麻省理工区块链蔡
Ⅰ 什么是区块链区块链的运作模式是什么
块链在有的时候被称为分布式账本技术,就是通过使用去中心化和加密散列,使任何数字资产历史不可以更改,并且十分的透明,没有任何的隐蔽性可言。区块链的运行是为了让人们能够以安全,防篡改的方式来共享有价值的数据。最为经典的就是麻省理工学院技术评论区块链的三个重要的概念。
要想将公共的信息完全共享给所有的人,这就必须要借助于区块链保持完整,并在用户之上建立信任。
Ⅱ 区块链12年:应用在了哪些领域
#「闪光时刻」主题征文 二期#
人们曾无数次地谈起区块链的适用场景和使用时机。但实际上,简单粗暴地将区块链和所有业务捆绑在一起的行为是非常愚蠢且荒谬的。
单纯用“区块链”这个词(而不是它背后的技术)进行炒作的话,结果终将是一场空。但如果使用得当的话,区块链也确实可以推动某些经济领域的发展。
要想实现这一目标,就需要一步步地慢慢来。Gartner的专家认为,区块链目前正处于“摆脱幻想”阶段边缘。在这一阶段,其技术弊端暴露无遗,各路媒体也大都持批判态度。
那么,到底有没有真正以区块链为基础的好产品呢?如果有的话,又是在哪些领域呢?
首先,金融服务是一个不错的选择,毕竟很多传统中介机构都存在低透明度和高佣金的问题。目前,许多大银行已经在研究并测试去中心化的解决方案了。那么现在市场上可供选择的方案有哪些呢?
净额清算就是一个很好的例子。它以Hyperledger Fabric为基础,能够抵消由两个或多个交易方之间交易所导致的多个头寸或支付费用。常被用来确定多方协议中应获得酬金的一方。净额作为一个普遍概念,在金融市场中(证券交易中)有许多更为具体的用途。
此外,大家对区块链债券、抵押贷款和银行担保的讨论也层出不穷。几乎所有的大银行,包括伊斯兰银行,都在尝试这种做法。
Hyperledger Fabric和Corda区块链技术也常被应用于其他用例,但前景究竟如何就需要我们通过之后的持续跟踪观察才能得出最终结论。
美国银行、高盛、花旗银行、摩根士丹利、摩根大通和中国银行、澳大利亚联邦银行在2019年都取得了不错的效果。此外,在银行业中,人们常会提到跨境金融交易,甚至有意图要摆脱SWIFT。
有人认为,区块链技术在版权保护和打击数据造假方面大有推广前景。例如,出于保护版权的目的,初创公司Sputnik DLT在Waves平台上开发了Depositor服务。
同样,Emernotar是基于Emercoin的类似解决方案,使用的是SHA-512算法。据开发者介绍,企业和律师可以借助Emernotar服务来签订合同,使用在线服务来收集用户许可,创意产业代表也可以以此来确认版权。
以Emercoin技术为基础的democracynotary.org平台旨在保护与选举相关的重要信息。虽然在选举过程中,区块链尚无法保证投票的匿名性,但至少可以保证投票的真实性。
最近,这一平台的效果在马其顿的一项全民公投中得到了检验:公投内容关于是否批准一项与希腊的条约——要求更改马其顿的国名为“北马其顿”。该平台对全民投票过程中的公开报告进行公证,进而阻断了虚假信息的传播。
区块链用例在房地产交易注册方面极具发展前景。去年,曾有人试图利用以太坊区块链上的智能合约在司法管辖区进行此类购买/销售交易。虽然并不是所有地方的立法机构都能理解律师在做的事情,但过去和将来都有尝试。
例如,最著名的例子是,曾通过加利福尼亚一个去中心化的Propy市场,达成了一项出售10英亩土地的交易,交易完全以比特币进行,并使用区块链进行注册。此后,欧盟也完成了首个区块链房地产销售。
2018年12月,瑞士金融市场监管局批准了区块链公司“Blockimmo房地产公司”的商业模式。目前,Blockimmo平台正处于测试阶段,可供瑞士和列支敦士登的居民使用。之后,该公司计划将进入其他整个欧洲市场。
部分专家十分看好区块链在批发和物流领域的应用前景;但同时,也有部分专家认为它在该领域毫无用武之地。然而,作为消费者,我们更应该肯定行业内已经取得的成功。
2018年晚秋,石油巨头BP和壳牌(Shell)、大型银行及公司推出了Vakt区块链平台,旨在优化商品交易流程——包括将纸质文档转换为智能合约。
同时,阿联酋也在领域内使用了区块链技术——Maqta Gateway LLC在阿布扎比推出了首个区块链物流解决方案。公司开发的Silsal区块链技术可以提高物流和货运效率。Maqta Gateway希望能够通过DLT技术来减少文书工作量,促进实时状态更新并加快信息共享速度。
去年秋天还启动了IBM食品信托区块链平台——平台以Hyperledger Fabric技术为基础,旨在调节食品行业供应链。家乐福(Carrefour)、雀巢(Nestle)、都乐食品(Dole Food)、泰森食品(Tyson Foods)、克罗格(Kroger)、联合利华(Unilever)、沃尔玛(Walmart)等知名企业都是该平台成员。IBM区块链服务每月费用从100美元到10,000美元不等,这也解释了为何这些行业巨头愿意在这方面进行投资。
2017年秋天启动了去中心化的Shelf.Network拍卖协议。 汽车 经销商可以通过该平台进行 汽车 销售和租赁交易。
一年后,该拍卖网络获得了日本IT巨头Broadleaf的投资。同时,Broadleaf也获得了供应Shelf.Network技术的许可,为东南亚国家(包括日本、缅甸、泰国、印度尼西亚、越南、老挝、澳大利亚、印度和新加坡)建立 汽车 和零部件销售的贸易网络。
到2018年底,有6万辆来自美国的 汽车 加入了该服务网络。Shelf.Network还实现了与Carfax web服务的交互,可以通过后者向个人和企业提供车辆 历史 报告。例如,初创公司Auto1 Group GmbH在德国购买 汽车 时,通过区块链对贷款和保险产品进行了记录,这大大提高了交易速度(如果采用传统文书工作的话,需要两周时间才可完成)。
IBM商业价值研究所对大公司进行的一项调查显示,到2021年,区块链将在 汽车 行业发挥关键作用,同时,区块链也将被应用于航空领域。例如,S7航空公司和阿尔法银行(俄罗斯)已经通过在Hyperledger区块链平台上应用智能合约,实现了实时支付飞机燃油费用。
行内各界都相信DLT技术能够简化并加快相互结算流程、消除各类财务风险、实现流程自动化。与批发物流领域相同,该技术在运输领域也具有重要应用意义。
区块链技术也正逐步渗透进公共部门,被广泛用于文件认证流程。例如,Proofstack服务能够将文件与所有者的个人签名、日期和时间戳一起归档,然后将存档哈希散列写入区块链。用户还可以选择影响时间戳类型的国家,以及生成存档所需的存储位置(计算机、云端)。人们可以通过创建的存档来确认文件在何时由何人进行归档。与此同时,区块链在司法系统中的应用也越来越普及。例如,ServeManager和Integra已经将区块链技术应用到跟踪传票交付的服务中了。
