区块链云相悖
『壹』 企业数字化建设都需要做哪些工作
企业数字化转型包括:
1、 提高数字化认知水平:
在企业内部,建立从上至下的数字化转型认知体系,特别是企业领导层、管理层,要充分认识到数字化转型的重要性、紧迫性和系统性,从思想上,深刻认知数字化转型和企业发展是密不可分的一个整体,强化数字化转型和业务的融合思想,强化技术和业务协同发展的理念。
2、 制定数字化转型战略:
由企业领导层亲自负责,制定企业级的数字化转型战略,做好数字化转型的顶层设计,对企业数字化转型,进行全面、系统、整体的规划布局,明确企业数字化转型的战略定位、战略目标,确定数字化战略的具体内容,指明数字化转型战略的实施步骤和实施路径。
3、 建立数字化企业架构:
推动企业传统架构,向新一代的数字化企业架构转变,重构企业业务架构、数据架构和技术架构,建立以混合云为基础,以企业数字化云平台为载体,实现业务自由扩展、应用高效支撑、服务灵活部署、数据融合应用的新一代企业架构。
4、 推动数字化组织变革:
全面开展企业的组织变革,建立数字化的组织变革领导小组,调整组织架构,建立适应数字化转型的组织体系,构建起以业务为核心,灵活机动、分布式、扁平化、网状化的组织体系,形成适应数字经济条件下的新的组织体系。
5、 统筹数字化系统建设:
统筹企业数字化系统建设,重构企业IT基础设施,建设以企业智慧大脑为主体的数字化系统矩阵,形成企业系统服务总线、API服务平台,融合企业内部ERP、CRM、电商、小程序、会员系统、库存系统、数据分析系统等各类系统,形成业务的全面感知、实时分析、智能决策的数字化企业系统矩阵。
6、 再造数字化业务流程:
全面梳理企业业务流程,推动业务流程的数字化变革,强化数字技术对各个业务环节、业务模式、业务流程的变革和再造能力,形成更加数字化、网络化、智能化的业务运行体系,系统化的再造企业的业务流程。
7、 重构数字化客户服务:
推动企业客户管理、客户服务的数字化重构,强化数字技术对客户价值创造、客户体验优化、客户旅程管理等领域的全面改造,建立以客户为中心,与客户协同发展的全触点感知、全场景体验、全天候服务的数字化客户服务体系。
8、 推动数字化产品研发:
将新一代数据化、网络化、智能化的技术,融入到产品设计、研发中,强化数字技术对产品本身的改造,建立更加智慧化的产品体系,推动产品设计、研发、试样的网络化、智能化技术应用,构建实时响应、敏捷迭代的产品研发体系。
9、 形成数字化技术体系:
建立企业数字化技术管理体系,将互联网、移动互联网、大数据、人工智能、区块链、云计算等各类技术,进行统筹管理,融合企业内外部技术团队的能力,建立一个开放式的技术开发应用生态,推动各项技术在企业数字化转型中的实时响应、有力支撑、高效应用。
10、 构建智能化生产作业:
提升企业在生产作业、产品制造等环节的自动化、智能化水平,构建自动化作业流程、智能化制造产线,让前端客户订单、后端供应链和生产制造环节的数据实现无缝连接,提升企业生产作业和智能制造的数字化、网络化、智能化水平。
11、 建立数字化运营机制:
建立企业数字化运营平台,强化企业运营、管理、财务、资产等各个方面的数据采集、融合、分析能力,推动日常运营工作的智能化水平,推行以数据为核心自动运营机制建设,建立以一线运营人员为主体的微决策运行体系。
12、 构建数字化营销体系:
积极利用数字技术,对内搭建以CRM系统为基础的企业数字营销服务平台,对外通过API打通外部营销平台,实现内外营销无缝连接,建立以客户旅程为核心的营销矩阵,形成从引流、转化、留存、促活的全域流量运行体系,强化CRM、小程序、红包、裂变等各类营销技术在营销体系的应用。
13、 重塑企业价值体系:
重新审视企业价值创造体系,梳理企业价值链,推动企业全价值链的数字化变革,打造以客户为中心,以业务为主线的价值创造体系,强化数字化技术,对企业客户价值、产品价值、服务价值、业务价值等价值链的改造应用,推动企业价值创造活动的持续动态升级。
14、 建立数字化增长模型:
设立企业首席增长官职位,设计企业数字化增长模型,将数字技术广泛应用到企业增长的各个流程、各个环节,特别是在流量运营、客户旅程、市场销售、生产制造等领域,推行数字化的增长模型应用,建立模型数据监测指标体系,不断调整和优化各个领域的增长模型。
15、 实现企业数据实时感知:
充分利用信息系统、各类传感器、机器视觉、人工统计等多个数据采集方式,依托大数据平台,实现数据的实时采集、企业状态的全面感知,打通企业数据壁垒,建立数据服务平台,形成数据开放共享机制,提升数据智能化应用水平,充分发挥数据价值。
16、 打通企业内外互联网络:
统筹企业的网络化建设,打通企业内外部网络,推动企业商业BI、ERP、CRM等运营网络的互联互通,深化5G网络在企业生产制造环节的普及应用,实现企业所有环节、所有要素的网络全贯通、系统全连接、业务全在线。
17、 推动人工智能全面应用:
制定企业AI战略,建立企业AI服务平台,全业务推行AI化改造,将语音识别、图像识别、文本识别等AI技术,广泛应用到产品研发、客户服务、市场营销、生产制造、运营管理等各个领域,实现企业的智能化升级。
18、 组建数字化人才团队:
变革企业人才管理策略,着眼企业数字化转型需求,组建数字化人才队伍,引入数字化技术开发、数字化技术应用、数据分析等领域的人才,建立外包、外聘技术、应用专家团队,形成内外互补的数字化人才体系。
19、 建立知识智能体系:
高度重视企业知识智能体系建设,强化业务知识的搜集、整理、编写、测试、、修订、发布、版本控制、迭代更新、存档管理等企业知识全流程管控,充分利用知识计算引擎、知识图谱、知识库、文本识别、文本洞察、文本分析等各类知识应用工具、系统,构建智能化的企业知识智能体系和知识运行管理机制。
20、 深化企业数字文化建设:
建立企业数字化转型的文化氛围,让数字化转型深入人心,成为企业的主流文化,用数字化转型,推动企业各个部门、各个小组、全体员工,学习数字化转型相关内容,了解数字化转型给企业、部门、小组、个人带来的价值,形成自上而下,自下而上双向驱动的数字化转型文化。
21、 建立企业数字化创新机制:
推动企业创新和数字技术的融合发展,建立鼓励创新、激励创新的机制,强化数字技术对企业经营、管理、生产、运营等领域创新的驱动作用,实时推动创新成果在企业内的共享,实现创新价值的闭环。
22、 打造企业数字化生态体系:
建立企业数字化生态体系,建立企业级数字生态服务平台,以开放共享的理念,连接企业客户和上下游合作伙伴、第三方服务商等各类主体,形成以企业价值创造为核心的全面开放、协同共生、共建共享的企业级数字化生态共同体。
『贰』 浼佷笟鏁板瓧鍖栬浆鍨嬪寘鎷鍝浜涙柟闈锛
浼佷笟鏁板瓧鍖栬浆鍨鍖呮嫭涓氬姟鏁板瓧鍖栵紝绠$悊鏁板瓧鍖栧拰杩愯惀鏁板瓧鍖栥浼佷笟鏁板瓧鍖栬浆鍨嬫槸瀵逛紶缁熺殑绛旈ⅳ绠$悊妯″紡涓氬姟妯″紡鍟嗕笟妯″紡杩涜屽垱鏂板啀濉戯紝杩涜屾彁楂樻晥鐜囬檷浣庢垚鏈瀹炵幇鏂版棫鍔ㄨ兘鐨勮浆鎹锛屾暟瀛楀寲杞鍨嬬殑鏈璐ㄥ嵆鍊熷姪鏁板瓧鍖栨妧鏈锛屼績杩涗紒涓氫笌缁勭粐鑳藉熷湪鍙橀潻鐨勬暟瀛楀寲涓栫晫涓鍒涢犳洿澶х殑浠峰笺
浼佷笟鏁板瓧鍖栬浆鍨嬬壒鐐
涓氬姟鏁板瓧鍖栨寚鎶鏈鍜屾暟鎹椹卞姩鐨勪笟鍔″垱鏂帮紝鏁版嵁椹卞姩浼佷笟涓哄㈡埛鎻愪緵涓鎬у寲鏈嶅姟锛屾妧鏈瀹炵幇楂樻晥澶氭笭閬撲氦浜掞紝鍏稿瀷鍦烘櫙鏄涓氬姟鍦ㄧ嚎鍖栫Щ鍝棰傚姩鍖栫數鍟嗗晢鍔′互鍙婂ぇ鏁版嵁锛浜哄伐鏅烘収绛夋柊鎶鏈鍦ㄦ竻缂撹触涓氬姟涓鐨勮繍鐢锛岃繖鏄鏁板瓧鍖栦粠涓氬姟妯″紡涓婂逛紶缁熻屼笟鐨勯犺嗐
