当前位置:首页 » 区块链知识 » 区块链智能合约返回参数慢

区块链智能合约返回参数慢

发布时间: 2024-07-20 12:57:12

⑴ 011:Ethash算法|《ETH原理与智能合约开发》笔记

待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。

课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。
第四课分为三部分:

这篇文章是第四课第一部分的学习笔记:Ethash算法。

这节课介绍的是以太坊非常核心的挖矿算法。

在介绍Ethash算法之前,先讲一些背景知识。其实区块链技术主要是解决一个共识的问题,而共识是一个层次很丰富的概念,这里把范畴缩小,只讨论区块链中的共识。

什么是共识?

在区块链中,共识是指哪个节点有记账权。网络中有多个节点,理论上都有记账权,首先面临的问题就是,到底谁来记帐。另一个问题,交易一定是有顺序的,即谁在前,前在后。这样可以解决双花问题。区块链中的共识机制就是解决这两个问题,谁记帐和交易的顺序。

什么是工作量证明算法

为了决定众多节点中谁来记帐,可以有多种方案。其中,工作量证明就让节点去算一个哈希值,满足难度目标值的胜出。这个过程只能通过枚举计算,谁算的快,谁获胜的概率大。收益跟节点的工作量有关,这就是工作量证明算法。

为什么要引入工作量证明算法?

Hash Cash 由Adam Back 在1997年发表,中本聪首次在比特币中应用来解决共识问题。

它最初用来解决垃圾邮件问题。

其主要设计思想是通过暴力搜索,找到一种Block头部组合(通过调整nonce)使得嵌套的SHA256单向散列值输出小于一个特定的值(Target)。

这个算法是计算密集型算法,一开始从CPU挖矿,转而为GPU,转而为FPGA,转而为ASIC,从而使得算力变得非常集中。

算力集中就会带来一个问题,若有一个矿池的算力达到51%,则它就会有作恶的风险。这是比特币等使用工作量证明算法的系统的弊端。而以太坊则吸取了这个教训,进行了一些改进,诞生了Ethash算法。

Ethash算法吸取了比特币的教训,专门设计了非常不利用计算的模型,它采用了I/O密集的模型,I/O慢,计算再快也没用。这样,对专用集成电路则不是那么有效。

该算法对GPU友好。一是考虑如果只支持CPU,担心易被木马攻击;二是现在的显存都很大。

轻型客户端的算法不适于挖矿,易于验证;快速启动

算法中,主要依赖于Keccake256 。

数据源除了传统的Block头部,还引入了随机数阵列DAG(有向非循环图)(Vitalik提出)

种子值很小。根据种子值生成缓存值,缓存层的初始值为16M,每个世代增加128K。

在缓存层之下是矿工使用的数据值,数据层的初始值是1G,每个世代增加8M。整个数据层的大小是128Bytes的素数倍。

框架主要分为两个部分,一是DAG的生成,二是用Hashimoto来计算最终的结果。

DAG分为三个层次,种子层,缓存层,数据层。三个层次是逐渐增大的。

种子层很小,依赖上个世代的种子层。

缓存层的第一个数据是根据种子层生成的,后面的根据前面的一个来生成,它是一个串行化的过程。其初始大小是16M,每个世代增加128K。每个元素64字节。

数据层就是要用到的数据,其初始大小1G,现在约2个G,每个元素128字节。数据层的元素依赖缓存层的256个元素。

整个流程是内存密集型。

首先是头部信息和随机数结合在一起,做一个Keccak运算,获得初始的单向散列值Mix[0],128字节。然后,通过另外一个函数,映射到DAG上,获取一个值,再与Mix[0]混合得到Mix[1],如此循环64次,得到Mix[64],128字节。

接下来经过后处理过程,得到 mix final 值,32字节。(这个值在前面两个小节《 009:GHOST协议 》、《 010:搭建测试网络 》都出现过)

再经过计算,得出结果。把它和目标值相比较,小于则挖矿成功。

难度值大,目标值小,就越难(前面需要的 0 越多)。

这个过程也是挖矿难,验证容易。

为防止矿机,mix function函数也有更新过。

难度公式见课件截图。

根据上一个区块的难度,来推算下一个。

从公式看出,难度由三部分组成,首先是上一区块的难度,然后是线性部分,最后是非线性部分。

非线性部分也叫难度炸弹,在过了一个特定的时间节点后,难度是指数上升。如此设计,其背后的目的是,在以太坊的项目周期中,在大都会版本后的下一个版本中,要转换共识,由POW变为POW、POS混合型的协议。基金会的意思可能是使得挖矿变得没意思。

