当前位置:首页 » 区块链知识 » 区块链的密钥是一连串的字母吗

区块链的密钥是一连串的字母吗

发布时间: 2025-03-10 02:53:38

㈠ 币圈内的一些专业术语是什么

26个区块链行业常用名词解释

1、Blockchain——区块链

区块链是分布式数据存储、点对点传输、共识机制、加密货币算法等计算机技术的新型应用模式。是一个共享的分布式账本,其中交易通过附加块永久记录。

2、Block——区块

比特币网络中,数据会以文件的形式被永久记录,我们称这些文件为区块。一个区块是一些或所有最新比特币交易的记录集,且未被其他先前的区块记录。

3、Node——节点

由区块链网络的参与者操作的分类帐的副本。

4、去中心

去中心化是一种现象或结构,必须在拥有众多节点的系统中或在拥有众多个体的群中才能出现或存在。节点与节点之间的影响,会通过网络而形成非线性因果关系。

5、共识机制

共识机制是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。

6、Pow——工作量证明

Proofof Work,是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。

7、PoS——权益证明

Proofof Stake,根据你持有货币的量和时间进行利息分配的制度,在POS模式下,你的“挖矿”收益正比于你的币龄,而与电脑的计算性能无关。

8、智能合约

智能合约是一种旨在以信息化方式传播、验证或执行合约的计算机协议。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。

9、时间戳

时间戳是指字符串或编码信息用于辨识记录下来的时间日期。国际标准为ISO 8601。

10、图灵完备

图灵完成是指机器执行任何其他可编程计算机能够执行计算的能力。

11、Dapp——去中心化应用

是一种开源的应用程序,自动运行,将其数据存储在区块链上,以加密货币令牌的形式激励,并以显示有价值证明的协议进行操作。

12、DAO——去中心化自治组织

可以认为是在没有任何人为干预的情况下运行的公司,并将一切形式的控制交给一套不可破坏的业务规则。

13、PrivateKey——私钥

私钥是一串数据,它是允许你访问特定钱包中的令牌。它们作为加密货币,除了地址的所有者之外,都被隐藏。

14、PublicKey——公钥

是和私钥成对出现的,公钥可以算出币的地址,因此可以作为拥有这个币地址的凭证。

15、矿机

尝试创建区块并将其添加到区块链上的计算设备或者软件。在一个区块链网络中,当一个新的有效区块被创建时,系统一般会自动给予区块创建者(矿机)一定数量的代币,作为奖励。

16、矿池

是一个全自动的挖矿平台,使得矿机们能够贡献各自的算力一起挖矿以创建区块,获得区块奖励,并根据算力贡献比例分配利润(即矿机接入矿池—提供算力—获得收益)。

17、公有链

完全开放的区块链,是指任何人都可读取的、任何人都能发送交易且交易能获得有效确认的、全世界的人都可以参与系统维护工作,任何人都可以通过交易或挖矿读取和写入数据。

18、私有链

写入权限仅面向某个组织或者特定少数对象的区块链。读取权限可以对外开放,或者进行任意程度地限制。

19、联盟链

共识机制由指定若干机构共同控制的区块链。

20、侧链

楔入式侧链技术(pegged sidechains),它将实现比特币和其他数字资产在多个区块链间的转移,这就意味着用户们在使用他们已有资产的情况下,就可以访问新的加密货币系统。

21、跨链技术

跨链技术可以理解为连接各区块链的桥梁,其主要应用是实现各区块链之间的Atom交易、资产转换、区块链内部信息互通,或解决Oracle的问题等。

22、硬分叉

区块链发生永久性分歧,在新共识规则发布后,部分没有升级的节点无法验证已经升级的节点生产的区块,通常硬分叉就会发生。

23、软分叉

当新共识规则发布后,没有升级的节点会因为不知道新共识规则下,而生产不合法的区块,就会产生临时性分叉。

24、Hash——哈希值

一般翻译做”散列”,也有直接音译为”哈希”的。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

25、主链

主链一词源于主网(,相对于测试网),即正式上线的、独立的区块链网络。

对币圈“行话”还不了解的小伙伴,赶快来学习一下:

1、法币是什么?