在中国,由政府支持的区块链解决方案持续、迅速发展。其司法区块链系统“天平链”在发布仅三个月后,就采集了约100万份在线证据数据。平台上提交的所有资料均通过DLT认证,共计19万份文件。平台电子证据系统由北京互联网法院、中国工业控制系统应急响应小组(CICS-CERT)、工信部研究中心、网络互联网集团和TrustDo区块链初创公司共同开发。平台以互联网巨头网络的超链基础设施为基础,优化了证据收集和存储过程,通过区块链保证数据的真实性。此外,平台还通过降低与互联网相关的诉讼成本,实现了节约时间和资源的目的。
作为全球集装箱航运的领导者,Maersk于去年春天开始使用Insurwave区块链解决方案。该海上保险平台由咨询公司EY和Guardtime共同开发,以微软Azure云技术为基础。在与Insurwave合作的第一年,Maersk计划将为1000艘远洋船舶投保,数字交易总量将超50万笔。
目前,平台用户有Willis Towers Watson、XL Catlin 和MS Amlin。开发商正试图扩展Insurwave的功能,将保险业务拓展到航空和能源领域。
专门从事投资流管理的英国金融 科技 公司Calastone宣布将计算全部转移到区块链上完成。该公司预计,此项技术将有助于削减全球结算部门数十亿美元的成本。Calastone为1700多家公司提供风险评估管理服务、IT基础设施和支付解决方案,其客户包括摩根大通资产管理公司(JP Morgan Asset management)、施罗德(Schroders)和景顺(Invesco)。
如果企业目标是争取交易及DLT注册表中输入信息透明度的话,则会为区块链创造绝佳的应用场景;但是,如果企业追求的是保持匿名性或“追踪”金融交易的话,则没有区块链施展拳脚的机会。
新加坡电力集团(Singapore Power Group)推出了可再生能源(REC)证书区块链交易市场。其公司代表表示,该“内部开发”平台旨在提高此类证书交易的安全性、可靠性和可追踪性。
REC证书是证明太阳能电池板释放电量的凭证,由Cleantech Solar Asia和LYS Energy Solutions进行销售。有意购买证书的City Developments Limited和DBS Bank都对该平台十分感兴趣。Katoen Natie Singapore也已加入该平台,计划很快启动可再生电力生产能力。
韩国最大的电信公司KT 公司也推出了自己的区块链网络,其分布式注册技术涉及用户认证和改善国际漫游服务。KT公司可以借此将客户数据安全传输给合作伙伴。网络带宽每秒可处理100,000个事务。
时间将会证明这些举措是否会得到大众市场的认可。同样,区块链在电力、数据、用户标识的账户/记录/交易方面的应用都是老生常谈了。
在2017年底,麻省理工学院(MIT)使用Blockcerts钱包(可发行一种“可验证、防篡改”的认证证书),通过比特币区块链为一百多名毕业生签发了数字毕业证书。
该试验项目得到了软件公司Learning Machine的支持,该公司曾与Media Lab一起参与了Blockcerts的研发工作。
这样做的目的是让学生成为自己档案真正的所有者。Learning Machine首席执行官克里斯•贾杰斯(Chris Jagers)表示,即便有一天该机构不复存在了,人们也可以提取其中存储的重要官方信息。
第比利斯商业技术大学(Tbilisi University of Business and Technology)也使用了同样的方法:该大学通过与Emercoin合作,使用了类似的区块链平台Trusted Diploma。该平台能够借助区块链来修复注册数据(所学科目、培训质量和取得的分数)。以此来看,在将来,区块链或许能在进一步推广数字学习方法方面有用武之地。
Ⅲ 区块链改变现有商业的10个案例吗
本文介绍了区块链目前的10个主要使用场景:
(1)跟踪全球供应链中的产品;
是区块链技术在安全溯源方面的典型使用场景,可以促进商品流通的信息跟踪、查询、验证和防伪,可以显著提高一些环节的效率。但是区块链的作用只能体现在链条上,却无法覆盖链条下的人操作的部分。
(2)保证3D打印质量并跟踪;
(3)创建个性化和终身的“一站式”病历;
区块链医疗保健可以跟踪任何人的完整病史,如药物、疾病、伤害以及与跨医疗系统、医生、药房和医疗计划的交易,并使患者能够控制自己的数据。区块链还可以转移保险支付:当诊所确认患者已经接受治疗,并防止欺诈或不准确的索赔时,智能合同可以自动触发保险条款。一些初创公司,如英国的Medicalchain、区块链公司Gem、麻省理工学院等企业和大学都在尝试这种使用。
(4)简化贸易物流;
传统贸易涉及复杂的进出口手续,整个链条上的所有参与者都需要大量的纸质单据进行交互,导致沟通成本很高。区块链可以优化这个系统。马士基和IBM创建了一个平台,将班轮、仓库、货运代理、港口、海关、出口商、进口商和贸易融资银行等服务整合到贸易生态系统中,并在区块链上运行的数据交换平台上相互操作。
(五)便利和保障海关贸易;
区块链已经在许多海关部门进行了测试,包括英国、韩国、新加坡、哥斯达黎加、墨西哥、秘鲁和东非15国集团。2017年,美国海关为区块链开发了14个用例,目前正在进行测试和评估。区块链对英国尤其有用:当英国离开欧盟关税同盟时,其报关单数量将从5500万增加到2.5亿以上(非欧盟贸易加上欧盟贸易,以前不需要海关文件),这是目前英国软件程序无法完全处理的。区块链可以提供帮助:它可以追踪产品的来源,并帮助确定商品的原产地和适当的关税,例如注定要加入欧盟的一揽子关税。对于英国的28个边境机构,需要分析进口产品,如食品、安全和知识产权合规性,并安全透明地实时共享区块链项目。
(6)防止投票舞弊,保护选民身份;
区块链安全和身份保护功能可以减少欺诈,并鼓励选民相信他们的投票是匿名的,
提高投票率,让选举立竿见影。利用这项技术,选民可以用智能手机扫描他们的拇指,然后在选举日的通勤途中投票。如果每个人都通过区块链投票,没有人可以投两次票。投票记录不可侵犯,每个投票点都会即时记录每张选票的ID。
(7)为农民启动农作物保险;
根据特定农民需求定制的作物保险通常非常昂贵,而区块链技术可以通过确定触发条件并自动执行来降低成本。例如,农民可以为极端天气投保。如果极端天气影响了收成,区块链的保险合同会立即确认这一点,并支付农民的索赔。
建立能源生产者和使用者网络;
几十年前,一些公司引入智能电网,为能源生产者和需求者提供中介服务。现在,区块链可以优化智能电网,并为能源生产商和消费者提供一个区域性的中介能源交易平台。TenneT和位于布鲁克林的创业公司LO3能源都在尝试这项业务。
(9)打造可以独立运营的智慧城市;
区块链现在可以放大斗游物联网对城市运行的影响。例如,迪拜有一个在城市服务中实施区块链的试点项目。迪拜计划到2020年,在超过1亿份年度政府文件中使用区块链,包括所空镇销有签证申请、账单支付和执照更新。
(10)当货物到达外国买方时自动旅如向出口商付款;
区块链通过允许交易双方访问相同的数据和实时数字文件,改变了现有国际贸易中的信息不对称问题。不需要跨不同实体的不同数据库存储同一文档的多个副本。当连接到智能合约的传感器标记的货物到达时,将自动触发买方向卖方的汇款。
2.区块链工业当前面临的十大问题及其分析
2.1.区块链上的数据真的是真的不可篡改吗?
