当前位置:首页 » 区块链知识 » 区块链密码城市

区块链密码城市

发布时间: 2024-10-13 04:40:40

A. 什么叫区块链这是传销吗

你好!
所有号称区块链的推销都是炒作概念,小心骗局。
仅代表个人观点,不喜勿喷,谢谢。

B. 如何找到区块链的密码,区块链的密钥是什么

【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时,由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。

2、当B节点解密得到密文1后,只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要,之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1,比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢?有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥和临时的非对称私钥可以计算出一个对称秘钥(KA算法-KeyAgreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥与B节点自身的私钥计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入Nonce),再比如彩虹表(参考KDF机制解决)之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES,主要用于加密信息流。

伪随机数算法:例如TLS1.2的伪随机函数使用MAC算法的散列函数来创建一个主密钥——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC:EllipticCurvesCryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成公钥、私钥的算法。用于生成公私秘钥。

ECDSA:用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。主要用于身份认证阶段。

ECDH:也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。主要用于握手磋商阶段。

ECIES:是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH),H-MAC函数(MAC)。

ECC是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。ECDSA则主要是采用ECC算法怎么来做签名,ECDH则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。ECIES就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

metacharset="utf-8"

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式K=kG。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法就是要保证该公式不可进行逆运算(也就是说G/K是无法计算的)。*

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据kG计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么kG怎么计算呢?如何计算kG才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a=-3,b=7得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如22=2+2,35=5+5+5。那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R=0。其中0不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出P+Q=-R。由于R与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q=0,故P+R=-Q,如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说直线是曲线的切线。此时P,R重合了。

也就是P=R,根据上述ECC的加法体系,P+R+Q=0,就可以得出P+R+Q=2P+Q=2R+Q=0

于是乎得到2P=-Q(是不是与我们非对称算法的公式K=kG越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若2可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢?答案是肯定的。也就是点倍积计算方式。

选一个随机数k,那么k*P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描述成二进制然后计算。假若k=151=10010111

由于2P=-Q所以这样就计算出了kP。这就是点倍积算法。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点G=(x,y)。随机在曲线上取一点k作为私钥,K=k*G计算出公钥。

签名过程:

生成随机数R,计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k,计算出签名S=(H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M,RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算HG/S+xK/S,将计算的结果与RG比较。如果相等则验证成功。

公式推论:

HG/S+xK/S=HG/S+x(kG)/S=(H+xk)/GS=RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C=A+C+B=(A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考AliceAndBob的例子。

Alice与Bob要进行通信,双方前提都是基于同一参数体系的ECC生成的公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice采用公钥算法KA=ka*G,生成了公钥KA和私钥ka,并公开公钥KA。

Bob采用公钥算法KB=kb*G,生成了公钥KB和私钥kb,并公开公钥KB。

计算ECDH阶段:

Alice利用计算公式Q=ka*KB计算出一个秘钥Q。

Bob利用计算公式Q'=kb*KA计算出一个秘钥Q'。

共享秘钥验证:

Q=kaKB=ka*kb*G=ka*G*kb=KA*kb=kb*KA=Q'

故双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法Keccak。

2、签名算法采用的是ECDSA

3、认证方式采用的是H-MAC

4、ECC的参数体系采用了secp256k1,其他参数体系参考这里

H-MAC全程叫做Hash-.其模型如下:

在以太坊的UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是经过私钥加密的签名信息。mac是可以理解为整个消息的摘要,ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

区块链密码算法是怎样的?

区块链作为新兴技术受到越来越广泛的关注,是一种传统技术在互联网时代下的新的应用,这其中包括分布式数据存储技术、共识机制和密码学等。随着各种区块链研究联盟的创建,相关研究得到了越来越多的资金和人员支持。区块链使用的Hash算法、零知识证明、环签名等密码算法:

Hash算法

哈希算法作为区块链基础技术,Hash函数的本质是将任意长度(有限)的一组数据映射到一组已定义长度的数据流中。若此函数同时满足:

(1)对任意输入的一组数据Hash值的计算都特别简单;

(2)想要找到2个不同的拥有相同Hash值的数据是计算困难的。

满足上述两条性质的Hash函数也被称为加密Hash函数,不引起矛盾的情况下,Hash函数通常指的是加密Hash函数。对于Hash函数,找到使得被称为一次碰撞。当前流行的Hash函数有MD5,SHA1,SHA2,SHA3。

比特币使用的是SHA256,大多区块链系统使用的都是SHA256算法。所以这里先介绍一下SHA256。

1、SHA256算法步骤

STEP1:附加填充比特。对报文进行填充使报文长度与448模512同余(长度=448mod512),填充的比特数范围是1到512,填充比特串的最高位为1,其余位为0。

STEP2:附加长度值。将用64-bit表示的初始报文(填充前)的位长度附加在步骤1的结果后(低位字节优先)。

STEP3:初始化缓存。使用一个256-bit的缓存来存放该散列函数的中间及最终结果。

STEP4:处理512-bit(16个字)报文分组序列。该算法使用了六种基本逻辑函数,由64步迭代运算组成。每步都以256-bit缓存值为输入,然后更新缓存内容。每步使用一个32-bit常数值Kt和一个32-bitWt。其中Wt是分组之后的报文,t=1,2,...,16。

