领域,英格兰银行用区块链技术开发另外一种数字货币,它不同于支付宝、网络银行的余额,当然也不是像比特币这样一种不受控制的货币。它的发行权利还是在央行的手里,但是它的清算、流通的网络建立在开通的区块链网络上。它的优势,比如我们微信支付、支付宝可以互相转帐了。比如我办停车卡,原有的体系天然的形成一些支付壁垒,底层的数字技术可以消除这种壁垒,像IBM等都在做这方面的尝试。
还比如R3,R3是世界上很牛的公司,它们试图做信用债、银行债清算网络,国内的清算都是走衷心的清算公司,在国际间其实没有这样的清算中心,首先是国内几家大银行进行通信协议,然后小银行在里面再做协议,非常的复杂。因为国际上没有一个强有力的中心能够做国际清算系统,连世界银行也做不到,R3这样的企业试图用技术来做,国际上各个国家之间互相不信任,或者各个银行互相质检部信任,但是我们都可以相信技术,区块链就是这样一种技术。
我们在这个领域里也做了一些创新的工作,我们最早从区块链的第一个应用比特币开始,我们的产品叫OKCoin币行,今年我们新推出了一个区块链的金融网络OKLink,OKLink产品主要是在香港做小额的国际汇款。
大家都知道国际上有一个多层的资金流,以及资金流、信息流分离,导致国际汇款的成本非常之高。世界有一个预测,很多人在外面打工把钱汇回来的,每年有7000亿美金,单一笔都是小额的,这里面平均手续费是10%。比如菲佣在香港每个月赚4000元港币,回到家800元就没有了。
OKCoin币行把很多公司放在区块链里面来,能够让他们高效、低成本的清算,但是不会做假账,也没有能力跑路,目前我们在全世界打通了十几个国家。目前还没有中国,中国只有银行才能够合法的做转帐的工作。区块链帮助我们这家企业在国际上建立了一个信用,这不是我们公司的信用,也不是投资人的信用,是一个技术的信用,所以我们有一些在非洲、东南亚的合作伙伴,他们愿意相信网络的安全性、共振性。
我们同时在C端有一个APP,把世界各地的汇款订单分配给这些汇款的企业。我们目前在世界上商业化区块链运营网络,每个月我们有几百万美金的处理金额,而且我们世界各国都是合规进行的。
总结一下区块链技术能做些什么。区块链技术其实是一种把你的账本开放给大众的技术。什么时候需要把帐本开放给大众呢?是别人不相信你这个平台的时候,短期来看它的应用更适合于弱公信力的领域。但从长期来看,像纳斯达克、纽交所,这些本身拥有信用的单位,他们未来也会使用区块链的技术,因为现在的成本非常高,所以从长期来讲,这种强信用的单位未来可能会用到区块链的技术来降低成本。(转自网易新闻)
当然,比特币、以太坊、去中心化内容分享平台DECENT也是如此。
㈧ 区块链技术的六大核心算法
区块链技术的六大核心算法
区块链核心算法一:拜占庭协定
拜占庭的故事大概是这么说的:拜占庭帝国拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。
在这个分布式网络里:每个将军都有一份实时与其他将军同步的消息账本。账本里有每个将军的签名都是可以验证身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些将军。尽管有消息不一致的,只要超过半数同意进攻,少数服从多数,共识达成。
由此,在一个分布式的系统中,尽管有坏人,坏人可以做任意事情(不受protocol限制),比如不响应、发送错误信息、对不同节点发送不同决定、不同错误节点联合起来干坏事等等。但是,只要大多数人是好人,就完全有可能去中心化地实现共识
区块链核心算法二:非对称加密技术
在上述拜占庭协定中,如果10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致。谁都可以发起进攻的信息,但由谁来发出呢?其实这只要加入一个成本就可以了,即:一段时间内只有一个节点可以传播信息。当某个节点发出统一进攻的消息后,各个节点收到发起者的消息必须签名盖章,确认各自的身份。
在如今看来,非对称加密技术完全可以解决这个签名问题。非对称加密算法的加密和解密使用不同的两个密钥.这两个密钥就是我们经常听到的”公钥”和”私钥”。公钥和私钥一般成对出现, 如果消息使用公钥加密,那么需要该公钥对应的私钥才能解密; 同样,如果消息使用私钥加密,那么需要该私钥对应的公钥才能解密。
区块链核心算法三:容错问题
我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由共识节点组成的共识系统,提供的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。
区块链核心算法四:Paxos 算法(一致性算法)
Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。节点通信存在两种模型:共享内存和消息传递。Paxos算法就是一种基于消息传递模型的一致性算法。