法币是法定货币,是由国家和政府发行的,只有政府信用来做担保,如人民币、美元等等。

2、token是什么?

token,通常翻译成通证。Token是区块链中的重要概念之一,它更广为人知的名字是“代币”,但在专业的“链圈”人看来,它更准确的翻译是“通证”,代表的是区块链上的一种权益证明,而非货币。

Token的三个要素

一是数字权益证明,通证必须是以数字形式存在的权益凭证,代表一种权利、一种固有和内在的价值;

二是加密货币,通证的真实性、防篡改性、保护隐私等能力由加密货币学予以保障;

三是能够在一个网络中流动,从而随时随地可以验证。

3、建仓是什么?

币圈建仓也叫开仓,是指交易者新买入或新卖出一定数量的数字货币

4、梭哈是什么?

币圈梭哈就是指把本金全部投入。

5、空投是什么?

空投是目前一种十分流行的加密货币营销方式。为了让潜在投资者和热衷加密货币的人获得代币相关信息,代币团队会经常性地进行空投。

6、锁仓是什么?

锁仓一般是指投资者在买卖合约后,当市场出现与自己操作相反的走势时,开立与原先持仓相反的新仓,又称对锁、锁单,甚至美其名曰蝴蝶双飞。

7、糖果是什么?

币圈糖果即各种数字货币刚发行处在ICO时免费发放给用户的数字币,是虚拟币项目发行方对项目本身的一种造势和宣传。

8、破发是什么?

破指的是跌破,发指的是数字货币的发行价格。币圈破发是指某种数字货币跌破了发行的价格。

9、私募是什么?

币圈私募是一种投资加密货币项目的方式,也是加密货币项目创始人为平台运作募集资金的最好方式。

10、K线图怎么看?

K线图(Candlestick Charts)又称蜡烛图、日本线、阴阳线、棒线、红黑线等,常用说法是“K线”。它是以每个分析周期的开盘价、最高价、最低价和收盘价绘制而成。

11、对冲是什么?

一般对冲是同时进行两笔行情相关、方向相反、数量相当、盈亏相抵的交易。在期货合约市场,买入相同数量方向不同的头寸,当方向确定后,平仓掉反方向头寸,保留正方向获取盈利。

12、头寸是什么?

头寸是一种市场约定,承诺买卖合约的最初部位,买进合约者是多头,处于盼涨部位;卖出合约为空头,处于盼跌部位。

13、利好是什么?

利好:指币种获得主流媒体关注,或者某项技术应用有突破性进展,有利于刺激价格上涨的消息,都称为利好。

14、利空是什么?

利空:促使币价下跌的消息,如比特币技术问题,央行打压等。

15、反弹是什么?

币价在下跌趋势中因下跌过快而回升的价格调整现象。回升幅度小于下跌幅度。

16、杠杆是什么?

杠杆交易,顾名思义,就是利用小额的资金来进行数倍于原始金额的投资,以期望获取相对投资标的物波动的数倍收益率,抑或亏损。

㈡ 如何找到区块链的密码,区块链的密钥是什么

【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时,由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。

2、当B节点解密得到密文1后,只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要,之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1,比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢?有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥和临时的非对称私钥可以计算出一个对称秘钥(KA算法-KeyAgreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥与B节点自身的私钥计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入Nonce),再比如彩虹表(参考KDF机制解决)之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES,主要用于加密信息流。

伪随机数算法:例如TLS1.2的伪随机函数使用MAC算法的散列函数来创建一个主密钥——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC:EllipticCurvesCryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成公钥、私钥的算法。用于生成公私秘钥。

ECDSA:用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。主要用于身份认证阶段。

ECDH:也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。主要用于握手磋商阶段。

ECIES:是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH),H-MAC函数(MAC)。

ECC是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。ECDSA则主要是采用ECC算法怎么来做签名,ECDH则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。ECIES就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

metacharset="utf-8"

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式K=kG。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法就是要保证该公式不可进行逆运算(也就是说G/K是无法计算的)。*

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据kG计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么kG怎么计算呢?如何计算kG才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a=-3,b=7得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如22=2+2,35=5+5+5。那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R=0。其中0不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出P+Q=-R。由于R与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q=0,故P+R=-Q,如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说直线是曲线的切线。此时P,R重合了。

也就是P=R,根据上述ECC的加法体系,P+R+Q=0,就可以得出P+R+Q=2P+Q=2R+Q=0

于是乎得到2P=-Q(是不是与我们非对称算法的公式K=kG越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若2可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢?答案是肯定的。也就是点倍积计算方式。