STEP5:所有的512-bit分组处理完毕后,对于SHA256算法最后一个分组产生的输出便是256-bit的报文。

作为加密及签名体系的核心算法,哈希函数的安全性事关整个区块链体系的底层安全性。所以关注哈希函数的研究现状是很有必要的。

2、Hash函的研究现状

2004年我国密码学家王小云在国际密码讨论年会(CRYPTO)上展示了MD5算法的碰撞并给出了第一个实例(CollisionsforhashfunctionsMD4,MD5,HAVAL-128andRIPEMD,rumpsessionofCRYPTO2004,,EuroCrypt2005)。该攻击复杂度很低,在普通计算机上只需要几秒钟的时间。2005年王小云教授与其同事又提出了对SHA-1算法的碰撞算法,不过计算复杂度为2的63次方,在实际情况下难以实现。

2017年2月23日谷歌安全博客上发布了世界上第一例公开的SHA-1哈希碰撞实例,在经过两年的联合研究和花费了巨大的计算机时间之后,研究人员在他们的研究网站SHAttered上给出了两个内容不同,但是具有相同SHA-1消息摘要的PDF文件,这就意味着在理论研究长期以来警示SHA-1算法存在风险之后,SHA-1算法的实际攻击案例也浮出水面,同时也标志着SHA-1算法终于走向了生命的末期。

NIST于2007年正式宣布在全球范围内征集新的下一代密码Hash算法,举行SHA-3竞赛。新的Hash算法将被称为SHA-3,并且作为新的安全Hash标准,增强现有的FIPS180-2标准。算法提交已于2008年10月结束,NIST分别于2009年和2010年举行2轮会议,通过2轮的筛选选出进入最终轮的算法,最后将在2012年公布获胜算法。公开竞赛的整个进程仿照高级加密标准AES的征集过程。2012年10月2日,Keccak被选为NIST竞赛的胜利者,成为SHA-3。

Keccak算法是SHA-3的候选人在2008年10月提交。Keccak采用了创新的的“海绵引擎”散列消息文本。它设计简单,方便硬件实现。Keccak已可以抵御最小的复杂度为2n的攻击,其中N为散列的大小。它具有广泛的安全边际。目前为止,第三方密码分析已经显示出Keccak没有严重的弱点。

KangarooTwelve算法是最近提出的Keccak变种,其计算轮次已经减少到了12,但与原算法比起来,其功能没有调整。

零知识证明

在密码学中零知识证明(zero-knowledgeproof,ZKP)是一种一方用于向另一方证明自己知晓某个消息x,而不透露其他任何和x有关的内容的策略,其中前者称为证明者(Prover),后者称为验证者(Verifier)。设想一种场景,在一个系统中,所有用户都拥有各自全部文件的备份,并利用各自的私钥进行加密后在系统内公开。假设在某个时刻,用户Alice希望提供给用户Bob她的一部分文件,这时候出现的问题是Alice如何让Bob相信她确实发送了正确的文件。一个简单地处理办法是Alice将自己的私钥发给Bob,而这正是Alice不希望选择的策略,因为这样Bob可以轻易地获取到Alice的全部文件内容。零知识证明便是可以用于解决上述问题的一种方案。零知识证明主要基于复杂度理论,并且在密码学中有广泛的理论延伸。在复杂度理论中,我们主要讨论哪些语言可以进行零知识证明应用,而在密码学中,我们主要讨论如何构造各种类型的零知识证明方案,并使得其足够优秀和高效。

环签名群签名

1、群签名

在一个群签名方案中,一个群体中的任意一个成员可以以匿名的方式代表整个群体对消息进行签名。与其他数字签名一样,群签名是可以公开验证的,且可以只用单个群公钥来验证。群签名一般流程:

(1)初始化,群管理者建立群资源,生成对应的群公钥(GroupPublicKey)和群私钥(GroupPrivateKey)群公钥对整个系统中的所有用户公开,比如群成员、验证者等。

(2)成员加入,在用户加入群的时候,群管理者颁发群证书(GroupCertificate)给群成员。

(3)签名,群成员利用获得的群证书签署文件,生成群签名。

(4)验证,同时验证者利用群公钥仅可以验证所得群签名的正确性,但不能确定群中的正式签署者。

(5)公开,群管理者利用群私钥可以对群用户生成的群签名进行追踪,并暴露签署者身份。

2、环签名

2001年,Rivest,shamir和Tauman三位密码学家首次提出了环签名。是一种简化的群签名,只有环成员没有管理者,不需要环成员间的合作。环签名方案中签名者首先选定一个临时的签名者集合,集合中包括签名者。然后签名者利用自己的私钥和签名集合中其他人的公钥就可以独立的产生签名,而无需他人的帮助。签名者集合中的成员可能并不知道自己被包含在其中。

环签名方案由以下几部分构成:

(1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)。

(2)签名。签名者用自己的私钥和任意n个环成员(包括自己)的公钥为消息m生成签名a。

(3)签名验证。验证者根据环签名和消息m,验证签名是否为环中成员所签,如果有效就接收,否则丢弃。

环签名满足的性质:

(1)无条件匿名性:攻击者无法确定签名是由环中哪个成员生成,即使在获得环成员私钥的情况下,概率也不超过1/n。

(2)正确性:签名必需能被所有其他人验证。

(3)不可伪造性:环中其他成员不能伪造真实签名者签名,外部攻击者即使在获得某个有效环签名的基础上,也不能为消息m伪造一个签名。

3、环签名和群签名的比较

(1)匿名性。都是一种个体代表群体签名的体制,验证者能验证签名为群体中某个成员所签,但并不能知道为哪个成员,以达到签名者匿名的作用。

(2)可追踪性。群签名中,群管理员的存在保证了签名的可追

C. 区块链到底是不是传销区块链是变相传销吗

区块链是新技术并不是变相传销,只是由许多传销组织声称为“区块链”,实际上并未有任何技术,只是打着“区块链”的名头行传销之实罢了,国家已经多次发布公告打击此种传销行为。以下为新华网报道区块链传销:

区块链不等于虚拟货币,亦存在安全性风险,火爆背后有“别有用心”的夸大造势。只有去除华而不实,区块链才能回归真正的应用价值。

投资8万元,三个月后变80万元?深圳警方破获了一起特大集资诈骗案。在区块链概念、10倍收益等幌子的蒙骗下,数千名投资者深陷其中,涉案金额高达3.07亿元。在区块链的“神秘面纱”下,不法分子借机动起了歪脑筋,区块链沦为诈骗、传销等经济犯罪的“招牌”。

为何区块链屡屡被传销诈骗等违法行为“歪用”?除了“不明就里”,区块链技术本身“功用”如何?今年以来,随着监管力度加大,炒币风气的降温给区块链发展带来了新的机遇,如今区块链商业“应用”落地情况如何?《瞭望》新闻周刊记者近日对此进行了调查。

当交易平台承诺的三个月“资金释放期”届满而工作人员却开始在QQ群“踢人”的时候,家住深圳市宝安区的唐海燕意识到自己可能被骗了。

此前,唐海燕在同学的介绍下,投资8万元买了一种名为“普银币”的虚拟货币。“对方说这个货币是当下最先进的区块链技术,有藏茶作为抵押物,还给我看了‘技术白皮书’,我也不懂区块链,就没仔细看。”

虽然对于区块链、虚拟货币都不了解,但高额的投资收益令唐海燕充满了期待。她告诉记者,发行“普银币”的公司会定期对该虚拟货币按1比10的比例进行拆分,这意味着,每次拆分就会使投资者手中“普银币”的价值扩大10倍。只要经过一次拆分,她投资的8万元,就相当于买到了价值80万元的“普银币”,在交易平台上卖出即可获得巨额收益。

按照交易平台的规则,刚购买的“普银币”不能马上交易,必须在平台上冻结三个月之后才能迎来“释放期”。然而,当三个月时间过去之后,唐海燕不仅没有等到翻倍的资产,冻结在平台上的8万元也无法用于交易了。

“其他投资者开始在QQ群里质疑这项投资的真实性,结果公司工作人员竟然把这些投资者一个一个踢出去了,我就感到不妙了。”她说。

事实也证明了唐海燕的直觉。2018年3月底,深圳警方侦破一起特大集资诈骗案,诈骗资金高达3.07亿元。在这起案件中,涉案的深圳普银区块链集团有限公司正是以“区块链+藏茶”的模式发行虚拟货币,套取公众存款,唐海燕是数千名受害者中的一位。

深圳警方调查发现,该公司宣称,投资人可将“普银币”放到虚拟交易平台“聚币网”上买卖,以此赚取差价

。实际上,其买卖价格的变动是该公司使用投资人的投资款进行幕后操作,并一度将“普银币”的价格从0.5元拉升至10元,让投资者尝到一些甜头。当大量投资人进场之后,该公司通过恶意操纵“普银币”价格走势不断套现,最终导致投资人手中的“普银币”毫无价值。

2018年以来,打着区块链的旗号从事诈骗、传销,已经成为了新型犯罪手法中常用的“套路”。2018年4月,济南警方端掉了一个打着“西部开发”“国家扶贫”“原始股”“区块链”“电子商务”为幌子的传销团伙,抓获主要嫌疑人十余人,冻结涉案账户百余个,查获涉案资金3亿余元。

济南警方介绍,惠乐益电子商务公司以国家正在大力发展大数据产业为由,在网络上设计了假的虚拟盘,并发布所谓的“宝币”“贵币”等多种虚拟货币。

他们先是以赠送为幌子,向新加入的传销人员赠送一定数量的虚拟货币,每枚价格在几十元,然后通过人为操纵将虚拟币一路升值到100多元甚至几百元,吸引不明真相的人员加入,最后再通过所谓虚拟币“贬值”的周期波动进行“割韭菜”,周而复始,最终达到牟取非法利益的目的。

在西安,当地警方日前也成功破获了一起打着区块链旗号的特大网络传销案。据警方介绍,犯罪嫌疑人郑某出高薪组织网络平台管理员张某、李某等9人,自2018年3月28日起以聚集性传销、网络传销为手段,以每枚3元的价格在“消费时代”网络平台销售虚拟的“大唐币”,并操纵升值幅度;

同时在国内外多个城市召开推介会,吸纳会员,根据会员发展下线情况,设置28级分管代理,仅仅18天,该团伙就共发展注册会员13000余人,目前已经查明该案涉及全国31个省、市、自治区,涉案资金高达8600余万元。