鏁板瓧瀛鐢鎶鏈鏄鎸囧厛鍦ㄦ暟瀛楃┖闂村缓绔嬬湡瀹為炶屽櫒鐨勬ā鍨嬶紝骞堕氳繃浼犳劅鍣ㄥ疄鐜颁笌椋炶屽櫒鐪熷疄鐘舵佸畬鍏ㄥ悓姝ワ紝杩欐牱姣忔¢炶屽悗缁撳悎鐜版湁鎯呭喌鍜岃繃寰杞借嵎锛岀幇鍦ㄨ繖椤规ā鍨嬬殑鐞嗗康琚骞挎硾搴旂敤鍒板悇琛屼笟瀹炵幇鐗╃悊涓栫晫鐨勬暟瀛楀寲銆
『叁』 为什么说区块链融合隐私计算是必然趋势
从更大的版图视角来看,要构建全面的隐私保护和治理体系,不仅需要融合区块链、人工智能、大数据、隐私计算等多种技术,还需要结合法律法规、监管治理等诸多策略。
在数字化 社会 中,大家对于数据生产要素有着更为强烈的需求,无论是用户服务、业务营销都需要使用大量的数据,尤其是在分布式协作的业务模式中,各方都希望数据能顺畅地流通,并合理地体现数据价值。但与之相悖的是,数据孤岛仍然存在,数据的粗放式使用仍待解决。
与此同时,合法合规成为大势所趋。不论是在国内还是国际上,与个人信息保护、数据安全相关的法律法规一一出台,都对个人信息保护和数据安全等方面提出了更为严格的要求。这意味着,要确保数据的安全,也要尊重个人的隐私权益;在数据全生命周期上,要求实现全面规范,达成合规地流通。
以用户为中心,在安全隐私前提下交换数据,并提供优质合规的服务, 是数字化 社会 建设的趋势,需要在技术、业务模式、治理体系上做出更多的创新。在分布式系统里引入隐私计算、发展合规的数据交易所等举措,都体现出这种创新精神。
在隐私计算领域,区块链、联邦学习和安全多方计算已然成为三大关键核心技术,而且这三大技术之间互有侧重,也有许多重合和联系。
其中,从区块链的角度出发,我们可以看到,一方面,区块链上的数据需要采用隐私算法来保护;另一方面,区块链也可以成为隐私计算协作里的底座和枢纽:采用区块链技术去记录、追溯多方协作中的数据集、算法模型、计算过程,并对最终结果进行评估和共识,持续优化协作效率。
此前几年,我们在区块链领域里 探索 应用落地时,常常是用区块链为业务场景构建 “分布式账本”。合规的应用都会对用户和商户进行KYC (Know Your Client) ,其中也存在不少待通过隐私计算等创新解法来解答的问题。
例如,身份信息是否可以向全联盟链公布?在交易时,交易里的金额、相关方是否明文公开?每个人拥有的资产,是否可以被随意查询?人们的业务行为,是否会在未授权的情况下被滥用?
例如,在消费场景的积分卡券业务中,商家和商家之间通常不希望过多地暴露自己的经营状况,比如有多少用户开卡、充值,以及每天的流水等;个人用户也不希望自己的消费行为被公开审视。
于是,在隐私问题尚未能彻底解决之前,我们通常采用的办法是,引入核心权威机构参与共识和维护全账本,而其他参与者则分层分片,以不同权限的角色参与。但这样,在一定程度上增加了系统的复杂性,影响了用户体验,同时,给区块链应用的规模化和普及化带来了挑战。
目前,区块链也普遍用于政务领域,比如在智慧城市管理以及各种民生应用中,为大家提供“一网通办”的良好体验,这就需要多领域、多地域、多部门的通力协作。我们可以看到,政务应用覆盖面广,角色众多,数据存在多级别的敏感性和重要性。
区块链可以作为分布式协作的底座,通过数据目录、数据湖等方式,构建数据流转的枢纽,同时引入隐私计算和全面的治理规则,界定数据的边界,使数据在“不出库”的同时,依旧可以实现身份认证、隐匿查询、模型构建等能力。
从更大的版图视角来看,要构建全面的隐私保护和治理体系,不仅需要融合区块链、人工智能、大数据、隐私计算等多种技术,还需要结合法律法规、监管治理等诸多策略。
区块链隐私保护的场景丰富、角色众多,流程多样、数据立体,我们可以用 “双循环”机制做进一步分析。
首先,我们从用户端出发,尊重用户对数据的知情权和控制权,把重要的数据交给用户管理。
比如,验证身份的“四要素”中,用户的身份凭据和联系方式通常来自政府和运营商这些权威机构,当用户和某一个业务场景产生联系时,他们并不需要提供全部的明文信息,只需要选择性披露一些可验证的凭据,用以代替明文。
