pon区块链
『壹』 有些职业登山的,探险的,他们的收入来源是什么
各省的登山协会,隶属体育局,如比较出名的西藏登协,西藏登山学校(地址:羊八井镇)、青海登协、四川登协,本人曾和四川登协一起登过四姑娘山二峰,最初级的。
『贰』 中国股市:AI算力核心个股大全!请收藏!
中国股市中AI算力核心个股一览:
1. 科大讯飞:在算法、算力和数据上处于行业领先地位,为公司平台应用发展提供有效支撑。
2. 中际旭创:专注于云计算数据中心和5G网络市场,主要产品为高端光通信收发模块和光器件。
3. 天孚通信:为下游光模块厂商提供一站式光器件采购,是光纤连接细分市场龙头。
4. 华工科技:光模块年产能超过3000万只,是全球最大的光模块生产厂商之一。
5. 亨通光电:国内光通信、通信电缆、电力电缆产品最齐全的综合性线缆公司,主营业务涵盖通信网络和能源互联。
6. 新易盛:主要产品包括点对点光模块和PON光模块。
7. 光迅科技:主要从事光通信领域内光电子器件的开发与制造,产品包括光电子器件、模块和子系统。
8. 太辰光:专注于陶瓷插芯及光纤连接器产品的国内主导企业之一。
9. 剑桥科技:外销为主,提供ICT终端设备,客户覆盖全球主要通信设备提供商。
10. 常山北明:子公司提供大数据、云计算、区块链、人工智能等IT产品和解决方案。
11. 神州数码:展开自主品牌布局,提供全线ICT基础设施及服务。
12. 中科曙光:AI算力需求推动服务器行业增长,未来AI成为服务器新型业务载体。
13. 浪潮信息:全球领先的服务器厂商,为云计算、人工智能、大数据、5G等应用提供专业计算力平台。
14. 拓维信息:与华为云合作取得突破,提供软件云服务、国产服务器、手机游戏等核心业务。
15. 紫光股份:全球云计算基础设施建设和行业智慧应用服务领先者,提供全栈ICT基础设施及服务。
投资需谨慎,以上信息仅供学习交流,不构成投资建议。
『叁』 从1993年开始,人们通过什么在互联网上
从1993年开始人们在互联网上既可以看到文字,又可以看到图片、听到 声音,使得网上的世界变的美丽多彩,这主要归功于“www万维网”。
万维网WWW是World Wide Web的简称,也称为Web、3W等。WWW是基于客户机/服务器方式的信息发现技术和超文本技术的综合。WWW服务器通过超文本标记语言(HTML)把信息组织成为图文并茂的超文本,利用链接从一个站点跳到另个站点。这样一来彻底摆脱了以前查询工具只能按特定路径一步步地查找信息的限制。
万维网使得全世界的人们以史无前例的巨大规模相互交流。相距遥远的人们,甚至是不同年代的人们可以通过网络发展亲密的关系或者使彼此思想境界得到升华。数字存储方式的优点是,可以比查阅图书馆或者实在的书籍更有效率地查询网络上的信息资源。可以比通过事必躬亲地去找,或通过邮件、电话、电报或者其他通信方式来更加快速地获得信息。
万维网是人类历史上最深远、最广泛的传播媒介。它可以使它的用户与分散于全球各地的其他人群相互联系,其人数远远超过通过具体接触或其他所有已经存在的通信媒介的总和所能达到的数目。
今天,互联网家喻户晓,移动互联网如日中天,而卫星互联网也在冉冉升起。这些网络就像同交通、电力、燃气、自来水等一样,都是人类社会不可或缺的基础设施。如果说早先基础设施传递的是物质和能量,那么互联网、移动互联网和卫星互联网等传递的则是信息,所以它们被称为信息基础设施。与物质和能量不同,信息具有天然的渗透性、知识性和智能性,其生产、传递的边际成本要远小于物质和能量,因此,它对人类社会发展的推动作用要远大于物质和能量。
在我国为应对新冠疫情对全球经济的影响而启动的新基建中,5G、物联网、工业互联网、卫星互联网等信息基础设施,以及与其相关的智能交通、智慧能源等基础设施都成为主要的建设内容。卫星互联网被列入新基建范围让我国卫星通信业内人兴奋不已,整个行业似乎突然有了一种翻身做主人的感觉。毫无疑问,卫星互联网被列入新基建范围对我国卫星通信的发展是个大好事。此时此刻,要知道新基建的内容从何而来,就有必要回顾一下互联网、移动互联网卫星互联网的发展简史。因为,温故而知新。
2、互联网一统天下