腾讯安全联合实验室发布的《腾讯2017年度传销态势感知白皮书》称,近段时间以来,各类境外资金盘、虚拟币、ICO(区块链项目首次公开发行代币融资)项目层出不穷,其中隐藏了非法发行、项目不实、跨境洗钱、诈骗、传销等诸多风险,造成大量资金流向境外,一旦崩盘、跑路或者失联,投资者往往投诉无门,损失难以追回。比如百川币、马克币、贝塔币、暗黑币等。

《瞭望》新闻周刊记者在广东、山东、上海等地采访了解到,大多数人知道区块链概念很火,但是“不明就里”,对于区块链的具体功能众说纷纭:有人认为是用来“投资理财”“买卖货币”的,也有人认为是“和蒸汽机同等量级的重大发明”,一些创业者更是摩拳擦掌,要抓住这“千载难逢的致富机会”。

不少业内人士表示,正是由于人们对区块链的认识存在诸多误区,才导致不法分子有机可乘,浑水摸鱼误导广大投资者。

其一,区块链不等于虚拟货币。截至去年底,国内ICO参与人数和交易总量已实现翻倍增长,大量数字货币交易所出逃海外,代投模式将更多普通百姓卷入高风险投资。

许多行业自媒体、名嘴大咖与发行方、数字交易所等结成利益同盟,为“空气币”项目站台背书、制造舆论。去年12月,人民银行等九部门将ICO定性为“涉嫌非法集资、金融诈骗、传销等违法犯罪活动”。

采访中,不少人对本刊记者表示,代币的存在为区块链技术发展构建了一套权益机制,这套机制对激励区块链应用繁荣是不可或缺的。“过去5年的市场实践证明,没有权益机制的区块链应用,就像没有连上互联网的电脑、没有货币的市场经济,应用场景和发展速度都大打折扣。”上海的一位投资人说。

实际上,以比特币为代表的代币仅仅是最早验证区块链技术的一种产品,两者之间并不能划等号,而且代币的存在已对区块链的发展产生显而易见的负面作用。

目前,越来越多的业内人士开始思考,区块链的发展是否一定要依靠发行代币来实现激励。北京市互联网金融行业协会秘书长郭大刚告诉本刊记者,所谓激励机制仅仅是项目方为自己发代币找的理论依据而已。

其二,区块链并非万能,安全性存在风险。区块链通常被认为可以实现三个方面的功能:

第一,保存在区块链上的数据不可篡改、不可伪造,数据的公信力和可信度高;第二,交易全过程可溯源,可实现责任精准追踪;第三,区块链内嵌的智能合约可以基于契约自动执行,从而提高工作效率,减少违约风险。业内普遍认为,区块链在金融、物流、贸易等领域具有广阔的应用前景。

事实上,区块链并非万能,其功能也存在不少的局限性。一般认为,根据其密码学的特性,在区块链上要想篡改或造假,理论上需要掌控超过51%的节点才能实现。当区块链中的节点足够多时,这种大众广泛参与的信任创设机制就难于篡改。

然而在现实中,数字货币交易所频频被攻击甚至失窃。2018年6月20日,韩国Bithumb交易所在官网发布公告称,交易所遭受黑客攻击,被盗走价值350亿韩元、约合3200万美元的加密货币。

被称为中国第一代“黑客”的季昕华说,区块链会不断面对攻击,数据上传到链的过程容易发生信息泄露。也有业内人士担心,量子计算的超强运算能力一旦实现,也将对区块链产生直接冲击。

其三,区块链火爆程度并不完全真实。数据显示,自2017年底到2018年初超过300家主要关注ICO项目的自媒体出现,成为一个值得注意的非正常现象。


(3)区块链密码城市扩展阅读:

2018年8月24日,银保监会网站发布了一则风险提示,提醒广大公众防范以“虚拟货币”“区块链”名义进行非法集资。

原文如下:

《关于防范以“虚拟货币”“区块链”名义进行非法集资的风险提示》

银保监会、中央网信办、公安部、人民银行、市场监管总局提示:

近期,一些不法分子打着“金融创新”“区块链”的旗号,通过发行所谓“虚拟货币”“虚拟资产”“数字资产”等方式吸收资金,侵害公众合法权益。此类活动并非真正基于区块链技术,而是炒作区块链概念行非法集资、传销、诈骗之实,主要有以下特征:

一、网络化、跨境化明显。依托互联网、聊天工具进行交易,利用网上支付工具收支资金,风险波及范围广、扩散速度快。一些不法分子通过租用境外服务器搭建网站,实质面向境内居民开展活动,并远程控制实施违法活动。

一些个人在聊天工具群组中声称获得了境外优质区块链项目投资额度,可以代为投资,极可能是诈骗活动。这些不法活动资金多流向境外,监管和追踪难度很大。

二、欺骗性、诱惑性、隐蔽性较强。利用热点概念进行炒作,编造名目繁多的“高大上”理论,有的还利用名人大V“站台”宣传,以空投“糖果”等为诱惑,宣称“币值只涨不跌”“投资周期短、收益高、风险低”,具有较强蛊惑性。

实际操作中,不法分子通过幕后操纵所谓虚拟货币价格走势、设置获利和提现门槛等手段非法牟取暴利。此外,一些不法分子还以ICO、IFO、IEO等花样翻新的名目发行代币,或打着共享经济的旗号以IMO方式进行虚拟货币炒作,具有较强的隐蔽性和迷惑性。

三、存在多种违法风险。不法分子通过公开宣传,以“静态收益”(炒币升值获利)和“动态收益”(发展下线获利)为诱饵,吸引公众投入资金,并利诱投资人发展人员加入,不断扩充资金池,具有非法集资、传销、诈骗等违法行为特征。