基于分布式验证机制即可实现多场景的验身,证明自己的合法身份,此时业务提供方即使未获得更多明文数据,但也不能拒绝服务。这就从根源上降低乃至杜绝了用户关键隐私的泄露风险。
其次,在业务方,依旧可以采用诸如联邦学习、安全多方计算等技术,对用户已经授权的、合规采集的业务数据进行处理。
在用户知情同意的前提下,在B端实现与合作伙伴之间的协同计算,数据不出库,隐私不泄露,但实现诸如风控、营销、广告等对业务运营有重要价值的事务。最终实现业务效果的提升,在给业务方带来效益的同时,也为用户提供更优质的服务,或者权益上的回报。其整个价值体系是闭环的,合规的,可持续的。
例如物联网和区块链,在采集端,就需要给设备分配身份和标识,同时算法上要做到去标识,防泄露;在用户端,不但要提供个性化的服务,还要做到防止不必要的画像,在做到可验证用户身份和资质的同时,又不能无端地追踪用户行为轨迹;最终,在提供优质服务、安全存储用户数据的时候,又要尊重用户的意愿,包括注销退出的要求。
如此的“双循环体系”,可能不止是在技术上要求设备、APP、后台服务进行迭代的重构,同时其商业模式、运营治理观念等层面可能也会产生许多革新。整个链条会非常的长,需要做的工作也非常多,覆盖芯片、硬件、网络、软件、云平台等广袤的产业链。
目前来看,并没有哪一个“包打天下”的单一技术,可以满足“全链路”、“双循环”的要求。那么我们不妨把场景拆细一点,列举得全面一些,组合一些技术和方案,先解决某个场景里的痛点问题。
事实上,我们在和众多产业应用开发者交流时,他们更期望聚焦于具体的、迫在眉睫的问题,得到有针对性、可着手实施的解决方案,比如转账时隐匿金额、排名时不透露分数、投票时不泄露身份、KYC流程时不泄露视频等等。
特定场景下的问题常常可以基于隐私计算的某一个算法或一些算法的组合,针对性的去应对。我们可以日拱一卒,解决一个又一个的场景化问题,对之前可能有纰漏的事情亡羊补牢,对可预见的刚性需求引入新技术新思路,创新性地去实现。这样就逐步把数据安全的篱笆一点点扎起来,最终筑就数据安全的长城。
分布式协作中,许多场景是跨机构的、跨网络的,无论是区块链还是隐私计算,都会遇到要和其他合作方、其他平台互通的要求。我们看到信通院的相关工作组正在讨论多项互联互通规范,核心框架是要做到“节点互通”、“资源互通”、“算法互通”。
节点互通要求网络和协议等基础要素能互通。资源互通强调的是对资源的发布存储、寻址使用、治理审计 (含删除数据、下线服务等) ,在这个层面上,大家都实现相对一致的视图,提供通用的接口。算法的互通则是非常细致和场景化的,每一种算法都有自己的特点,其密码学基础、运算规则、协作流程都会不一样,反过来对资源的管理资质和节点网络的拓扑,都会提出更多的要求。
在互通基础上还有“自洽性”、“安全性”、“正确性”等要求,而且随着领域的发展,不断增加更多功能的“扩展性”也非常重要。之前,可能大家是在埋头苦干,积累技术和经验,以后在落地时,则需要更注重接口和规范,开放心态,大家一起沟通共建,通过开源开放的方式寻求共识和共赢。
总结一下,关于隐私计算发展的几个思考:
第三,实现标准化和普及化,以推动新技术和新理念的规模化落地。比如相关的行业标准、评测体系,这对帮助从业者理清发展道路、达成行业要求大有裨益。
区块链发展这么多年,除了技术本身,其实最难的是 “怎么解释清楚啥是区块链” 。希望在科普推广方面,方兴未艾的隐私计算能有更多的新思路,实现更好的效果。
回顾区块链和隐私计算的热潮,我们看到产业和 社会 在呼唤数据安全和隐私保护,行业也已经有了不少可用的研究成果,得到了一定的认可。展望可见的未来,我们将更加开放、务实,聚焦用户和场景, 探索 规范的、规模化的、可持续的应用之路。