区块链的核心特性之一“防篡改”真的能实现吗?而“防篡改”真的有益无害吗?
报告指出区块链并非完全不可改变,并给出了区块链的三个弱点:
(2)可能被黑,51%的链被想篡改结果的人控制。
(3)“垃圾中的垃圾”问题存在了几个世纪。区块链的价值取决于链上的数据,输入到区块链的数据可能是不准确或欺诈性的。一种解决方案是使用传感器代替人工输入数据。
所谓“51%攻击”,就是利用计算能力的优势,取消已经发生的支付交易。如果有人掌握了50%以上的计算能力,他就能比别人更快地找到挖掘区块所需的随机数,所以他实际上拥有决定哪个区块的绝对有效的权利。从技术层面来说,51%的攻击是可以实现的,但是对于BTC等最早的加密货币来说成本非常高,他们已经建立了一个庞大的网络,这也是为什么BTC的网络10年来一直保持稳定的原因。但对于其他假币来说,风险更大。
另外,攻击者单纯发动51%攻击没有直接收益,必须与特定的做空和虚假充值挂钩。具体来说,它常常是为了某一笔交易的双重支出。攻击者停止攻击一次。持续的攻击成本很高,一旦成功就会停止攻击;第二,社区可以发布紧急布丁,并在区块链增加检查点。社区紧急同意攻击者的区块链无效。所以,51%的进攻有很多方法可以应对,对一个区块链来说也不会是世界末日。
2.2.谁拥有和维护区块链?又是谁问的外观?
题和损失负责?
既然区块链是一个分散的用户社区,谁来维护它呢?它不应该和网站一样需要人调节和维护吗?
对于许可链,例如联盟链和私有链,不需要代币等激励措施激励人们管理,有一个管理整个网络的经理。由于网络中的用户较少,协调成本相对较低。但是这样的网络容易受到安全方面的挑战,且随着网络用户数量的增加,协调成本将会增加。
对于联盟链和私有链,由于它们还是一个非常中心化的组织,验证的节点由这个组织自己认定,因此管理模式与传统的中心化机构没有很大区别。但是对于公有链,没有统筹整个网络系统的领导者,仅靠代币的激励来协调不同的利益群体,这无疑增加了整个生态的不稳定性。目前区块链行业发展处于非常早期,除了BTC的去中心化治理发展得较为成熟以外,ETH、EOS等公链治理中,创始人开发团队则占据着非常核心的作用,是公链“规则的制定者”,整个生态虽然实现了局部去中心化,但在战略发展方向上,创始人依然发挥举足轻重的地位。因此笔者认为,区块链的去中心化只能是一个不断趋近的终极目标,从项目诞生到成熟,其去中心化程度应该不断增强,如下图所示。项目开发初期,创始人及其开发团队对整个生态起绝对的引导作用,随着项目生态的成熟、参与人数不断增多,原始的开发团队则应逐渐淡化自己的引导作用。整个网络维护需由生态上所有的开发者、用户等共同决定。而对于最后网络出现的问题,则只能由所有参与者一起承担。
图 区块链项目的中心化程度与发展阶段关系示意图
2.3. 智能合约真的智能吗?
智能合约还没有那么智能的第二个原因是它们的条目可以被作恶者操纵,比如缔约方或者向区块链过去交易账本添加交易记录的矿工。一项研究表明,ETH智能合约中有3.4%容易受到黑客攻击。
智能合约确实能优化很多中间程序,但就目前的产业实践来看,还远远称不上智能。一份合格的智能合约,应该包括一切可能发生的情况。因为智能合约的核心要义就是“即使在最阴暗的环境中,也要做出最公正的裁决”。
以太坊与比特币之间的区别在于,以太坊是图灵完备的,通过该平台可以实现种类更多、条款更复杂的合约,当然这样做的代价是,复杂的合约内容使其变得更加难以分析。通常情况下,复杂度与发生漏洞的机率是成正比的;复杂度越高,发生漏洞的机率就越大。
对于以太坊提出的理念“代码即法律”,然而代码因自身的漏洞招致黑客攻击使其还不足以形成“法律”的权威,因此和传统需要政府信任背书,律师、法庭等中介机构协调相比,目前的合约还显得过于粗糙。
2.4. 区块链上有身份盗窃吗?
社交媒体账户中有3%都是虚假的,因此能够在区块链上创造假的账户吗?区块链上的身份会被窃取吗?
区块链可以为用户创建一个数据不可篡改的个人数据库,但是如何满足用户“篡改”的需求呢?这或许就是区块链技术发展的一个悖论,对于用户的需求,我们可能需要从上链的标准以及权限管理角度进行展开。
2.5. 区块链可以互相连接吗?
一个区块链以一种方式记录实体或用户的数据,而另一个区块链以另一种方式记录相同实体或用户的相同数据。一个支离破碎的系统中,多个账簿彼此不相连,就会形成一个“营运孤岛”的世界,或者称“数据孤岛”。用户需要同时注册多个系统才能因为不同的目的和不同的人进行交易。
针对不同链的价值传递需求,跨链技术是关键,能有效衔接不同的联盟链或者私有链,促进区块链向外拓展和连接。目前主流的跨链技术有公证人机制(Notary schemes)、侧链/中继(Sidechains/relays)、哈希锁定(Hash-locking)、分布式私钥控制(Distributed private key control)等。
2.6. 区块链如何与链下数据库相连?
如果一方的数据和文档在链下,而另一方的数据和文档在链上,那么双方能否进行交互呢?在公司的数据库中,公司一半在区块链上的数据可否与另一半的数据进行交互呢?
这些挑战是众所周知的,而且正在得到解决。例如,可以在链上和链下数据库中运行相同的查询和分析。风险是从区块链上导到链下的数据不再不可窜改,研究人员认识到数据安全以及汇集、转换和优化链上和链下数据集是重大挑战。
2.7. 区块链能给洗钱提供便利吗?