此类活动以“金融创新”为噱头,实质是“借新还旧”的庞氏骗局,资金运转难以长期维系。请广大公众理性看待区块链,不要盲目相信天花乱坠的承诺,树立正确的货币观念和投资理念,切实提高风险意识;对发现的违法犯罪线索,可积极向有关部门举报反映。

D. 区块链哪个城市最有潜力,区块链最发达的国家是哪里

“十四五”期间四个方面发力重庆打造区块链产业高地

近日,记者从全市区块链发展管理统筹协调机制第一次会议上获悉,“十四五”期间,我市将从规划布局、产业生态、技术突破、应用融合等方面,加快区块链产业培育和创新应用。

近年来,我市区块链产业培育和创新应用取得了显著成效。首先,产业集聚加快发展,重庆市区块链产业园签约入驻趣链、迪肯、金窝窝、浪潮云链等知名企业60余家,产业集聚区初步形成。在区块链应用示范上也是亮点纷呈。全国首个区块链政务服务平台在渝上线,发出了第一张基于区块链技术的电子营业执照,“星火链网”超级节点落户重庆,易保全“区块链+司法+电子数据存证”系统荣获工信部工业互联网试点示范项目。

市委网信办负责人介绍,“十四五”,我市将在四方面发力,大力推动区块链产业发展和管理工作迈上新台阶,为我市建设“智造重镇”“智慧名城”注入新动能。

在产业生态体系方面,我市将聚焦区块链重大科学前沿问题,谋划推进一批技术应用和产业发展重大项目,构建完整的区块链产业生态体系。如,市经信委将支持重点区块链企业开展关键核心技术攻关。市大数据发展局将高标准推动全市区块链产业步入快车道。

在产业布局方面,将依托渝中区、两江新区,吸引一批创新能力强、发展潜力大的区块链企业设立研发中心、企业总部。依托高新区、西部(重庆)科学城建设成渝区块链科技创新走廊,推动各区县“区块链+专业领域”应用试点。

在自主创新方面,将着力提高区块链技术持续创新能力,构建开放包容、充满活力的区块链创新环境。如,市科技局将不断强化科技支撑,推动建立区块链创新服务机构。渝北区将加强政府规划,引导市场主体由“互联网思维”向“区块链思维”转换。

在融合应用发展方面,我市将着力推动区块链与实体经济深度融合、在金融领域深度应用、在公共服务和民生领域广泛应用。如,市农业农村委将加速推动区块链+智慧农业创新发展,助推全市数字农业高质量发展。中国人民银行重庆营业管理部将探索开展更多的应用场景试点,服务跨境结算和投融资便利化。

数字货币试点都有哪些城市?怎么选择的?

2017年1月29日,央行正式成立数字货币研究所。在成功开发法定数字货币原型后,央行数字货币研究所尝试在全国多个地方部署机构,并通过与研发机构和行业的整合,实现金融发展技术研究成果。2018年央行数字货币研究所先后落户了南京和深圳。2019年央行数字货币公开宣布将在深圳、苏州、成都、雄安试点。

1、深圳是我国人口最年轻的大城市,其多元包容的文化造就了深圳人创新、敢为天下先的品质。深圳成熟的金融科技生态和发达的经济环境也使其有能力去践行国家所赋予的改革创新使命,并探索数字货币发展的新路径。

2、2017年,苏州同济区块链研究院落户苏州高铁新城。通过两年时间,团队自主研发出联盟链“梧桐链”,成为国内第一个具备相应技术成熟度的自主安全可控的区块链底层平台,并率先成功应用于多个领域。

3、在打造苏州的政务环境和“放管服”领域,区块链也提供了很多新的帮助。目前,苏州正努力打造区块链典型应用示范名城。

4、据了解,目前在国家互联网信息办公室备案的区块链信息服务企业已达420家。在江苏省20家备案企业中,苏州占了6家。布局区块链,建设智慧城市,苏州这条锦鲤之城长三角这片水域里涵泳玩索。

5、数字经济发展迅猛,成都为央行数字货币场景落地提供了有力支撑。世界上最早出现的纸币是中国北宋时期四川成都的“交子”。从纸币交子出发,到如今数字货币DCEP,成都这座富有历史沉淀的城市有理由带着数字货币如曾经的交子一般走向世界。

6、雄安新区一颗从种子就开始培育的数字城市森林,天然适合央行数字货币试点。上雄安,下深圳,左成都,右苏州,期待央行数字货币在这四个地方试点,长出蔓延世界的花。

哪些城市布局了区块链产业园?