难度曲线图显示,2017年10月,难度有一个大的下降,奖励也由5个变为3个。

本节主要介绍了Ethash算法,不足之处,请批评指正。

⑵ 如何理解区块链的智能合约

智能合约”(smart contract)这个术语至少可以追溯到1995年,是由多产的跨领域法律学者尼克·萨博(Nick Szabo)提出来的。他在发表在自己的网站的几篇文章中提到了智能合约的理念。他的定义如下:

“一个智能合约是一套以数字形式定义的承诺(promises),包括合约参与方可以在上面执行这些承诺的协议。”

让我们更加详细地探讨他的定义的意思。

承诺

一套承诺指的是合约参与方同意的(经常是相互的)权利和义务。这些承诺定义了合约的本质和目的。以一个销售合约为典型例子。卖家承诺发送货物,买家承诺支付合理的货款。

数字形式

数字形式意味着合约不得不写入计算机可读的代码中。这是必须的,因为只要参与方达成协定,智能合约建立的权利和义务,是由一台计算机或者计算机网络执行的。

更进一步地说明:

(1)达成协定

智能合约的参与方什么时候达成协定呢?答案取决于特定的智能合约实施。一般而言,当参与方通过在合约宿主平台上安装合约,致力于合约的执行时,合约就被发现了。

(2)合约执行

“执行”的真正意思也依赖于实施。一般而言,执行意味着通过技术手段积极实施。

(3)计算机可读的代码

另外,合约需要的特定“数字形式”非常依赖于参与方同意使用的协议。

协议

协议是技术实现(technical implementation),在这个基础上,合约承诺被实现,或者合约承诺实现被记录下来。选择哪个协议取决于许多因素,最重要的因素是在合约履行期间,被交易资产的本质。

再次以销售合约为例。假设,参与方同意货款以比特币支付。选择的协议很明显将会是比特币协议,在此协议上,智能合约被实施。因此,合约必须要用到的“数字形式”就是比特币脚本语言。比特币脚本语言是一种非图灵完备的、命令式的、基于栈的编程语言,类似于Forth。

智能合约


链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

⑶ 基于区块链的智能合约目前面临的问题与挑战是什么

金窝窝集团分析基于区块链的智能合约面临的问题有如下几点:
1-安全性问题:关键问题之一就是安全性及信任度的问题。智能合约系统都被设计成无需信任的环境,这就意味着无法改正出现的错误;
2-私密性问题:有效利用区块链的一大挑战就是区块链提供彻底的透明度;
3-意外情景问题:智能合约听起来非常好,但如何正确、合适地处理意外场景下的合约执行,是一个问题。

⑷ 基于区块链的智能合约目前面临的问题与挑战是什么

金窝窝集团分析基于区块链的智能合约面临的问题有如下几点:
1-安全性问题:关键问题之一就是安全性及信任度的问题。智能合约系统都被设计成无需信任的环境,这就意味着无法改正出现的错误;
2-私密性问题:有效利用区块链的一大挑战就是区块链提供彻底的透明度;
3-意外情景问题:智能合约听起来非常好,但如何正确、合适地处理意外场景下的合约执行,是一个问题。

⑸ 浜嗚В浠ュお鍧婁腑鐨 Gas 浠ュ強濡備綍浼樺寲鏅鸿兘鍚堢害


浠ュお鍧婏細鏅鸿兘鍚堢害鐨勭噧鏂欎笌浼樺寲绛栫暐


1. 寮曡█</


浠ュお鍧婏紝鍖哄潡閾惧垱鏂扮殑鐏濉旓紝鍑鍊熷叾鏅鸿兘鍚堢害鐨勫姏閲忥紝瀹炵幇浜嗚嚜鍔ㄥ寲浠诲姟鐨勬墽琛岋紝鐘瑰傝秴绾ц嫳闆勮埇瀹堟姢鐫鍘讳腑蹇冨寲鐨勬暟瀛椾笘鐣屻傚叾涓鐨勬牳蹇冨厓绱犫斺攇as锛屾槸浜ゆ槗鍏骞冲拰缃戠粶瀹夊叏鐨勪繚闅滄満鍒讹紝瀹冨湪鏅鸿兘鍚堢害鐨勮垶鍙颁笂鎵婕旂潃鑷冲叧閲嶈佺殑瑙掕壊銆