洗钱是一个巨大的全球性问题,金额高达1-2万亿美元,约占全球GDP总额的2% - 5%。银行和有关部门正在进行反击,每年花费大约80亿美元来打击腐败问题。全世界的银行都需要做KYC验证。
由于区块链的匿名特性、特别是匿名币的出现,BTC被很多人诟病成为洗钱的工具。然而BTC的匿名仅仅是链上的匿名,人与链的交互,BTC与法币的交互均会留下痕迹,并不是如很多媒体宣传的那么“无法无天”。BTC每笔交易都需要对应地址的转移,而地址的交易记录均可以查询。此外,BTC与法币进行兑换这一环节是链下进行,仍逃不过监管,如果交易中任意一方的现实身份暴露,那么这笔交易里的所有参与方都难以逃脱追索。
2.8. 区块链会消耗完世界上所有的能源吗
BTC有惊人的能源需求,运营比特币一年需要爱尔兰一年的能源消耗。因为BTC的POW共识机制需要矿工挖矿来进行交易验证。有人担忧随着网络的增加以及BTC价值的上涨,能源需求将会快速增长。其实矿工自身有动机阻止这种事情发生,区块链的可扩展性受到可用性、能源成本以及矿商自身财力的限制。目前的替代方案是POS共识机制,POS机制通过持币者的持币数量选择验证者。
其实可以看到除了早期以BTC为首的一批加密货币,目前绝大多数区块链项目已经考虑到了POW的弊端,在不断创新共识机制,避免对能源的过度消耗。因此区块链还不足以对能源造成如此巨大的消耗。
2.9. 区块链会抢走我们的工作吗
对于区块链,如果人们可以彼此直接交易,那么区块链对银行、律师等中介有什么影响呢?区块链不太可能成为就业杀手,它将像任何技术一样,通过改变公司的业务和收入模式来改变工作的本质。
人工智能大火时也会不断有人问这样的问题,我们一方面享受科技给我们带来的便利,另一方面,又担心科技将我们取代。区块链最大的挑战不是技术本身,而是改变传统的利益分配模式。区块链的技术能够去掉某些中介环节,打破中心化机构对很多资源的垄断,进而改变利益格局,这也是区块链最具革命性意义的一点。
2.10. 美国在区块链行业的发展处于落后吗?
从全球来看,美国的区块链行业还处于起步阶段,德勤(Deloitte)在2018年对金融服务、医疗保健、科技行业、电信、制造业和其他行业的1053名高管进行了调查,只有14%的美国受访者认为区块链运用在他们的生产当中,相比之下,中国有49%,墨西哥有48%,英国有40%,加拿大为36%。计划也很滞后:41%的美国公司计划在区块链投资100万美元或更多,中国有85%,加拿大有74%,英国有72%,墨西哥有65%。
根据硅谷洞察发布的《区块链中美发展白皮书》来看,就ICO数量而言,北美与亚洲不相上下,从融资额来看,北美以78.5亿遥遥领先。因此,作为北美主要国家的美国,完全没有落后,相反,很多方面还处于领先地位。
《Harnessing Blockchain for American Business and Prosperity》
http://forex.hexun.com/2018-06-17/193222543.html
https://jiahao..com/s?id=1606478434369770769&wfr=spider&for=pc
天机阁简介:天机阁(LD Research)成立于2018年7月2日,是一家致力于探索科技未知,以人类发展为动力,以“BASE Research for Solving Real Problems”为宗旨的研究院。
本文源自巴比特
相关问答:区块链技术在商业领域的使用有哪些?
区块链技术在商业领域的使用有哪些?
近年来,由于虚拟数字货币炒作的火爆,作为其底层技术的区块链也开始受到广泛关注。区块链具有去中心化、去信任、集体维护、可靠存储的特征,目前己在虚拟货币领域广泛使用。
自比特币诞生以来,目前全球已陆续出现了 1600多种虚拟货币,围绕着虚拟货币的生成、存储、交易等形成了庞大的产业链生态。但整体而言,行业尚处于初创期,离真正的价值使用区域还有很大距离。区块链经济的核心在于商业逻辑和组织形态的重构,因此需要在多个行业获得使用落地的实例来表明其价值。本文将从区块链与行业需求相结合的角度,探讨区块链在各行业使用的商业模式。
首先,区块链的核心是解决了信用的问题:
信用是一切商业活动与金融的基础。美国自2011年起实行可信身份识别,而中国则通过实 名制实现可监管的信息传播。区块链的意义在于第一次从技术层面建立了去中心化的信任, 实现了完全分布式的信用体系。
其次,区块链解决了价值交换的问题:
传统网络可以实现信息的点到点传递,但无法实现价值的点到点传递。因为信息是允许复制的,而价值必须确权且具有唯—性,因此必须依赖一个中心化机构才能做到价值传递。区块链完美地解决了此问题,提供了一个实现价值点到点传递的方法,在价值传递过程中,由网络来实现记帐而不依赖某个中心化的机构。所以区块链有望成为构建新型金融的基础设施,成为未来价值互联网的基石。
区块链的使用
目前区块链的使用,主要有两种模式:
1)原生型的区块链使用:直接基于去中心化的区块链技术,实现价值传递和交易等使用,例如数字货币;
2)“区块链+”模式:将传统的场景和区块链底层协议相结合,以便提高效率,降低成本。 预计区块链在各行业的使用,将以第二种模式为主。
区块链具有五大核心属性,即:交易属性(价值属性)、存证属性、信任属性、智能属性、 溯源属性。如上核心属性与行业的需求相结合,解决行业痛点问题,成为了区块链在各行业 使用的商业模式。
区块链+银行
1、跨境支付
跨境支付是长期以来困扰银行业的痛点问题。传统跨境支付手段包括两大类:一是网上支付,包括电子账户支付和国际信用卡支付,适用于零售小金额;二是银行汇款模式,适用于大金额的交易;二者均存在到账周期长、费用高、交易透明度低等问题。尤其是近年来随着跨境电商的兴起,方便、快捷、安全、低成本的跨境支付更成为行业的迫切需求。
区块链的作用:
区块链去中介化、交易公开透明的特点,没有第三方支付机构加入,缩短了支付周期、降低 费用、增加了交易透明度。例如,2017年12月,招商银行联手永隆银行、永隆深圳分行,成功实现了三方之间使用区块链技术的跨境人民币汇款。其清算流程安全、高效、快速,大幅提升客户体验。
2、供应链金融
该领域的痛点在于融资周期长、费用高。以供应链核心企业系统为中心,第三方增信机构很难鉴定供应链上各种相关凭证的真伪,造成人工审核的时间长、融资费用高。
区块链的作用:
区块链将共识机制、存在性证明、不可篡改、可追溯等特性引入供应链金融,不需要第三方增信机构鉴定供应链上各种相关凭证的真实性,从而降低融资成本、缩短融资周期。例如,2017年4月,上市公司易见股份与IBM中国研究院联合发布了区块链供应链金融服务系统“易见区块”,该系统主推医药场景,目前己有30余家医药流通企业在“易见区块”注册成功,截至7月底交易数量己接近8000笔,投放总金额超过一亿元。
3、数字票据
数字票据行业的痛点在于长期存在“虚假票据”、“一票多卖”等问题,为银行业的票据融资业务带来了风险。
区块链的作用:
区块链的存在性证明、不可篡改的特性,有效解决了虚假数字票据的问题;同时,区块链解决了双花问题,可避免"一票多卖"。例如,深圳区块链金融服务有限公司发行票链产品,基于区块链提供票据的融资服务,解决中小微企业的票据融资需求。合作银行包括赣州银行、贵阳银行、苏州银行、石嘴山银行、廊坊银 行、乌海银行、吉林九台农商银行、尧都农商银行、深圳农村行业银行、潍坊银行、中原银行等。此外,浙商银行、京东金融、恒生电子、海航等也在验证区块链数字票据服务。
区块链+证券
1、资产证券化
资产证券化是以未来的收入作为保证,以获得现在的融资。该领域的痛点在于:参与主体多, 操作环节多,交易透明度低,信息不对称,底层资产真伪无法保证。
区块链的作用:
区块链为资产证券化引入了存在性证明、不可篡改、共识机制等属性,能够实时监控资产的真实情况,解决了交易链条各方机构对底层资产的信任问题。各类资产如股权、债券、票据、 收益凭证、仓单等均可被整合进区块链中,成为链上数字资产,提升资产流转效率,降低成本。例如,2017年5月,网络金融与佰仟租赁、华能信托等在内的合作方联合发行区块链技术支持的 资产证券化ABS项目,发行规模达4.24亿元。
区块链+保险
1、保险业务
保险行业存在着信息不对称,客户与保险机构之间缺乏信任等问题:用户难以选择适合自己的保险产品,而保险机构则面临骗保的风险。
区块链的作用:
区块链的去中心化、开放透明、可追溯的特点,为保险机构和用户间建立良好的沟通渠道;保险标的信息在区块链上统一管理,不可篡改,帮助保险机构规避骗保风险;同时,通过智能合约可提升工作效率,降低成本。例如,法国保险巨头安盛保险(AXA)正在使用以太坊公有区块链为航空旅客提供自动航班延迟赔偿。如果航班延迟超过2小时,“智能合约”保险产品将会向乘客进行自动理赔。
2、征信管理
该领域的痛点在于征信机构的数据采集渠道有限,数据缺乏共享,导致难以准确表征个人或机构的信用情况;此外,数据收集过程中也存在如何保障用户隐私的问题。
区块链的作用:
区块链具有去信任、共识、不可篡改的特征,在技术层面保证了可以在有效保护用户隐私的基础上实现有限度、可管控的信用数据共享和验证。例如,目前中国平安的区块链征信业务已上线运行,此外国内的创业公司如上海矩真、LinkEye、布比区块链等也在进行联合征信、安全存证等方面的探索。
作为一种基础性技术,区块链在众多具有分布式处理、点对点交易、快速建立信任关系等需求的行业领域具有极大的使用价值,其核心是解决了信用的问题,实现了价值的点到点传递。因此被认为是未来价值互联网的基石。
区块链商业模式的核心在于,利用区块链引入的创新属性,与传统行业使用相结合,实现商业逻辑的重构,以便创造新的使用场景,或提升效率,降低成本。
预计区块链的使用将先从对信用、效率、安全性要求很高的泛金融领域切入:金融行业更关注效率与安全,区块链与其痛点的匹配度较高,可以为其系统性解决金融服务各环节存在的信任问题、效率问题、违约风险等;区块链的“交易、存证、溯源”等属性,在金融行业更易产生价值。同时,金融行业市场空间巨大,微小的进步就能带来巨大收益。
区块链也将延伸到社会生活的各个领域:区块链解决了数字化资产的管理、交易、转移等问题,因此将在资产数字化的浪潮中发挥重要作用,如供应链管理、数据服务、资产管理、公共服务、物联网等使用正在各个领域逐步落地,“区块链+”正在成为现实。
Ⅳ 盘点丨麻省理工学院的计算机科学里程碑
奠基数字时代、登陆月球、造就个人电脑、在永不崩溃的互联网上确保电子商务的安全……许多项计算机、人工智能、机器人领域内的关键性突破背后,都有麻省理工学院的身影。正值麻省理工苏世民计算学院成立之际,我们从这所学校为上述领域所做出的无数贡献中精选了25个“高光时刻”。
研究生克劳德·香农(Claude Shannon,1940 届科学硕士、1940 届哲学博士)提出,真假逻辑的原理可以等同于电路中开关的通断。这一概念后来奠定了数字电路领域的基础,也催生了整个数字计算行业。
麻省理工学院前教授万尼瓦尔·布什(Vannevar Bush)提出了一个名为“ Memex”的数据系统,让用户可以“把自己所有的书籍、记录和通讯都存储进去”并随意检索。这个概念催生了早期的超文本系统,并在数十年后最终导致了万维网的诞生。
世界上第一台可以实时运行的数字计算机,是由杰伊·福里斯特(Jay Forrester,1945届科学硕士)领导的 MIT“旋风计划(Project Whirlwind)”开发的。该计划旨在为美国海军开发一款通用飞行模拟器,而这台计算机的成功直接导致了 1951 年麻省理工学院林肯实验室(MIT Lincoln Laboratory)的诞生。
约翰·麦卡锡(John McCarthy)教授在麻省理工学院发明了世界上第一种函数式编程语言——LISP。在此之前,由于受到程序语言的限制,程序员只能一条一条地写出每一步需要执行的指令代码,电脑程序很难同时兼顾多个进程。而函数式编程语言使他们可以更简单地描述所需要的行为,从而可以解决比以往大得多的问题。
麻省理工学院的学生山姆·浅野(Sam Asano,1961 届科学硕士)有一次被一件事情搞得很沮丧:他和一位口音很重的同事打电话,却怎么也听不懂对方在说什么。因此,他就在想有没有可能直接画画然后实时发送给对方。于是,他发明了一种可以通过电话线传输扫描材料的技术。之后,他把发明授权给了一家日本电讯公司,然后风靡全球。
当麻省理工学院的电机工程系拥有了一台 PDP-1 计算机时,包括来自马文·闵斯基(Marvin Minsky)人工智能团队的史帝芬·“史赖哥”·罗素(英语:Steven“ Slug” Russell,1960 届本科,1966 届电气工程师)在内的一群狡猾的学生,用它开发了《Spacewar!》。这款太空战斗视频 游戏 在早期的程序员中非常流行,被认为是世界上第一款多人 游戏 。