《区块链年鉴》:16年下半年至今,我国已经成立或即将成立的区块链产业园区已达10余家,除了一直在金融和科技领域保持强劲势头的上海、杭州、广州外,其他省市诸如武汉、重庆、青岛、苏州等,也早已布局区块链产业园。《区块链年鉴》不仅汇总了最新全球各区块链产业园详细信息,还收录了各地政府对区块链的扶持政策。

据《区块链年鉴》显示,截至2018年11月底,我国以区块链为主营业务的区块链公司数量达近千家,产业初步形成规模。目前多地政府也在积极从产业高度定位区块链技术,政策体系和监管框架逐步发展完善。

一.区块链产业园

1、上海协同创新中心,成立最早却最低调。

2016年11月,中关村区块链产业联盟与上海智力产业园达成合作,共同创建中关村区块链产业联盟——上海协同创新中心。同时,上海智力产业天空区块链孵化基地和上海股权交易托管中心正式成立,意味着中国首个应用区块链孵化基地正式落户上海宝山。

园区规定,凡注册在园区的各类企业,所缴纳全部税收的地方部分,园区根据企业的贡献大小,均给予一定比例的扶持政策。

上海协同创新中心成立当天,就有上海瑞紫投资管理有限公司、上海快贝网络科技有限公司,以及上海喵爪网络科技有限公司等公司入驻。成立至今将近两年,低调的园区并未有太多消息曝光。

2、杭州有三大区块链创业园区:占据天时地利人和。

在2018年政府工作报告中,杭州政府明确将区块链产业列入杭州加快培育的七大未来产业之一。目前,杭州市已经形成了以西溪谷区块链产业园、中国(萧山)区块链创业创新基地、中国杭州区块链产业园为代表的三大区块链产业园区。

西溪谷区块链产业园2017年4月成立,位于西溪谷互联网金融小镇—钱江西溪和景,由杭州城投资产管理集团投资运作。

中国(萧山)区块链创业创新基地由中国电子技术标准化研究院、杭州市萧山区人民政府、中国万向控股有限公司三方合作成立,2017年5月在萧山落户。

中国杭州区块链产业园位于余杭区,2018年4月成立,币圈大佬李笑来也出席了成立仪式。在启动仪式上,杭州暾澜投资董事长姚勇杰宣布成立雄岸全球区块链创新基金,该基金总规模为100亿元人民币。

3、武汉区块链产业园,鼓励大学生区块链创业。

武汉区块链产业园成立于2017年4月,规划面积四万余平方米,建筑面积超过三万平方米。产业园的合作对象主要是创业团队、成熟企业和风投机构。

创业团队:对高校大学生创业,连续经营半年,带动5人以上就业将给予创业补助;成熟企业:对寻求科技与传统产业融合的高新技术企业,政府将给予研发投入补贴;风投机构:主要是指关注初创公司发展以及看好区块链技术发展的风险投资企业。同时,对于高端人才,园区将根据情况无偿资助或以股权的形式予以投资。

产业园现在已吸引了来自华中科技大学、武汉大学、纽约大学布法罗分校,以及美国硅谷、澳洲等12家世界一流大学和机构的顶级技术团队入驻。

武汉区块链产业园成立的同时,还成立了武汉区块链孵化器。

二.全国区块链政策

据《区块链年鉴》显示,近年全国各地纷纷推出区块链相关政策,有的是在规划中提到区块链发展,有的则给出了资金、人才等具体的扶持细节。

这里对全国区块链相关政策进行汇总。

北京市

2018年11月9日,中关村管委会、北京市金融工作局和北京市科学技术委员会联合发布《北京市促进金融科技发展规划(2018年-2022年)》。

该规划将区块链技术纳入北京“金融科技”发展规划的范畴,积极推动影响金融科技功能应用的底层技术发展,完善各类技术市场设施,包括人工智能、大数据、互联技术(移动互联、物联网)、分布式技术(云计算、区块链)、安全技术(量子计算、生物识别、加密技术)等。

2017年9月29日,北京市金融工作局等八个部门联合发布了《关于构建首都绿色金融体系的实施办法》提到,发展基于区块链的绿色金融信息基础设施,提高绿色金融项目安全保障水平。

2017年4月6日,中关村科技园区管理委员会印发《中关村国家自主创新示范区促进科技金融深度融合创新发展支持资金管理办法》提到,支持金融科技企业为金融监管机构和金融机构提供服务,开展人工智能、区块链、量化投资、智能金融等前沿技术示范应用,提高金融服务的效率和便利性。

按照金融科技企业与金融监管机构或金融机构签署的技术应用合同或采购协议金额的30%给予企业资金支持,单个项目最高支持金额不超过500万元。

2016年12月30日,北京市金融工作局发布《北京市“十三五”时期金融业发展规划》,其中提到将区块链归为互联网金融的一项技术,并鼓励发展该技术。

2016年8月10日,北京市金融工作局发布《北京市金融工作局2016年度绩效任务》,其中第八条提到,推动出台中关村互联网金融综合试点方案,推动中关村区块链联盟设立。

上海市

2017年4月28日,上海市互联网金融行业协会发布《互联网金融从业机构区块链技术应用自律规则》,要求区块链技术服务实体经济,注重创新与规范、安全的平衡,明确金融稳定与信息安全的底线,互联网金融从业机构应用区块链技术应当向当地监管部门及行业自律组织进行报备,主动接受行业监管与自律管理,报备信息至少应包括项目名称、责任人、业务模式、业务风险、风控措施等。

2017年3月7日,上海市宝山区发改委印发《宝山区2017年金融服务工作要点》提到,跟踪服务庙行区块链孵化基地建设和淞南上海互联网金融评价中心建设,依托专业团队和市场力量,推动金融科技公司发展成为宝山金融生态系统中的重要组成部分,形成创业投资基金和天使投资人群集聚活跃、科技金融支撑有力、企业投入动力得到充分激发的发展模式。

