区块链nonce大小
Ⅰ 比特币网络中什么是“Blocks (区块)”
每个区块包含所有最近交易的信息,一个 Nonce (随机数) 以及上一个区块的哈希值。 在整个区块的 SHA-256 哈希值低于当前目标值时,它便被标记为“已解决” (已发布并通过多个节点验证)。通常一次哈希很难达到目标,因此 Nonce 必须增加,区块必须重新哈希上百万次,才能达到目标。 Bitcoin 比特币交易通过汇款人广播到网络中,所有采矿的节点 (客户端) 收集比特币并将其添加到他们正在工作的区块。如果交易额很大,超过了平均交易额,那么网络将会扣除少量的交易手续费。 每个区块中的第一个交易是特殊的: 它为第一个采到有效区块的人创建新的比特币。其它节点 (客户端) 在该交易额正确的情况下仅会接受该区块。每个区块产生的比特币的数量为 50,每 210000 个区块减少一半 (大约为 4 年)。 网络尝试每小时创建 6 个区块。每 2016 个区块 (大约两周时间),所有的比特币客户端都会将这个目标与实际创建的区块数量相比较,修改区块采集的难度百分比以维持这一目标。 客户端认为“最长的”区块链是有效的。整个区块链的“长度”是指难度相加最多的链,而不是拥有最多区块的链。这可以避免某人伪造并创建大量低难度的区块,欺骗网络将其接受为“最长”链。 点击这里查看当前已采集区块数目 没有最大数目。区块会不断以 10 分钟一个的速度添加到区块链的末尾 是的。区块用以证明交易在某个特定的时间存在。在所有比特币都被采集后,交易仍然会发生。因此只要有人交易比特币,区块仍然会被创建。 没有人可以准确说出。有一个采矿计算器会告诉您可能花去的时间。 没有进度增加 1% 的说法。每次运算并不会增加进度。计算 24 小时后您获得比特币的几率和您刚开始计算时是相等的。 这和您同时旋转 37 个硬币并使它们都正面朝上一样。每次您尝试,您成功的机会是相同的。
Ⅱ 详解区块头
最近一直在看技术向的普及读物,我觉得比看行情有意思。
在刚开始了解比特币的时候,我就很想要知道一个区块的数据大概是由哪些部分构成,知道了这些构成对我的理解有着莫大的便利性,还好我找到了。
区块大小和交易计数器很好理解,区块头和交易则稍显复杂。
区块头包括三组数据:
第一、父区块哈希值的数据。我认为可以理解为基因。
第二、挖矿难度值、区块时间戳以及Nonce。这一组数据记录与挖矿有关的内容。
第三、Merkle树根。这是个神奇的东西,可以先理解为描述区块中所有交易的数据。
区块链之所以叫链,就是因为它的结构是一条从后向前有序连接起来的数据结构,就像是一条尾巴永远在变长的链子。
那是什么原因导致这条数据这样井然有序的从后向前的连接呢?这就得靠父区块哈希值了。
从字面意思理解,这是来自于父亲的哈希值。在区块链中,我们称呼当前区块的前一个区块为父区块,相应的后一个区块为子区块。唯独有一个区块是特殊的,它没有父区块,它是孙悟空~不对,它叫创世区块!
所谓的父区块哈希值,就是父区块的区块头哈希值。从表格2中可以看到,区块头中包含了各种数据,大小是80字节,而这80字节的数据经过哈希运算,会得到一个32字节的字符串,这个32字节的字符串就是区块头哈希值。
举个例子(例中数据全是随机乱输入的),第198808个区块的区块头哈希值是ade12318fbce...12ade413(32字节),那么第198809个区块的区块头数据就是这样的:
把198809区块头中的所有数据经过哈希运算得到一个32字节的数据:bcf45896aefcd...33cde409(32字节),那么第198810个区块的区块头数据就是这样的:
把两张图放到一起,就能得到一个简单的由2个区块构成的链。而区块链就是以这种方式构成的一条可以随着时间流逝无限延长的链。
为什么要这样做呢?
一开始我有说,我认为父区块哈希值可以理解为基因。如果我们的祖先有8条腿,我们人类可能就不是现在这个长相了,蜘蛛应该会非常可爱!