现在平均每个人都拥有 13 个密码。关于这件事,你可以感谢麻省理工学院的相容分时系统(Compatible Time-Sharing System)。普遍认为,正是这个系统在世界上第一次引入了计算机密码。 “我们要建立多个终端以供多人使用,但每个人都有自己的一套自己的私人文件。” 麻省理工学院的教授费尔南多·科巴托(Fernando “Corby” Corbató ,1956 届哲学博士)对《连线》杂志表示:“像安一把锁一样为每个用户都设置一个密码,看上去是一个非常显而易见的解决方案。”
在 iPad 问世将近 50 年前,一位麻省理工学院的博士生就已经提出了直接与计算机屏幕进行交互的设想。由伊凡·苏泽兰(Ivan Sutherland,1963 届哲学博士)开发的“ Sketchpad”允许用户使用触控笔来绘制几何形状,开创了“计算机辅助绘图”的先例。事实证明,这项功能对于建筑师、规划师乃至幼儿来说都至关重要。
麻省理工学院最早提出了分时系统。这个系统催生了 UNIX,并为从分层文件系统到缓冲区溢出安全等现代计算机科学的许多方面都奠定了基础。由科巴托教授领衔的 Multics 开创了这样一种概念:把计算机变成一种像电力一样的、随时可用的“实用设施”。
玛格丽特·汉密尔顿(Margaret Hamilton)领导的一支来自麻省理工学院的团队编写了阿波罗 11 号的导航与控制系统。这个系统帮助宇航员尼尔·阿姆斯特朗(Neil Armstrong)和巴兹·奥尔德林(Buzz Aldrin,1963 届医学博士)成功登陆月球。这个强大的软件推翻了一条将飞行计算机的优先系统切换为雷达系统的指令,并在历次载人阿波罗任务中均未发现错误。
有史以来的第一封通过计算机网络传输的电子邮件,是在两台彼此相邻的计算机之间发送的。这封电子邮件来自于当时在创业公司 BBN Technologies 工作的雷·汤姆林森(Ray Tomlinson,1965 届毕业生)。(如果你很喜欢、或者很讨厌“@”这个符号,那么这就是那个你要感激或者指责的那个人。)
麻省理工学院教授巴特勒·兰普森(Butler Lampson)在施乐的 Palo Alto 研究中心(PARC)工作时,获得了“现代 PC 之父”这个称号。他用施乐奥托(Xerox Alto)开发了第一台带有图形用户界面(GUI)、第一个位图显示器、以及第一个“所见即所得”(WYSIWYG)编辑器的台式计算机。
由麻省理工学院的教授阿迪·萨莫尔(Adi Shamir)、罗纳德·李维斯特(Ron Rivest)和伦纳德·阿德曼(Leonard Adleman)提出的 RSA 算法,让电子商务成为了可能。这个算法利用对极大整数做因数分解的巨大难度来进行数据加密。有谁知道,数学竟是你可以在假日购物季的最后时刻完成血拼的关键所在呢?
1979 年的一天,鲍勃·弗兰克斯顿(Bob Frankston,1970 届毕业生)的丹·布里克林(Dan Bricklin,1973 届毕业生)在一台MIT大型计算机上工作到了深夜,创建出了第一个电子表格 VisiCalc,并在第一年就卖出了 10 万份拷贝。 三年后,微软通过“ Multiplan”加入战局,这个程序后来变成了 Excel。
早在 Wi-Fi 出现之前,一种名叫以太网的联网技术,就可以让设备通过插上一根网线的简单方式实现上网。 以太网由麻省理工学院 MAC 项目的团队成员鲍勃·梅特卡夫(Bob Metcalfe ,1968 届毕业生)共同发明,之后他又创立了 3Com。正是以太网帮助互联网发展成了当今这个快速、便捷的平台。
本科生史蒂夫·克什(Steve Kirsch,1980 届毕业生)是第一个为光学计算机鼠标申请专利的人。他曾想制造出一种具有最少精密运动部件的“指向设备”。之后他创立了 Mouse Systems Corp。(他还申请过另一项专利,可以通过计算点击量来追踪在线广告的效果。)
AI 实验室的早期程序员理查德·斯托曼(Richard Stallman)通过他的 GNU 项目成为了黑客文化和自由软件运动的主要先驱,该项目旨在开发出可以替代 Unix OS 的免费软件,并为 Linux 和其他重要的计算机创新奠定了基础。
拉迪亚·珀尔曼(Radia Perlman,1973 届毕业生,1976 届科学硕士,1988 届哲学博士)讨厌人们称呼她为“互联网之母”,但是她开发的生成树协议对于数据能够跨越全球的计算机网络至关重要。 (她还创建了一个幼儿版的教育编程语言 Logo。)
发明了互联网之后,蒂姆·伯纳斯-李(Tim Berners-Lee)加盟了麻省理工学院。他成立了一个联盟,致力于制订建立网站、浏览器和设备的全球标准。W3C 标准的作用包括但不限于,确保网站可被访问、安全且易于“爬取”。
麻省理工学院教授芭芭拉·利斯科夫(Barbara Liskov)提出的有关实用拜占庭容错(practical Byzantine fault tolerance)的论文,帮助催生了区块链——一种应用广泛的加密系统。 她的团队提出的协议可以处理大量的交易,并使用了一些对于当今的许多区块链平台来说至关重要的概念。
目前我们还没有能为我们跑腿的机器人,但我们确实有能吸尘的机器人。这件事我们要感谢由罗德尼·布鲁克斯(Rodney Brooks)、海伦·格雷纳(Helen Greiner,1989 届本科,1990 届科学硕士)和科林·安格尔(Colin Angle,1989 届本科,1991 届科学硕士)创建的MIT初创企业 iRobot。如今,iRobot 已经售出了超过 2000 万台家用机器人,还导致了机器人保洁行业的诞生。
在 Siri 和 Alexa 还未出现之前,MIT 教授鲍里斯·卡茨(Boris Katz)就开发出了应用程序 StartMobile。这个 APP 允许用户使用自然语言来安排约会、获取信息以及执行其他任务。
在前计算机科学与人工智能实验室(CSAIL)主任阿南特·阿格瓦尔(Anant Agarwal)的带领下,麻省理工学院与哈佛大学合作开发了开源、非营利性在线学习平台,提供免费的学习课程,吸引了全球超过 2000 万名学习者参与。
由马克·雷波特(Marc Raibert,1977 届哲学博士)在担任麻省理工学院教授期间创立的波士顿动力公司(Boston Dynamics),推出了人形机器人阿特拉斯(Atlas),并用它参加了旨在开发救灾机器人的 DARPA 机器人挑战赛。 该公司的 Big Dog 和 Spot Mini 机器人能够完成爬行、奔跑、跳跃和后空翻等动作。