说到互联网,不得不望文生义。互联网起源于美国,其英文名字叫Internet,它最初曾被我国音译成因特网。从字面上看,Internet是由Inter和net组合而成,表示相互连接起来的网络。互联网始于1969年美国ARPA(国防部研究计划署)启动的用于军事通信目的的网络互连研究项目,连接的对象主要的计算机。在那个年代,PSTN(公用电话网)、X.25(公用数据网)和DDN(公用数字数据网)以及IBM的DEC等公司的专网等都是服务于特定领域的业务网络,彼此异构,不能互通。ARPA网络互联研究项目计划开发出一套以TCP/IP(传输控制协议/互联网协议)为核心的协议族,其目的是将各种异构网络相互连接起来,实现计算机之间的互联互通。所以,初期的互联网又叫计算机网。
TCP/IP是从ISO(国际标准化组织)的OSI(开放系统互连)七层协议简化而来的,共分物理、链路、网络、传送和应用五个层次。物理层是实现信号在各种介质上的传输,信道编码和调制解调是其中的主要技术;链路层实现网络节点之间的点到点传输,同步、纠错是其中的主要技术;网络层实现数据包在从信源到信宿的投递,路由选择和交换是其中的主要技术;传送层实现端到端的会话和确认;应用层为各种应用提供接口和界面。IP和TCP分别对应于网络和传送层,其中IP又是互联网协议族的中枢。
互联网中的节点就是大家所熟知的路由器,它用IP协议将各种异构网络连接在一起。终端用户数据被封装成统一格式的IP数据包,其中包括全球唯一的IP地址。IP数据包封装在各种网络协议之上,由路由器来进行数据包的路由选择和接力传递,这个过程被形象地称为IPover everything,这个everything指的是各种异构网络。
早期,路由器不得不处理各种网络协议,如X.25、FrameRelay、ISDN(综合业务数字网络)和ATM(异步传输模式)等。因为使用的人不多,处理的数据量不大,一般的路由器可以得心应手。1993年,美国克林顿政府提出国家信息基础设施(NII)或信息高速公路计划,人们对信息网络重要性的认识得到空前的提高。互联网因为其强大的开放性和包容性脱颖而出,很快超越了电信行业精心设计的ISDN和ATM等网络。基于HTML(超文本标记语言)的WWW(万维网)的流行、语音和视频的分组化和IP包化传输丰富了互联网的应用,也使得网上的数据量呈现指数增长,这对互联网原有的数据传输和交换模式都形成了巨大的冲击。
为了应对以上冲击,互联网有三个重要的解决之道。一是用在大容量SDH(同步数字体系)光纤网络之上运行PPP(点对点协议),来在骨干、汇聚和接入层取代各种低速的业务网络,二是在路由器中引入MPLS(多协议标记交换)等技术来提高数据的处理速度。根据应用场景和业务处理能力的不同,路由器响应地分为骨干、汇聚和接入路由。此外,还有家庭路由器。三是对各种应用数据划分优先级,对话音等应用提供电信级的服务。此外,在互联网商业化过程中,网络接入技术也是前仆后继,基于电话双绞铜线的xDSL(数字用户线路)、基于有线电视电缆的DOCSIS(有线电缆数据服务接口规范)都发挥过重要的支撑作用,但最终都被WiFi(无线保真)无线网络和各种PON(无源光网络)光纤网络所取代。
至此,互联网完成了华丽的转身,它不再寄人篱下,而是自立门户,并且在三网融合中实现对电话网和有线电视网的整合。今天人们习以为常的IP电话、IPTV和OTTTV就是三网融合的典型产物。它们在应用形式上像电话网、电视网,但是网络结构却是互联网。这个结果被人们形象地成为EverythingoverIP,这里的Everything指的是各种内容和应用。今天国外的Facebook、Google和Twitter以及国内的网络、阿里和腾讯等所谓互联网公司实际都是在从事互联网应用,如电子商务、社交网络等,而物理意义上的互联网则主要掌握在电信运营商手里。
3、移动互联网攻城略地
应该说,尽管无线、微波传输也曾发挥一定的作用,但互联网最初主要是在有线网络之上发展起来的。互联网的目标在于网络互联,实现全世界的计算机联合起来,移动网络的目标在于实现随时随地通信。从上个世纪七十年到现在,移动通信基本上每隔十年就更新换代一次。如果说,最初的1G是模拟话音移动通信系统,与互联网没有关联,那么,从2G数字通信开始,移动通信的每一步发展都受到互联网的强大影响,并且最终成为互联网的重要组成部分和应用形式,而且大有后来居上势头。
移动通信逐步融入互联网、发展成为移动互联网是在2G和3G时期完成过渡的,其起点是2G时期的GPRS(通用分组无线业务)。GPRS是在GSM网络话音电路交换基础上引入的无线分组交换技术,以提供端到端的、广域的无线IP连接和数据传输。GPRS是GSM网络向3G过渡的2.5G技术,它实现了移动通信与互联网的对接,其理论带宽可达171.2Kbps,实际大约在40~100Kbps。在GPRS之上,WAP(无线应用协议)把互联网上的HTML数据转换成用简单的WML(无线标记语言)格式,以适应当时网速和手机智能化程度都受限的应用场景。