选一个随机数k,那么k*P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描述成二进制然后计算。假若k=151=10010111

由于2P=-Q所以这样就计算出了kP。这就是点倍积算法。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点G=(x,y)。随机在曲线上取一点k作为私钥,K=k*G计算出公钥。

签名过程:

生成随机数R,计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k,计算出签名S=(H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M,RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算HG/S+xK/S,将计算的结果与RG比较。如果相等则验证成功。

公式推论:

HG/S+xK/S=HG/S+x(kG)/S=(H+xk)/GS=RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C=A+C+B=(A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考AliceAndBob的例子。

Alice与Bob要进行通信,双方前提都是基于同一参数体系的ECC生成的公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice采用公钥算法KA=ka*G,生成了公钥KA和私钥ka,并公开公钥KA。

Bob采用公钥算法KB=kb*G,生成了公钥KB和私钥kb,并公开公钥KB。

计算ECDH阶段:

Alice利用计算公式Q=ka*KB计算出一个秘钥Q。

Bob利用计算公式Q'=kb*KA计算出一个秘钥Q'。

共享秘钥验证:

Q=kaKB=ka*kb*G=ka*G*kb=KA*kb=kb*KA=Q'

故双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法Keccak。

2、签名算法采用的是ECDSA

3、认证方式采用的是H-MAC

4、ECC的参数体系采用了secp256k1,其他参数体系参考这里

H-MAC全程叫做Hash-.其模型如下:

在以太坊的UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是经过私钥加密的签名信息。mac是可以理解为整个消息的摘要,ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

区块链密码算法是怎样的?

区块链作为新兴技术受到越来越广泛的关注,是一种传统技术在互联网时代下的新的应用,这其中包括分布式数据存储技术、共识机制和密码学等。随着各种区块链研究联盟的创建,相关研究得到了越来越多的资金和人员支持。区块链使用的Hash算法、零知识证明、环签名等密码算法:

Hash算法

哈希算法作为区块链基础技术,Hash函数的本质是将任意长度(有限)的一组数据映射到一组已定义长度的数据流中。若此函数同时满足:

(1)对任意输入的一组数据Hash值的计算都特别简单;

(2)想要找到2个不同的拥有相同Hash值的数据是计算困难的。

满足上述两条性质的Hash函数也被称为加密Hash函数,不引起矛盾的情况下,Hash函数通常指的是加密Hash函数。对于Hash函数,找到使得被称为一次碰撞。当前流行的Hash函数有MD5,SHA1,SHA2,SHA3。

比特币使用的是SHA256,大多区块链系统使用的都是SHA256算法。所以这里先介绍一下SHA256。

1、SHA256算法步骤

STEP1:附加填充比特。对报文进行填充使报文长度与448模512同余(长度=448mod512),填充的比特数范围是1到512,填充比特串的最高位为1,其余位为0。

STEP2:附加长度值。将用64-bit表示的初始报文(填充前)的位长度附加在步骤1的结果后(低位字节优先)。

STEP3:初始化缓存。使用一个256-bit的缓存来存放该散列函数的中间及最终结果。

STEP4:处理512-bit(16个字)报文分组序列。该算法使用了六种基本逻辑函数,由64步迭代运算组成。每步都以256-bit缓存值为输入,然后更新缓存内容。每步使用一个32-bit常数值Kt和一个32-bitWt。其中Wt是分组之后的报文,t=1,2,...,16。

STEP5:所有的512-bit分组处理完毕后,对于SHA256算法最后一个分组产生的输出便是256-bit的报文。

作为加密及签名体系的核心算法,哈希函数的安全性事关整个区块链体系的底层安全性。所以关注哈希函数的研究现状是很有必要的。

2、Hash函的研究现状

2004年我国密码学家王小云在国际密码讨论年会(CRYPTO)上展示了MD5算法的碰撞并给出了第一个实例(CollisionsforhashfunctionsMD4,MD5,HAVAL-128andRIPEMD,rumpsessionofCRYPTO2004,,EuroCrypt2005)。该攻击复杂度很低,在普通计算机上只需要几秒钟的时间。2005年王小云教授与其同事又提出了对SHA-1算法的碰撞算法,不过计算复杂度为2的63次方,在实际情况下难以实现。