而父区块哈希值如果出现变化,那么把父区块哈希值作为输入条件的子区块哈希值一定会出现变化,紧跟着孙区块也一定会发生变化,如此这般,这个被改变的区块之后所有的已有区块都必须改变。
越是早创造的区块,更改后需要的工作量越大,越不可能实现,而越新的区块被改变的难度也就越低。这也是区块链的交易一般需要有6个新区快建立以后才被确认交易完成的原因,因为这个时候,交易被更改的可能性已经基本没有了。
凭着这个结构,区块链实现了不可逆、不可篡改的特性!
Ⅲ 区块链的区块是怎么产生的
第一步:区块链系统里交易双方发起交易,比如A要转一笔钱给B;
第二步:系统里参与的节点抢夺记账权,系统里选择最具代表性的记账生成区块;
第三步:该区块被广播给网络里的所有参与者;
第四步:参与者同意交易有效;
第五步:该区块被添加到链上,这条链提供永久透明的交易记录;
第六步:资金从A转移到B
Ⅳ 区块链之工作量证明,挖矿是什么
区块链技术的核心概念之一是工作量证明(Proof-of-Work, POW),它作为矿工挖出新区块的基础,确保了区块链的安全性。POW的工作机制简单来说,就是矿工通过解决复杂的数学问题,来证明自己为区块链网络做出了贡献,从而获取一定的比特币奖励。
工作量证明的概念最初是为了解决垃圾邮件问题,使用POW作为发送电子邮件的认证机制。尽管其在垃圾邮件问题上的实际效果仍有争议,但在区块链领域,POW的作用是确保网络的安全性和去中心化特性。
在理解工作量证明之前,首先需要了解哈希函数。哈希函数是一种将任意大小的数据转换为固定大小输出的函数,具备唯一性和不可逆性。在比特币加密系统中,使用SHA256算法作为哈希函数,这种算法可以产生2^256种不同的输出,理论上产生碰撞的几率极其微小。
工作量证明的基本原理是要求矿工对输入数据进行多次哈希运算,直到找到一个特定格式的哈希值。这个过程需要消耗大量的计算资源,证明了矿工投入了足够的“工作量”。例如,在比特币中,矿工需要找到一个哈希值,其前几位为“0”,这需要大量的试错和计算。
以“Hello, world!”为例,矿工需要在该字符串后添加一个随机整数(Nonce),不断进行SHA256哈希运算,直到得到的哈希值前四位为“0”。这个过程的计算次数就是矿工为了挖出新区块所投入的工作量,也是POW机制的核心。
比特币网络中的任何一个节点要生成新区块,需要完成三个关键步骤:工作量证明函数、区块内容和难度值。工作量证明函数决定了矿工需要进行多少次哈希运算,区块内容包括输入数据,而难度值则反映了需要进行的运算次数的难易程度。比特币使用SHA256算法作为工作量证明函数,区块由区块头和包含的交易列表组成。
难度值的调整机制保证了新区块的产生速率稳定在每10分钟一个。全网的算力变化会触发难度值的自动调整,以维持这个速率。当网络算力增加时,难度值会增加,反之则降低,确保新区块的产生速率保持稳定。
工作量证明的目标值是通过计算公式得出的,它与难度值成反比。目标值的大小决定了矿工找到一个有效区块所需的哈希值前导0的数量。矿工通过不断尝试不同的Nonce值,进行哈希运算,直到找到满足目标值要求的哈希值。这个过程类似于体力劳动,需要大量的计算资源和时间。
因此,工作量证明在区块链中扮演着至关重要的角色,它确保了网络的安全性和去中心化特性,同时也为矿工提供了激励机制。通过工作量证明,比特币网络实现了安全、公平的区块生成机制,为区块链技术的广泛应用奠定了基础。
Ⅳ 比特币区块里的各个字段含义(先写了个nonce)
nonce是个啥意思?根据bitcoin wiki
nonce是一个4-byte大小的区域,nonce的值设定使得该块的hash是以一串0开头的。
对于块数据的一点点改变(比如nonce)都会引起block hash的巨大变化。由于逆向预测hash值相对应的一组bit值(hash原文)是不可行的,在尝试足够多的nonce值且计算每个nonce值相对应的block hash之后可以找到一个满足有指定数量 0 bits (0比特位) 的hash值。而 0 bits的数量值是由difficult设定的。最终产生的hash须得是一个小于当前difficulty值。
因为这个迭代的计算耗费时间和资源,块的出现也就是得到了正确的nonce值,这构成了 proof of work
关于以太坊里的nonce 网上很多解释,很多一上来就是 交易计数器 , 然而却把跟POW有关的丢了吗?事实上以太坊里的nonce有两种意思,一个是proof of work nonce,一个是account nonce。
那智能合约呢?合约也算是Account的一种,那也有nonce吗?