计算机科学与人工智能实验室(CSAIL)主任丹妮拉·鲁斯(Daniela Rus)的可吞咽折纸机器人,可以在被吞下后从胶囊中自行展开。有朝一日它将可以利用外部磁场爬过你的胃壁,清除误吞的电池,或者给伤口贴上创可贴。
Ⅳ 美国正式启动6G实验未来科技十大趋势,突破你的想象
在5G尚未成熟的情况下,美国就试图跳过5G直接部署6G,引发全球广泛关注。
特朗普批准美国6G实验后,美国联邦通信委员会正式启动了6G技术的研发。
除此以外,有30多所大学正合作研发6G相关项目,还有金融公司提供资金支持。
一旦6G技术成熟,远程全息技术、无人驾驶、智慧机器人等领域将加速发展。
科技 发展的速度超乎想象。
未来 科技 的十大趋势,将逐渐成为主流,改变我们的生活方式,甚至是思维方式。
70%城市人口与升级的智能城市
有报告预测,到2045年全世界近70%的人口会居住在城市里。
随着城市化进程加快,大量人口涌入城市,对城市的基础设施建设,如电力能源、污水处理、城际交通等提出了更高要求。
未来的智能城市将通过大数据和自动化来提高运转效率,实现可持续发展。
停滞不前的城市,可能沦为拥挤和肮脏的“垃圾场”。
大数据“黑马”,潜力无穷
目前,人类创造的数据量已超过100亿TB。
数据量虽庞大,但每年只有10%的数据被分析。
人们的消费习惯、 健康 状况,以及其他 社会 公共数据都隐藏在互联网庞大的信息海洋中。这些数据在获取信息、预测行为、精准触达等方面作用重大。
未来无论是获取数据,还是数据分析应用的能力,都会得到进一步突破。 我们走路的姿势、说话的声音等细节,都可能被收集用于商业、监管等决策。
新技术将重建信任生态
技术是一把双刃剑。
它给予我们修正、完善图片和视频的能力,却也让视频造假、图片造假等事件层出不穷。
麻省理工学院的研究人员曾经可以提取人类运动的图像和姿势,通过AI训练后,合成出全新的姿势,并生成全新的视频。
这仅仅是技术造假的冰山一角。
信任危机亟待解决, 社会 各界将致力于新技术的开发,加强智能识别及证伪能力,试图重建 科技 时代的信任生态。
脆弱的隐私与“被遗忘的权利”
我们无法真正删除我们的过去。
数字时代的隐私比以往任何时候都要脆弱。
欧盟曾在2010年发布过一个文件,核心是“被遗忘的权利”,强调人们对个人数据服务的知情权,以及删除个人数据的权利。
然而,大部分互联网服务提供商无法做到完全遵守。所谓的“注销”,也抹不去个人信息的残留。 数据安全与隐私问题,将成为新的技术热点。
合成生物技术:改写生命
当我们跨入生物 科技 新时代后,每一个生命皆是可改写的信息。
从孟德尔发现遗传规律开始,人类就开启了对植物和动物基因的 探索 。随着遗传学进一步发展,我们可以通过搭建新的DNA,改变生物的遗传特性。
未来基因改造、基因编辑等将走在生物 科技 的时代前沿,创造出能为人类所用的生物植物。
但合成生物的大众接受度、伦理问题等仍然有待考量。
物联网:突破边界
2045年,保守估计将有超过1000亿设备与互联网连接。
新一代物联网平台将突破云计算边界,加强对时间和空间的洞察,与智能城市、能源、医疗、电力等多场景融合,完成大量工作的自动化,提高生产运作效率,产生巨大的价值。
来自物联网的信息,将有助于我们进一步了解和掌控自己的生活。
物联网、大数据、人工智能三大技术的合作,会创造出一个巨大的智能网络。
区块链:从虚拟到务实
区块链并非一夜暴富的工具,而是未来数字经济的基础设施。
区块链技术将与各行各业进行创新性融合,建立点对点之间的信任和全新的管理系统,务实地解决经济、民生等问题,让各行各业因此受益。
虚拟化的区块链发展在泡沫之后,会愈发贴近实体,多样化的创新区块链应用,有望进入寻常百姓家。
量子计算:新一轮爆发
2021年,量子计算将迎来新一轮爆发。
近年来对量子计算的研究已成果初显,这个高深的概念逐渐进入大众视线。
如今量子计算机的许多技术壁垒正被逐一攻破, 未来我们有望制造出一款真正意义上的量子计算机。
量子计算会初步形成生态产业链,优质的量子计算平台和软件将大量涌现,并在更多领域得到重视。当量子计算融入AI和云计算时,面貌会焕然一新。
人类增强 科技 :突破潜力极限
人类增强 科技 将引领人类突发潜力极限。
人类增强 科技 主要分三个领域,一是将实时信息传递给感官的可穿戴设备,二是与大脑相连的外骨骼和假肢,三是通过药物增强部分能力。
老弱病残群体将受益于人类增强 科技 ,但高昂的价格可能让人望而却步。
其中的隐患在于,我们挂载着设备的身体和大脑,很可能遭到黑客攻击。
机器人:无处不在
扫地机器人、迎宾机器人、超市机器人……我们日常生活中机器人出现的频率越来越高。未来机器人和自动化系统将无处不在。
随着机器人灵敏度、机动性的提升,它们将承担日常生活中大量工作,取代一部分人力劳动。
但机器人普遍应用导致的“下岗潮”和伦理问题,也会给 社会 带来纷争和挑战。
参考资料:
《2020年 科技 趋势报告》
《2016-2045年新兴 科技 趋势报告》
《达摩院2020十大 科技 趋势》
欢迎关注华叔,有温度的故事和犀利的观点等着你。
Ⅵ 区块链的故事 - 9 - RSA 算法
RSA
迪菲与赫尔曼完美地解决了密钥分发的难题,从此,交换密钥就很简单了,爱丽丝与鲍勃完全可以可以在村头大喇叭里喊话,就能够交换出一个密钥。但加密的方式,依然是对称加密的。
DH 协议交换密钥虽然方便,但依然有一些不尽人意的麻烦处,爱丽丝还是要与鲍勃对着嚷嚷半天,二人才能生成密钥。当爱丽丝想要交换密钥的时候,若是鲍勃正在睡觉,那爱丽丝的情书,还是送不出去。
迪菲与赫尔曼在他们的论文中,为未来的加密方法指出了方向。 通过单向函数,设计出非对称加密,才是终极解决方案。 所谓非对称加密,就是一把钥匙用来合上锁,另一把钥匙用来开锁,两把钥匙不同。锁死的钥匙,不能开锁。开锁的钥匙,不能合锁。
麻省理工的三位科学家,他们是罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman),他们读了迪菲与赫尔曼的论文,深感兴趣,便开始研究。迪菲与赫尔曼未能搞定的算法,自他们三人之手,诞生了。
2002 年,这三位大师因为 RSA 的发明,获得了图灵奖。 但不要以为 RSA 就是他们的全部,这三位是真正的大师,每一位的学术生涯都是硕果累累。让我们用仰视的目光探索大师们的高度。
李维斯特还发明了 RC2, RC4, RC 5, RC 6 算法,以及著名的 MD2, MD3, MD4, MD5 算法。他还写了一本书,叫 《算法导论》,程序员们都曾经在这本书上磨损了无数的脑细胞。