2017年2月23日谷歌安全博客上发布了世界上第一例公开的SHA-1哈希碰撞实例,在经过两年的联合研究和花费了巨大的计算机时间之后,研究人员在他们的研究网站SHAttered上给出了两个内容不同,但是具有相同SHA-1消息摘要的PDF文件,这就意味着在理论研究长期以来警示SHA-1算法存在风险之后,SHA-1算法的实际攻击案例也浮出水面,同时也标志着SHA-1算法终于走向了生命的末期。

NIST于2007年正式宣布在全球范围内征集新的下一代密码Hash算法,举行SHA-3竞赛。新的Hash算法将被称为SHA-3,并且作为新的安全Hash标准,增强现有的FIPS180-2标准。算法提交已于2008年10月结束,NIST分别于2009年和2010年举行2轮会议,通过2轮的筛选选出进入最终轮的算法,最后将在2012年公布获胜算法。公开竞赛的整个进程仿照高级加密标准AES的征集过程。2012年10月2日,Keccak被选为NIST竞赛的胜利者,成为SHA-3。

Keccak算法是SHA-3的候选人在2008年10月提交。Keccak采用了创新的的“海绵引擎”散列消息文本。它设计简单,方便硬件实现。Keccak已可以抵御最小的复杂度为2n的攻击,其中N为散列的大小。它具有广泛的安全边际。目前为止,第三方密码分析已经显示出Keccak没有严重的弱点。

KangarooTwelve算法是最近提出的Keccak变种,其计算轮次已经减少到了12,但与原算法比起来,其功能没有调整。

零知识证明

在密码学中零知识证明(zero-knowledgeproof,ZKP)是一种一方用于向另一方证明自己知晓某个消息x,而不透露其他任何和x有关的内容的策略,其中前者称为证明者(Prover),后者称为验证者(Verifier)。设想一种场景,在一个系统中,所有用户都拥有各自全部文件的备份,并利用各自的私钥进行加密后在系统内公开。假设在某个时刻,用户Alice希望提供给用户Bob她的一部分文件,这时候出现的问题是Alice如何让Bob相信她确实发送了正确的文件。一个简单地处理办法是Alice将自己的私钥发给Bob,而这正是Alice不希望选择的策略,因为这样Bob可以轻易地获取到Alice的全部文件内容。零知识证明便是可以用于解决上述问题的一种方案。零知识证明主要基于复杂度理论,并且在密码学中有广泛的理论延伸。在复杂度理论中,我们主要讨论哪些语言可以进行零知识证明应用,而在密码学中,我们主要讨论如何构造各种类型的零知识证明方案,并使得其足够优秀和高效。

环签名群签名

1、群签名

在一个群签名方案中,一个群体中的任意一个成员可以以匿名的方式代表整个群体对消息进行签名。与其他数字签名一样,群签名是可以公开验证的,且可以只用单个群公钥来验证。群签名一般流程:

(1)初始化,群管理者建立群资源,生成对应的群公钥(GroupPublicKey)和群私钥(GroupPrivateKey)群公钥对整个系统中的所有用户公开,比如群成员、验证者等。

(2)成员加入,在用户加入群的时候,群管理者颁发群证书(GroupCertificate)给群成员。

(3)签名,群成员利用获得的群证书签署文件,生成群签名。

(4)验证,同时验证者利用群公钥仅可以验证所得群签名的正确性,但不能确定群中的正式签署者。

(5)公开,群管理者利用群私钥可以对群用户生成的群签名进行追踪,并暴露签署者身份。

2、环签名

2001年,Rivest,shamir和Tauman三位密码学家首次提出了环签名。是一种简化的群签名,只有环成员没有管理者,不需要环成员间的合作。环签名方案中签名者首先选定一个临时的签名者集合,集合中包括签名者。然后签名者利用自己的私钥和签名集合中其他人的公钥就可以独立的产生签名,而无需他人的帮助。签名者集合中的成员可能并不知道自己被包含在其中。

环签名方案由以下几部分构成:

(1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)。

(2)签名。签名者用自己的私钥和任意n个环成员(包括自己)的公钥为消息m生成签名a。

(3)签名验证。验证者根据环签名和消息m,验证签名是否为环中成员所签,如果有效就接收,否则丢弃。

环签名满足的性质:

(1)无条件匿名性:攻击者无法确定签名是由环中哪个成员生成,即使在获得环成员私钥的情况下,概率也不超过1/n。

(2)正确性:签名必需能被所有其他人验证。

(3)不可伪造性:环中其他成员不能伪造真实签名者签名,外部攻击者即使在获得某个有效环签名的基础上,也不能为消息m伪造一个签名。

3、环签名和群签名的比较

(1)匿名性。都是一种个体代表群体签名的体制,验证者能验证签名为群体中某个成员所签,但并不能知道为哪个成员,以达到签名者匿名的作用。

(2)可追踪性。群签名中,群管理员的存在保证了签名的可追

㈢ 区块链钱包有什么作用呢,有能说明白的嘛

区块链钱包的本质是一个私钥,它是一个随机的哈希值字符串,拥有了私钥就拥有了该钱包的使用权。如果按照私钥存储方式可划分为:冷钱包和热钱包
冷钱包是指网络不能访问到你私钥的钱包,一般会拿笔记本记录,虽然免去被黑客盗取私钥的风险,但是也有可能遗失。
热钱包是指互联网能购访问你私钥的钱包。热钱包往往是在线钱包的形式,不容易遗失,但是也同样具有风险。

㈣ 鍦ㄥ尯鍧楅摼涓涓鑸浣跨敤浠涔堝姞瀵嗙畻娉

鍦ㄥ尯鍧楅摼涓锛屼竴鑸浣跨敤涓ょ嶄富瑕佺殑鍔犲瘑绠楁硶锛



  1. 鍏閽/绉侀挜鍔犲瘑绠楁硶锛氳繖绉嶅康缁濆姞瀵嗙畻娉曚娇鐢ㄤ竴瀵瑰叕閽ュ拰绉侀挜銆傚叕閽ュ彲浠ュ叕寮鍒嗗彂锛岃岀侀挜闇瑕佷繚瀵嗐傚彧鏈夋嫢鏈夌侀挜鐨勪汉鎵嶈兘瑙e瘑浣跨敤鍏閽ュ姞瀵嗙殑鏁版嵁銆傝繖绉嶅姞瀵嗘柟娉曡骞挎硾鐢ㄤ簬鏁板瓧绛惧悕鍜岃韩浠介獙璇侊紝鍥犱负瀹冨彲浠ョ‘璁ゆ暟鎹鐨勬潵婧愬拰瀹屾暣鎬с傚湪鍖哄潡閾句腑锛岀侀挜鐢ㄤ簬纭璁や氦鏄撹呯殑韬浠斤紝鑰屽叕閽ュ垯琚骞挎挱缁欑綉缁滀腑鐨勫叾浠栬妭鐐逛互楠岃瘉浜ゆ槗鐨勬湁鏁堟ф壈楂樼瑧銆

  2. RSA绠楁硶锛氳繖鏄涓绉嶅父鐢ㄧ殑鍏閽/绉侀挜鍔犲瘑绠楁硶锛岀敱Ron Rivest銆丄di Shamir 鍜 Leonard Adleman浜1978骞村彂鏄庛傚畠鏄涓绉嶉潪瀵圭О鍔犲瘑绠楁硶锛屼篃灏辨槸璇达紝鐢ㄤ簬鍔犲瘑鐨勫瘑閽ュ拰鐢ㄤ簬瑙e瘑鐨勫瘑閽ユ槸涓嶅悓鐨勩