2. 鐞嗚ВGas</


鍦ㄤ互澶鍧婄殑浜ゆ槗涓锛実as灏卞儚琛楁満娓告垙涓鐨勪唬甯侊紝鏄鏈夐檺鐨勮祫婧愩傚畠鏄浜ゆ槗杩囩▼涓璁$畻鑳藉姏鐨勮閲忓崟浣嶏紝浠ETH锛圙wei鍗曚綅锛夊畾浠枫傚湪绻佸繖鐨勭綉缁滀腑锛実as闇姹傛縺澧烇紝绔炰簤璁$畻璧勬簮锛屼氦鏄撴垚鏈涔熼殢涔嬩笂娑ㄣ


3. 鏅鸿兘鍚堢害涓鐨凣as绠$悊</


鏅鸿兘鍚堢害涓鐨勬瘡涓涓鎿嶄綔锛屾棤璁烘槸璇诲彇銆佺畻鏈杩愮畻杩樻槸瀛樺偍锛岄兘鏈夊叾鐗瑰畾鐨刧as娑堣椼備氦鏄撳墠锛屽紑鍙戣呴渶瑕佸噯纭浼扮畻gas limit锛屽惁鍒欎竴鏃﹁秴鍑猴紝浜ゆ槗灏嗗洜鈥滄皵浣撲笉瓒斥濊屽け璐ワ紝灏卞儚椹鹃┒鏃舵湭棰勪及娌归噺涓鏍峰叧閿銆


4. Gas鎴愭湰浼扮畻涓庡疄璺</

鎯宠薄gas鎴愭湰涓哄叕璺鏃呰岀殑姹芥补锛屽埄鐢‥therscan銆丮etaMask绛夊伐鍏疯繘琛屼及绠楋紝鎴栬呴氳繃web3.js鐨"estimateGas"鍑芥暟杩涜岀簿纭璁$畻銆備及绠楀彧鏄鎻愪緵涓涓澶ц嚧鐨勫弬鑰冿紝瀹為檯璐圭敤闇涔樹互褰撴椂鐨刧as浠锋牸锛岀姽濡傚ぉ姘旈勬姤锛岄渶瑕佹彁鍓嶅仛濂藉噯澶囥


5. 鏅鸿兘鍚堢害浼樺寲绉樼睄</


鎺㈢储楂樻晥鍚堢害鐨勫ゥ绉橈紝浠ヤ笅鏄涓浜涘疄鐢ㄥ缓璁锛



  • 浼樺寲瀛樺偍锛屽噺灏戜笉蹇呰佺殑瀛樺偍鎿嶄綔锛岃╀唬鐮佹洿鍔犵畝娲併

  • 璀︽儠寰鐜涓鐨刧as娑堣楋紝閫夋嫨鏇撮珮鏁堢殑绠楁硶璁捐°


鍊熷姪EthGasStation銆丟asNow绛夊伐鍏凤紝浠ュ強Remix IDE銆乀ruffle Suite绛夊垎鏋愬櫒锛岃╀紭鍖栬繃绋嬫洿涓虹簿鍑嗐


浠ユ姇绁ㄥ悎绾︿负渚嬶細


楂樻晥鎶曠エ绯荤粺</
contract Voting {
mapping(address => bool) hasVoted;
uint256 totalVotes;
function vote() public {
require(!hasVoted[msg.sender], "You've already cast your vote!");
// 绠娲佺殑鎶曠エ閫昏緫
hasVoted[msg.sender] = true;
// 浼樺寲瀛樺偍鍜岃皟鐢ㄦ搷浣
}