区块链核心算法五:共识机制
区块链共识算法主要是工作量证明和权益证明。拿比特币来说,其实从技术角度来看可以把PoW看做重复使用的Hashcash,生成工作量证明在概率上来说是一个随机的过程。开采新的机密货币,生成区块时,必须得到所有参与者的同意,那矿工必须得到区块中所有数据的PoW工作证明。与此同时矿工还要时时观察调整这项工作的难度,因为对网络要求是平均每10分钟生成一个区块。
区块链核心算法六:分布式存储
分布式存储是一种数据存储技术,通过网络使用每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在网络中的各个角落。所以,分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。
㈨ 区块链密码算法是怎样的
区块链作为新兴技术受到越来越广泛的关注,是一种传统技术在互联网时代下的新的应用,这其中包括分布式数据存储技术、共识机制和密码学等。随着各种区块链研究联盟的创建,相关研究得到了越来越多的资金和人员支持。区块链使用的Hash算法、零知识证明、环签名等密码算法:
Hash算法
哈希算法作为区块链基础技术,Hash函数的本质是将任意长度(有限)的一组数据映射到一组已定义长度的数据流中。若此函数同时满足:
(1)对任意输入的一组数据Hash值的计算都特别简单;
(2)想要找到2个不同的拥有相同Hash值的数据是计算困难的。
满足上述两条性质的Hash函数也被称为加密Hash函数,不引起矛盾的情况下,Hash函数通常指的是加密Hash函数。对于Hash函数,找到使得被称为一次碰撞。当前流行的Hash函数有MD5,SHA1,SHA2,SHA3。
比特币使用的是SHA256,大多区块链系统使用的都是SHA256算法。所以这里先介绍一下SHA256。
1、 SHA256算法步骤
STEP1:附加填充比特。对报文进行填充使报文长度与448模512同余(长度=448mod512),填充的比特数范围是1到512,填充比特串的最高位为1,其余位为0。
STEP2:附加长度值。将用64-bit表示的初始报文(填充前)的位长度附加在步骤1的结果后(低位字节优先)。
STEP3:初始化缓存。使用一个256-bit的缓存来存放该散列函数的中间及最终结果。
STEP4:处理512-bit(16个字)报文分组序列。该算法使用了六种基本逻辑函数,由64 步迭代运算组成。每步都以256-bit缓存值为输入,然后更新缓存内容。每步使用一个32-bit 常数值Kt和一个32-bit Wt。其中Wt是分组之后的报文,t=1,2,...,16 。
STEP5:所有的512-bit分组处理完毕后,对于SHA256算法最后一个分组产生的输出便是256-bit的报文。
2、环签名
2001年,Rivest, shamir和Tauman三位密码学家首次提出了环签名。是一种简化的群签名,只有环成员没有管理者,不需要环成员间的合作。环签名方案中签名者首先选定一个临时的签名者集合,集合中包括签名者。然后签名者利用自己的私钥和签名集合中其他人的公钥就可以独立的产生签名,而无需他人的帮助。签名者集合中的成员可能并不知道自己被包含在其中。
环签名方案由以下几部分构成:
(1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)。
(2)签名。签名者用自己的私钥和任意n个环成员(包括自己)的公钥为消息m生成签名a。
(3)签名验证。验证者根据环签名和消息m,验证签名是否为环中成员所签,如果有效就接收,否则丢弃。
环签名满足的性质:
(1)无条件匿名性:攻击者无法确定签名是由环中哪个成员生成,即使在获得环成员私钥的情况下,概率也不超过1/n。
(2)正确性:签名必需能被所有其他人验证。
(3)不可伪造性:环中其他成员不能伪造真实签名者签名,外部攻击者即使在获得某个有效环签名的基础上,也不能为消息m伪造一个签名。
3、环签名和群签名的比较
(1)匿名性。都是一种个体代表群体签名的体制,验证者能验证签名为群体中某个成员所签,但并不能知道为哪个成员,以达到签名者匿名的作用。
(2)可追踪性。群签名中,群管理员的存在保证了签名的可追踪性。群管理员可以撤销签名,揭露真正的签名者。环签名本身无法揭示签名者,除非签名者本身想暴露或者在签名中添加额外的信息。提出了一个可验证的环签名方案,方案中真实签名者希望验证者知道自己的身份,此时真实签名者可以通过透露自己掌握的秘密信息来证实自己的身份。
(3)管理系统。群签名由群管理员管理,环签名不需要管理,签名者只有选择一个可能的签名者集合,获得其公钥,然后公布这个集合即可,所有成员平等。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。