是的,而且合约里面的nonce也差不多,也是一个counter。在智能合约里,nonce的值代表的是该合约创建的合约数量。只有当一个合约创建另一个合约的时候才会增加nonce的值。但是当一个合约调用另一个合约中的method时 nonce的值是不变的。
在以太坊中nonce的值可以这样来获取(其实也就是属于一个账户的交易数量):
但是这个方法只能获取交易once的值。目前是没有内置方法来访问contract中的nonce值的,除了自己定义一个counter来计数...
那好,再来看一下Ethereum Block中的nonce:
以太坊和比特币区块链一样,也需要proof of work(计划转移到股份证明也早已在做了)。在比特币区块链中,pow应该是要算出一个符合难度要求的值,通常是以一串0开头的。这个难度一直在变化。可以查看 比特币区块链的POW难度变化 。
Ⅵ 区块链有什么原则(区块链的原理和特征)
研究前沿|建筑中的区块链:它将如何改变行业区块链技术是一种革命性的工具,用于记录交易并将它们链接在一起形成一个“链”,即分布式账本。
建筑公司使用区块链来控制供应链和合同,即使是非常大的建筑项目也将变得更容易管理。
区块链是一系列相互关联的数据“块”,它们构成了一个分布式账本,它可以被认为是一个文字链,每个链接一个项目中的一个单独的事务。
如果一个供应商完成交付并履行其合同,则完成的合同将最终确定并添加为新的“块”或链中的链接。这为区块链提供了一种在查找信息时易于遵循的自然顺序。
区块链的三个原则将其定义为安全、去中心化和可扩展到任何规模的项目。
由于区块链项目是分散的,它们带走了项目中典型的信息层次结构。这提高了项目透明度,减少了对简单目标的来回沟通的需要。结果是任何项目都可以通过区块链技术提高效率。
虽然区块链对许多行业都有影响,但在建筑行业,它简化了项目管理。
区块链技术为建筑行业提供了六个直接的好处:
区块链带来的好处是令人兴奋的,但实施的成本可能很高,因为它需要参与项目的所有各方进行投资。
行业的怀疑是大规模实施的另一个挑战,这些挑战并非不可能克服,安全性、去中心化和可扩展性可以使任何规模的建设项目受益,前景实在诱人。
深入了解区块链的共识机制及算法原理所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。
要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。
区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。
目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。
工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。
2012年,化名SunnyKing的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。
股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。
股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。
Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。
Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等
这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。
工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。
下图所示的为工作量证明流程。
举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。
通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。
下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;...;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。
由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。
统计输入的字符创与得到对应目标结果实际使用的计算次数如下:
对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。
比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。
难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。
难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:
新难度值=旧难度值*(20160分钟/过去2016个区块花费时长)。
工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:
目标值=最大目标值/难度值,其中最大目标值为一个恒定值
目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。
我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。
可以把比特币将这道工作量证明谜题的步骤大致归纳如下:
该过程可以用下图表示:
比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。
区块链的技术原理是什么?
区块链技术涉及的关键点包括:去中心化(Decentralized)、去信任(Trustless)、集体维护(Collectivelymaintain)、可靠数据库(ReliableDatabase)、时间戳(Timestamp)、非对称加密(AsymmetricCryptography)等。
区块链技术重新定义了网络中信用的生成方式:在系统中,参与者无需了解其他人的背景资料,也不需要借助第三方机构的担保或保证,区块链技术保障了系统对价值转移的活动进行记录、传输、存储,其最后的结果一定是可信的。
(6)区块链nonce大小扩展阅读
区块链技术原理的来源可归纳为一个数学问题:拜占庭将军问题。拜占庭将军问题延伸到互联网生活中来,其内涵可概括为:在互联网大背景下,当需要与不熟悉的对手方进行价值交换活动时,人们如何才能防止不会被其中的恶意破坏者欺骗、迷惑从而做出错误的决策。
进一步将拜占庭将军问题延伸到技术领域中来,其内涵可概括为:在缺少可信任的中央节点和可信任的通道的情况下,分布在网络中的各个节点应如何达成共识。区块链技术解决了闻名已久的拜占庭将军问题——它提供了一种无需信任单个节点、还能创建共识网络的方法。