  3. ECDSA锛堟き鍦嗘洸绾挎暟瀛楃惧悕绠楁硶锛夛細杩欐槸涓绉嶅熀浜嶳SA绠楁硶鐨勬敼杩涚増锛屼娇鐢ㄦき鍦嗘洸绾垮瘑鐮佸︼紝浣垮緱绛惧悕杩囩▼鏇村揩閫熶笖鏇村畨鍏ㄣ傚湪鍖哄潡閾句腑锛孍CDSA琚鐢ㄤ簬楠岃瘉浜ゆ槗鐨勬暟瀛楃惧悕銆


鎷撳睍鐭ヨ瘑锛



鍝堝笇鍑芥暟鏄涓绉嶅皢浠绘剰闀垮害鐨勬暟鎹锛堝傛枃鏈銆佹暟瀛楃瓑锛夎浆鎹涓哄浐瀹氶暱搴︼紙閫氬父涓256浣嶆垨512浣嶏級鐨勬憳瑕佺殑鏂规硶銆傚畠浠缂撳惈闈炲父蹇涓旈潪甯稿畨鍏锛屽洜涓烘敼鍙樻暟鎹涓鐨勪竴灏忛儴鍒嗭紙鍗充娇鏄寰灏忕殑鏀瑰彉锛変細瀵艰嚧鍝堝笇缁撴灉鐨勫彉鍖栭潪甯稿ぇ锛岀敋鑷充笉鍙閫嗐傝繖绉嶇壒鎬т娇寰楀搱甯屽嚱鏁板湪鍖哄潡閾句腑琚骞挎硾浣跨敤锛屽傚尯鍧楃殑merkle鏍戠粨鏋勩佷氦鏄撶殑鏁板瓧绛惧悕浠ュ強瀵嗙爜瀛﹂挶鍖呯殑瀛樺偍绛夈


姣旂壒甯佸尯鍧楅摼涓昏佷娇鐢⊿HA-256浣滀负鍏跺搱甯屽嚱鏁帮紝杩欐槸鐢盌avid Chaum鍜孧ayra P. Chilomchik鍦1997骞村紩鍏ョ殑涓绉嶇畻娉曘係HA-256鎻愪緵浜嗕竴绉嶉潪甯稿畨鍏ㄧ殑鏂瑰紡鏉ュ垱寤哄尯鍧楅摼骞剁‘淇濅氦鏄撶殑瀹夊叏鎬с傛ゅ栵紝鍖哄潡閾句腑鐨凪erkle鏍戠粨鏋勪篃鏄鍩轰簬SHA-256鐨勫搱甯屽嚱鏁版潵鍒涘缓鐨勩


浠ヤ笂涓ょ嶅姞瀵嗙畻娉曞拰鍝堝笇鍑芥暟鍦ㄥ尯鍧楅摼涓閮芥壆婕旂潃闈炲父閲嶈佺殑瑙掕壊锛屽畠浠淇濊瘉浜嗕氦鏄撶殑瀹夊叏鎬с佸畬鏁存у拰鍖垮悕鎬э紝鍚屾椂涔熺‘淇濅簡鍖哄潡閾剧綉缁滅殑鍘讳腑蹇冨寲鍜屼笉鍙绡℃敼鎬с


鍚屾椂锛岀敱浜庡尯鍧楅摼涓鐨勬暟鎹鏄浠ュ尯鍧楃殑褰㈠紡涓嶆柇澧為暱鐨勶紝杩欎簺鍔犲瘑绠楁硶杩樿鐢ㄤ簬鍒涘缓鍖哄潡澶村拰鍖哄潡闂寸殑閾炬帴锛岃繘涓姝ユ彁楂樹簡鍖哄潡閾剧殑鎬ц兘鍜屽畨鍏ㄦс

㈤ 区块链原理

区块链是一种技术,但它不是一种单一的技术,而是由多种技术整合的结果,包括密码学、数学、经济学、网络科学等。你可以把它看做是一个分布式共享记账技术,也可以看做是一个数据库,只不过这个数据库是由在这个链上的所有节点共同维护,每个节点都有一份账本,因为所有节点的账本一致,不同节点之间可以互相信任,对数据没有疑问,所以大家都说区块链从技术上实现了信任。详细的专业技术可以咨询一些专业的技术公司,例:金博科技,专注开发区块链相关产品,专业研发团队和完善的售后服务,可以电话咨询。

热点内容
区块链的密钥是一连串的字母吗 发布:2025-03-10 02:53:38 浏览:615
btce提币要多久 发布:2025-03-10 02:29:12 浏览:868
挖矿小队能不能提现 发布:2025-03-10 02:01:32 浏览:819
btc2018年 发布:2025-03-10 01:59:48 浏览:390
区块链交通行业应用公路局 发布:2025-03-10 01:59:15 浏览:455
国内外比特币平台差价 发布:2025-03-10 01:35:48 浏览:849
韩国加息对币圈的影响 发布:2025-03-10 01:35:40 浏览:71
欧服eve新手挖矿 发布:2025-03-10 01:33:24 浏览:589
区块链技术公司介绍 发布:2025-03-10 01:31:05 浏览:609
挖比特币机器特响 发布:2025-03-10 01:28:17 浏览:982