广东省

2017年12月8日,广州市黄埔区人民政府办公室、广州开发区管理委员会办公室发布《广州市黄埔区广州开发区促进区块链产业发展办法》,针对工商注册地、税务征管关系及统计关系在广州市黄埔区、广州开发区及其受托管理和下辖园区范围内,有健全的财务制度、具有独立法人资格、且承诺10年内不迁离注册及办公地址、不改变在该区的纳税义务、不减少注册资本的区块链企业或机构,实行培育奖励、成长奖励、平台奖励、应用奖励、技术奖励、金融支持、活动补贴等激励措施。这是目前国内扶持力度最大的政策措施。

2017年9月25日,深圳市人民政府印发《深圳市扶持金融业发展若干措施》提到,金融科技专项奖,重点奖励在区块链、数字货币、金融大数据运用等领域的优秀项目,年度奖励额度控制在600万元以内。

2017年8月17日,深圳市经济贸易和信息化委员会发布《市经贸信息委关于组织实施深圳市战略性新兴产业新一代信息技术信息安全专项2018年扶持计划的通知》提到,支持区块链技术。

2016年11月3日,深圳市人民政府金融发展服务办公室发布《深圳市金融业发展“十三五”规划》提到,支持金融机构加强对区块链、数字货币等新兴技术的研究探索。

重庆市

2018年3月7日,重庆市政府发布《关于贯彻落实推进供应链创新与应用指导意见任务分工的通知》提到,研究利用区块链、人工智能等新兴技术,建立基于供应链的信用评价机制。

2017年11月7日,重庆市经济和信息化委员会下发《关于加快区块链产业培育及创新应用的意见》提到,到2020年,力争在重庆全市打造2-5个区块链产业基地,引进和培育区块链国内细分领域龙头企业10家以上、有核心技术或成长型的区块链企业50家以上,引进和培育区块链中高级人才500名以上,将重庆市建成国内重要的区块链产业高地和创新应用基地。

区块链在中国发展有前途吗?

行业主要企业:中国平安(601318)、东港股份(002117)、信息发展(300469)、远光软件(002063)、博思软件(300525)、飞天诚信(300386)、四方精创(300468)、工商银行(601398)、顺丰控股(002352)

本文核心数据:中国区块链市场规模、中国区块链招标数量、中国区块链企业数量

行业概况

1、定义

狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。

广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。

区块链并不是一项单一的技术,而是一个新技术的组合。其中每项技术都各司其职,解决了不同难题,组合在一起形成了区块链。区块作为区块链的基本结构单元,由区块头和包含了交易数据的区块主体两部分组成。

2、产业链剖析:下游行业涉及范围广

区块链产业链的上游主要是底层的技术及基础设施。底层技术包括核心基础组件、协议和算法。以比特币、莱特币、以太坊为代表,搭建了基于区块链技术的分布式算法、数字秘钥、数据存储、P2P网络协议、共识机制等网络环境、交易规则及矿工加入网络节点的奖励机制,代表性企业有小蚁、量子链、万象区块链等;基础设施则主要是矿机

中游则是平台层,主要是面向开发者提供基于区块链技术的应用,是在底层技术的基础上提供智能合约、信息安全、数据服务等产品化服务,提高开发者在平台层开发应用的便捷性和可拓展性。

下游则是垂直行业应用层。表现为核心应用组件,包括智能合约、可编程资产、激励机制、成员管理等。

行业发展历程:正处于区块链3.0时代

从全球区块链的发展历程来看,2008年,署名为“中本聪”的匿名人士发表论文《比特币:对等网络电子现金系统》,最初期望是推出一种可以自由流通的点对点电子现金,比特币的发行代表了区块链技术的开端;之后在2013年以太坊的推出,直接推动区块链进入到2.0时代;2017年底,稳定币的流行以及及MakerDAO上线,推动区块链进入3.0时代,到2019年6月,Facebook发布Libra白皮书,引起全球各界的关注与讨论,各国监管部门先后发声,显示出区块链技术在重塑全球金融基础设施方面的巨大潜力。进入2021年后,基于NFT的标识技术兴起,率先在艺术领域展开应用。

行业政策背景:推动区块链全方位发展

2016年,国务院发布《“十三五”国家信息化规划》首次将区块链列入新技术范畴并作前沿布局,标志着我国开始推动区块链技术和应用发展。此后国家个地方接连出台区块链相关政策,为区块链的发展提供了良好的环境。

2019年2月,国家互联网信息办公室发布的《区块链信息服务管理规定》正式施行,规范了我国区块链行业发展所发布的备案依据。出台《规定》旨在明确区块链信息服务提供者的信息安全管理责任,规范和促进区块链技术及相关服务健康发展,规避区块链信息服务安全风险,为区块链信息服务的提供、使用、管理等提供有效的法律依据。本次“管理规定”的出台也意味着我国对于区块链信息服务的“监管时代”正式来临。

2019年10月底,中共中央政治局就区块链技术发展现状和趋势进行了第十八次集体学习,中央领导明确强调把区块链作为核心技术自主创新的重要突破口,加快推动区块链技术和产业创新发展。这充分表明了区块链技术已上升到了国家高度。在中央政治局集体学习上做讲解的浙江大学教授、中国工程院院士陈纯,10月12日在由中国计算机学会主办的2019CCF区块链技术大会上表示,国内区块链产业发展正迎来“春风”,中国区块链技术的研究热点将集中于联盟区块链的关键技术、区块链监管技术两个方面。