萨莫尔发明了 Feige-Fiat-Shamir 认证协议,还发现了微分密码分析法。
阿德曼则更加传奇,他开创了 DNA 计算学说,用 DNA 计算机解决了 “旅行推销员” 问题。 他的学生 Cohen 发明了计算机病毒,所以他算是计算机病毒的爷爷了。他还是爱滋病免疫学大师级专家,在数学、计算机科学、分子生物学、爱滋病研究等每一个方面都作出的卓越贡献。
1976 年,这三位都在麻省理工的计算机科学实验室工作,他们构成的小组堪称完美。李维斯特和萨莫尔两位是计算机学家,他们俩不断提出新的思路来,而阿德曼是极其高明的数学家,总能给李维斯特和萨莫尔挑出毛病来。
一年过后,1977 年,李维斯特在一次聚会后,躺在沙发上醒酒,他辗转反侧,无法入睡。在半睡半醒、将吐未吐之间,突然一道闪电在脑中劈下,他找到了方法。一整夜时间,他就写出了论文来。次晨,他把论文交给阿德曼,阿德曼这次再也找不到错误来了。
在论文的名字上,这三位还着实君子谦让了一番。 李维斯特将其命名为 Adleman-Rivest-Shamir,而伟大的阿德曼则要求将自己的名字去掉,因为这是李维斯特的发明。 最终争议的结果是,阿德曼名字列在第三,于是这个算法成了 RSA。
RSA 算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开,用作加密密钥。
例如,选择两个质数,一个是 17159,另一个是 10247,则两数乘积为 175828273。 乘积 175828273 就是加密公钥,而 (17159,10247)则是解密的私钥。
公钥 175828273 人人都可获取,但若要破解密文,则需要将 175828273 分解出 17159 和 10247,这是非常困难的。
1977 年 RSA 公布的时候,数学家、科普作家马丁加德纳在 《科学美国人》 杂志上公布了一个公钥:
114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 562 842 935 706 935 245 733 897 830 597 123 563 958 705 058 989 075 147 599 290 026 879 543 541
马丁悬赏读者对这个公钥进行破解。漫长的 17 年后,1994 年 4 月 26 日,一个 600 人组成的爱好者小组才宣称找到了私钥。私钥是:
p:3 490 529 510 847 650 949 147 849 619 903 898 133 417 764 638 493 387 843 990 820 577
q:32 769 132 993 266 709 549 961 988 190 834 461 413 177 642 967 992 942 539 798 288 533
这个耗时 17 年的破解,针对的只是 129 位的公钥,今天 RSA 已经使用 2048 位的公钥,这几乎要用上全世界计算机的算力,并耗费上几十亿年才能破解。
RSA 的安全性依赖于大数分解,但其破解难度是否等同于大数分解,则一直未能得到理论上的证明,因为未曾证明过破解 RSA 就一定需要作大数分解。
RSA 依然存在弱点,由于进行的都是大数计算,使得 RSA 最快的情况也比普通的对称加密慢上多倍,无论是软件还是硬件实现。速度一直是 RSA 的缺陷。一般来说只用于少量数据加密。
RSA 还有一个弱点,这个在下文中还会提及。
在密码学上,美国的学者们忙的不亦乐乎,成果一个接一个。但老牌帝国英国在密码学上,也并不是全无建树,毕竟那是图灵的故乡,是图灵带领密码学者们在布莱切里公园战胜德国英格玛加密机的国度。
英国人也发明了 RSA,只是被埋没了。
60 年代,英国军方也在为密码分发问题感到苦恼。1969 年,密码学家詹姆斯埃利斯正在为军方工作,他接到了这个密钥分发的课题。他想到了一个主意,用单向函数实现非对称加密,但是他找不到这个函数。政府通讯总部的很多天才们,加入进来,一起寻找单向函数。但三年过去了,这些聪明的脑袋,并没有什么收获,大家都有些沮丧,这样一个单项函数,是否存在?
往往这个时候,就需要初生牛犊来救场了。科克斯就是一头勇猛的牛犊,他是位年轻的数学家,非常纯粹,立志献身缪斯女神的那种。 虽然年轻,但他有一个巨大优势,当时他对此单向函数难题一无所知,压根儿不知道老师们三年来一无所获。于是懵懵懂懂的闯进了地雷阵。
面对如此凶险的地雷阵,科克斯近乎一跃而过。只用了半个小时,就解决了这个问题,然后他下班回家了,并没有把这个太当回事,领导交代的一个工作而已,无非端茶倒水扫地解数学题,早点干完,回家路上还能买到新出炉的面包。他完全不知道自己创造了历史。科克斯是如此纯粹的数学家,后来他听闻同事们送上的赞誉,还对此感到有些不好意思。在他眼里,数学应该如哈代所说,是无用的学问,而他用数学解决了具体的问题,这是令人羞愧的。
可惜的是,科克斯的发明太早了,当时的计算机算力太弱,并不能实现非对称的加解密。所以,军方没有应用非对称加密算法。詹姆斯与科克斯把非对称加密的理论发展到完善,但是他们不能说出去,军方要求所有的工作内容都必须保密,他们甚至不能申请专利。
军方虽然对工作成果的保密要求非常严格,但对工作成果本身却不很在意。后来,英国通讯总部发现了美国人的 RSA 算法,觉得好棒棒哦。他们压根就忘记了詹姆斯与科克斯的 RSA。通讯总部赞叹之余,扒拉了一下自己的知识库,才发现自己的员工科克斯早已发明了 RSA 类似的算法。 官僚机构真是人类的好朋友,总能给人们制造各种笑料,虽然其本意是要制造威权的。
科克斯对此并不介怀,他甚至是这样说的:“埋没就埋没吧,我又不想当网红,要粉丝干嘛?那些粉丝能吃?” 原话不是这样的,但表达的意思基本如此。
迪菲在 1982 年专程去英国见詹姆斯,两人惺惺相惜,真是英雄相见恨晚。可惜詹姆斯依然不能透漏他们对 RSA 的研究,他只告诉了迪菲:“你们做的比我们要好。” 全球各国的科学家们,可以比出谁更好,但全球各国的官僚们,却很难比出谁更颟顸,他们不分高下。
区块链的故事 - 1
区块链的故事 - 2
区块链的故事 - 3
区块链的故事- 4
区块链的故事 - 5
区块链的故事 - 6
区块链的故事 - 7
区块链的故事 - 8
Ⅶ 区块链安全吗
麻省理工学院称,区块链是目前最为安全的册简迟概念技术,只是与任何技术一样,开发人员咐尺在将需求编程到产品与服务中时,都有可能出现安全问题与漏洞。因此我们在选择区块链时一定要选择有相应信任背书以及高端技术水平的链,如智慧赟州李区块链。