进入3G时代后,为了满足苹果之类智能手机和各种增值应用带来的带宽增长需要,比GPRS速率更高的HSDPA(高速下行分组接入)和HSUPA(高速上行分组接入)及其加强版HSPA+等技术开始陆续登场。HSPA+的上行速率达5.76Mbps,下行速率达21Mbps或28Mbps。
与2G、3G通过电路和分组域来分别传输话音和数据不同,4G彻底取消了电路域,用统一的分组域来承载所有的业务,它通过IMS(IP多媒体子系统)来处理话音等实时性的业务,VoLTE(长期演进语音承载)就是一个在IP之上传输话音的标准。可见,4G让移动通信脱胎换骨,变成了真正的移动互联网。进入5G移动互联网阶段,其应用领域已从普通互联网应用扩展到物联网、车联网和工业互联网。不仅如此,5G还实现了物联网、云计算、大数据和区块链技术的系统整合,使得整个社会走向人工智能时代。人工智能时代的互联网更像人的大脑,它有听觉、视觉、触觉,可以分析、计算、存储、判断,最终可能会有自我意识。
4、卫星互联网开疆拓土
虽然地面互联网已非常发达,但它仅覆盖地球陆地面积的20%、地球表面的5.8%。要真正实现5G的万物互联和随遇接入愿景,还需要借助可以真正全球覆盖的卫星互联网。
应该说,卫星通信网络的互联网化早在2000年之前就已开始,其中,VSAT网络与DVB-S(数字视频广播—卫星)、DVB-RCS(数字视频广播—卫星回传信道)等标准的结合是关键的一环。DVB-S原来是ETSI(欧洲电信标准协会)开发的一套用于卫星数字视频广播的技术标准,包含信源编码以及信道编码和调制。后来,随着卫星信道编码和调制技术的进步,ETSI又先后提出DVB-S2和DVB-S2X标准,其周期恰好也是十年。DVB-RCS是ETSI为了满足卫星宽带通信的发展需要而提出的回传信道标准。DVB-S系列和DVB-RCS标准得到全球VSAT网络设备主流厂商的共同支持,这使得全球VSAT网络有了共同的开放标准,从而为卫星通信网络的IP化和卫星互联网的发展奠定了坚实的基础。
在基于DVB-S系列和DVB-RCS标准的卫星互联网前向信道中,IP数据包采用MPE(多协议封装)进行分段,然后装入到MPEG2-TS(传输流)包中。反向信道的IP数据包可以采用ATM或MPE来分装,然后装入到MPEG2-TS。最初,这类卫星互联网的前向信道速率可达45Mbps,反向信道速率可达2Mbps。随着大容量HTS(高通量卫星)和更高效率信道编码调制技术的推出,前向信道和反向信道速率都得到十倍以上的提升,它们充分满足了消费者宽带接入、移动平台接入、基站中继、内容投递等应用的带宽需求。
目前,卫星互联网主要是以HTS的形式出现,它们共有GEO(高轨)、MEO(中轨)和LEO(低轨)三种形式。其中GEOHTS系统传输时延较长,高纬度地区覆盖能力较弱,但系统结构简单,可以广域覆盖,适合机载通信、海事通信、消费者宽带接入、视频广播和内容投递之类应用;LEOHTS复杂一些,但时延较短,可以实现全球无缝覆盖,适用于基站中继、物联网等低时延类应用;MEOHTS则介于前面两者之间。在GEO卫星方面,北美Viasat公司Viasat-2和Hughes公司Jupiter-2两颗在轨HTS的容量分别达到300Gbps和220Gbps,在建的Viasat-3和Jupiter-3容量将分别达到1Tbps和500Gbps,而传统通信卫星容量只有1Gbps左右。在MEO星座方面,SES公司旗下的O3b目前在轨20颗,主要应用是中继和回传。2017年11月,O3b计划新增30颗卫星。在LEO星座方面,SpaceXLEO星座一马当先,最终计划发射4.2万颗卫星。目前,SpaceX已经通过一箭60星技术完成七次发射,当卫星数量达到800颗就可具备初步的服务能力。值得一提的是,DVB-S系列和DVB-RCS标准主要适用于GEO卫星。对于MEO和LEO卫星,由于信道特性的改变,通常需要更合适的空口标准和协议,但是VSAT网络方面大同小异。
卫星互联网是互联网,尤其是移动互联网的自然延伸。为了促进卫星互联网与5G的融合,ITU、3GPP、SaT5G(卫星5G联盟)和CBA(C波段联盟)等国际标准化组织都在开展相关研究工作。在2019欧洲网络与通信大会(EuCNC2019)上,SaT5G进行了一系列卫星5G演示:
1)利用卫星和地面网络的MEC(移动边缘计算):比特率自适应、链路选择、增强视频流传输;
2)基于卫星组播技术的视频缓存和实况内容分发;
3)基于MEO卫星的航空机载通信;
4)利用混合回传网络和MEC的5G本地内容缓存;
5)卫星网络5G视频演示;
6)面向农村市场和大型集会事件扩展服务的混合5G基站中继。其中,机载通信和农村宽带最具吸引力。
2019年5月,Telesat、英国萨里大学与比利时Newtec联合进行了LEO卫星5G回传测试,往返时延为18-40毫秒,主要应用包括8K流媒体传输、网页浏览和视频通信。这些试验成果表明,卫星互联网与5G已经实现全面的融合。卫星互联网将为互联网和移动互联网展现广阔的发展空间,在普遍服务方面发挥独特作用,让人类所有成员享受上网和信息服务的基本权利。
『肆』 各省市、各个地区应该如何发展工业互联网,有哪些主要任务
自2017年国务院印发《关于深化“互联网+先进制造业” 发展工业互联网的指导意见》之后,各地纷纷加快工业互联网的建设与发展步伐。发展工业互联网,网络体系是基础,平台体系是关键,安全体系是保障。各省市、各地区应紧紧系统构建网络、平台、安全三大体系,打造人、机、物全面互联的新型网络基础设施,全力推进七大任务:
1.夯实网络基础
夯实工业互联网的网络基础,应围绕网络改造升级、提速降费、标识解析,推进三方面的工作:
第一,以IPv6、工业无源光网络(PON)、工业无线、时间敏感网络(TSN)等技术,改造工业企业内网;
第二,以IPv6、软件定义网络(SDN)以及新型蜂窝移动通信技术(即5G技术),实现工业企业外网的升级改造;
第三,推进标识解析体系建设,围绕工业互联网标识解析国家顶级节点,推动行业性二级接机点的建设与连接。
2.打造平台体系
第一,培育工业互联网平台,以企业为主导,构建跨行业、跨领域平台,实现多平台互联互通。
第二,开展工业互联网平台试验验证。支持产业联盟、企业与科研机构合作共建测试验证平台,开展技术验证与测试评估。
第三,推动、吸引企业上云。鼓励工业互联网平台在产业集聚区落地,通过财税支持、政府购买服务等方式,鼓励中小企业的业务系统向云端迁移。
第四,培育工业APP,支持软件企业、工业企业、科研院所等开展合作,培育一批面向特定行业、特定场景的工业APP。
3.加强产业支撑
要加强产业支撑,必须加大关键共性技术攻关力度,提升产品与解决方案供给能力:
第一,关键共性技术支撑。鼓励企业和科研院所合作,围绕工业互联网核心关键技术、网络技术、融合应用技术开展联合攻关,促进边缘计算、人工智能、增强现实、虚拟现实、区块链等技术在工业互联网应用。
第二,系统解决方案支撑。围绕智能传感器、工业软件、工业网络设备、工业安全设备、标识解析等领域,推广一批经济实用的微服务化系统解决方案。
4.促进融合应用
融合创新工作应围绕大型企业和中小型企业两大主体开展:
针对大型企业,加快工业互联网在工业现场的应用;开展用于个性需求与产品设计,生产制造精准对接的规模化定制;
针对中小企业,实现业务系统向云端迁移;开展供需对接、集成供应链、产业电商、众包众筹等创新型应用。
5.完善生态体系
第一,构建创新体系:有效整合高校、科研院所、企业等创新资源,围绕重大共性需求与行业需要,面向关键技术与平台需求,开展产学研协同创新。
第二,构建应用生态,鼓励工业互联网服务商面向制造业企业提供咨询诊断、展示展览、行业资讯、人才培训、园企对接等增值服务。
第三,构建企业协同发展体系,以需求为导向,基于工业互联网平台,构建中介型共享制造、众创型共享制造、服务型需求共享制造、协同型共享制造等新型生产组织方式。
第四,构建区域协同发展体系,建设工业互联网创新中心、工业互联网产业示范基地。
6.强化安全保障
安全保障是发展工业互联网的底线,必须切实提升安全防护能力,建立数据安全保护体系,推动安全技术手段建设。此外,各地区还应大力发展信息安全产业,推动标识解析系统安全、工业互联网平台安全、工业控制系统安全、工业大数据安全等相关技术和产业发展,开展安全咨询、评估和认证等服务,提升整体安全保障服务能力。
7.坚持开放合作
第一,加强地区乃至国际的企业协作,形成跨领域、全产业链紧密协作的关系。
第二,建立政府、产业联盟、企业等多层次沟通对话机制。
第三,积极参与国际组织的协同与合作,参与工业互联网标准规范与国际规则的研讨与制定。