行业发展现状

1、2020年市场规模增速超90%

2016-2018年,大型IT互联网企业纷纷布局区块链,初创企业进入井喷模式,产业规模不断扩大,根据IDC的数据,中国区块链行业经历了从2017年的0.85亿美元级别市场规模,到2020年的5.61亿美元级别产业规模的改变。

2、相关企业数量快速增长

在企业数量方面,2020H1我国提供区块链专业技术支持、产品、解决方案等服务,且有投入或产出的新增区块链企业数量达303家,全国同比增长274.07%。截至2020年末,我国区块链相关企业数量达到64062家,同比增长52.88%。

3、区块链金融是最大下游应用市场

根据《中国区块链发展白皮书(2020)》的披露,随着区块链应用落地加快推进,“区块链+”业务已经成为互联网骨干企业进军区块链行业的发展重点,在金融业务之外,积极部署互联网、溯源、供应链物流、数字资产、政务及公共服务、知识产权、法律、医疗等多领域的应用。其中,金融是区块链技术应用场景中探索最多的领域,在供应链金融、贸易融资、支付清算、资金管理等细分领域都有具体的项目落地。

4、区块链招标数量逐年增多

从年份来看,2016-2020年,政府在区块链相关项目上的招标数一直呈指数型增长,一方面得益于区块链技术的应用价值日益凸显,另一方面也体现出政府对于区块链的需求和重视程度都有所增加。

行业竞争状况

1、区域竞争:北京广东区块链技术研发相关企业分布最多

在公司分布方面,截至2021年上半年,企业分布阶梯化明显。其中北京、广东分别以348家和341家区块链开发相关企业位居第一梯队,江苏、上海、浙江企业数量分别达164、127、81家。

区块链产业园区作为区块链产业集群发展的重要载体,各地方政府正在加快推进建设。从产业园的位置分布来看,北京、上海、杭州、广州、重庆、青岛、长沙等城市区块链产业园区数量较多,形成以北京、山东为主的环渤海聚集效应,以浙江、上海、江苏为主的长江三角洲聚集效应,以广东为主的珠江三角洲聚集效应和以重庆、湖南为主的湘黔渝聚集效应。结合产业园的定位发展,均是以为企业服务为前提,打造区块链创新平台和产业高地,这样的定位也为企业的聚集效应提供了基础。

2、企业竞争:阿里巴巴区块链实力最强

2021年3月,在中国移动通信联合会区块链专业委员会、中国科技体制改革研究会数字经济发展研究小组和中国区块链企业百强榜组委会指导下,链塔智库从数千个项目、企业名单中进行筛选、评估,最终发布2020中国区块链企业百强榜。

在2020年疫情爆发的大背景下,2020年区块链百强榜对企业考察的维度进行了一定程度的调整,以突出2020年度优秀区块链企业的表现。其中分为五大主要维度,分别是商业经营权重占比25%,技术研发权重占比20%,产品应用权重占比30%,团队组成权重占比15%和市场推广占比10%。

行业发展前景及趋势预测

1、目前仍旧处于导入期

目前,我国区块链行业正处在导入期,行业呈现出两个主要特点:一是大型行业企业积极应用区块链技术来改进其自身的业务,但仍以尝试为主,主要的应用场景也都为行业中的非核心业务。如中国平安、中国银联、蚂蚁金服等企业在区块链应用探索中仅限于非核心业务;二是以区块链技术服务为主的企业的业务发展大多处在起步阶段,产品技术体系和商业模式还不够成熟,需求方对区块链的认识还有待提高。区块链在司法存证、政务管理、民生服务、食品溯源、供应链管理等场景中已经形成了一些应用案例,但还有待进一步优化和完善。

2、预计2026年市场容量超160亿美元

区块链技术是中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、大数据、云计算等领域,创新活动日趋活跃,创新要素不断积聚。区块链技术在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。

中国以加快转变经济发展方式为主线,更加注重经济质量和人民生活水平的提高,采用包括区块链技术在内的新一代信息技术改造升级传统产业,提升传统产业的发展质量和效益,提高社会管理、公共服务和家居生活智能化水平。未来巨大的市场需求将为区块链技术带来难得的发展机遇和广阔的发展空间。研究员整理分析认为,中国区块链市场将保持高速增长,2021-2026年市场规模年复合增速达73%,2026年的市场规模将达163.68亿美元,且在未来20年,中国区块链行业市场规模有望达万亿级别。

以上数据参考前瞻产业研究院《中国区块链行业市场前瞻与投资战略规划分析报告》。

热点内容
区块链密码城市 发布:2024-10-13 04:40:40 浏览:978
如何应对币圈熊市 发布:2024-10-13 04:35:14 浏览:131
合约里以后怎么解说 发布:2024-10-13 04:35:09 浏览:213
普通人如何做元宇宙的生意 发布:2024-10-13 04:25:25 浏览:132
比特币2021年搬家那天好 发布:2024-10-13 03:16:08 浏览:61
币圈分币是什么意思 发布:2024-10-13 03:12:47 浏览:207
可以做房子挖矿 发布:2024-10-13 03:08:34 浏览:247
数字货币人人都可以发行 发布:2024-10-13 03:02:35 浏览:491
张家口南站去张家口职教中心 发布:2024-10-13 02:42:19 浏览:390
元宇宙第一个人物 发布:2024-10-13 02:19:42 浏览:205