鎬荤粨</


娣卞叆鐞嗚Вgas鍦ㄤ互澶鍧婁腑鐨勮繍琛屾満鍒讹紝鎺屾彙鏅鸿兘鍚堢害鐨刧as鎴愭湰浼扮畻锛屾槸瀹炵幇楂樻晥浜ゆ槗鐨勫叧閿銆傞氳繃浼樺寲瀛樺偍鍜岀畻娉曪紝鍙浠ユ樉钁楅檷浣巊as娑堣楋紝纭淇濆悎绾︾殑椤虹晠杩愯屻


杩涗竴姝ユ帰绱</



  • 浠ュお鍧婄櫧鐨涔 - 娣卞叆鐮旂┒鍗忚鍘熺悊

  • 浠ュお鍧婇粍鐨涔 - 璇︾粏浜嗚В鎶鏈缁嗚妭

  • 瀹炴椂gas浠锋牸 - 鏃跺埢鎺屾彙鎴愭湰鍔ㄦ

  • Solidity鏂囨。 - 鏅鸿兘鍚堢害缂栧啓鎸囧崡

  • Etherscan - 鏌ヨ浜ゆ槗淇℃伅

  • Ethereum StackExchange - 瑙g瓟鐤戞儜涓庝氦娴佸績寰


⑹ 区块链技术中智能合约目前明显的不足之处在哪里

“智能合约的工作理论迟迟没有实现,一个重要原因是因为缺乏能够支持可编程合约的数字系统和技术。区块链技术的出现解决了该问题,不仅可以支持可编程合约,而且具有去中心化、不可篡改、过程透明可追踪等优点,天然适合于智能合约。因此,也可以说,智能合约是区块链技术的特性之一”
基于区块链技术的智能合约不仅可以发挥智能合约在成本效率方面的优势,而且可以避免恶意行为对合约正常执行的干扰。将智能合约以数字化的形式写入区块链中,由区块链技术的特性保障存储、读取、执行整个过程透明可跟踪、不可篡改。同时,由区块链自带的共识算法构建出一套状态机系统,使智能合约能够高效地运行。

⑺ 鍩轰簬鍖哄潡閾剧殑鏅鸿兘鍚堢害鐩鍓嶉潰涓寸殑闂棰樹笌鎸戞垬鏄浠涔堬紵

1. 瀹夊叏鎬ф寫鎴橈細鏅鸿兘鍚堢害绯荤粺璁捐′负鏃犻渶淇′换鐨勭幆澧冿紝浣嗗叧閿闂棰樹箣涓鏄瀹夊叏鎬у拰淇′换搴︺備竴鏃﹀嚭鐜伴敊璇锛岀敱浜庢棤娉曟洿鏀癸紝瀹夊叏鎬ф垚涓轰竴澶ф寫鎴樸
2. 闅愮佷繚鎶ら棶棰橈細鍖哄潡閾剧殑涓澶х壒鐐规槸鎻愪緵瀹屽叏鐨勯忔槑搴︼紝浣嗘湁鏁堝埄鐢ㄥ尯鍧楅摼鏃讹紝濡備綍淇濇姢闅愮佹垚涓轰竴涓閲嶈佹寫鎴樸
3. 鎰忓栨儏鏅澶勭悊闂棰橈細灏界℃櫤鑳藉悎绾︾殑姒傚康鐪嬩技瀹岀編锛屼絾鍦ㄥ勭悊鎰忓栨儏鏅涓嬬殑鍚堢害鎵ц岄棶棰樹笂锛屽備綍纭淇濇g‘鍜岄傚綋锛屾槸闇瑕佽В鍐崇殑闂棰樸

热点内容
开源矿池软件 发布:2024-11-15 20:28:34 浏览:49
ipfs区块链是陷阱吗 发布:2024-11-15 20:28:33 浏览:972
快乐生肖区块链 发布:2024-11-15 20:27:36 浏览:792
战旗矿机价格 发布:2024-11-15 20:25:54 浏览:524
偷电34万度挖btc 发布:2024-11-15 20:14:09 浏览:759
圆石的一键挖矿指令 发布:2024-11-15 19:52:08 浏览:936
比特币趋势怎么判断 发布:2024-11-15 19:42:05 浏览:344
航海世纪挖矿去拿挖 发布:2024-11-15 19:39:19 浏览:640
星火矿池无法转账 发布:2024-11-15 19:36:12 浏览:619
人们用比特币干什么 发布:2024-11-15 19:36:05 浏览:299