区块链与非对称加密
Ⅰ 区块链技术有哪些区块链核心技术介绍
当下最火热的互联网话题是什么,不用小编说也知道,那就是区块链技术,不过不少朋友只是听说过这个技术,对其并没有过多的深入理解,那么区块链技术有哪些?下面我们将为大家带来区块链核心技术介绍,以作大家参考之用。
区块链技术核心有哪些?
区块链技术可以是一个公开的分类账(任何人都可以看到),也可以是一个受许可的网络(只有那些被授权的人可以看到),它解决了供应链的挑战,因为它是一个不可改变的记录,在网络参与者之间共享并实时更新。
区块链技术----数据层:设计账本的数据结构
核心技术1、区块+链:
从技术上来讲,区块是一种记录交易的数据结构,反映了一笔交易的资金流向。系统中已经达成的交易的区块连接在一起形成了一条主链,所有参与计算的节点都记录了主链或主链的一部分。
每个区块由区块头和区块体组成,区块体只负责记录前一段时间内的所有交易信息,主要包括交易数量和交易详情;区块头则封装了当前的版本号、前一区块地址、时间戳(记录该区块产生的时间,精确到秒)、随机数(记录解密该区块相关数学题的答案的值)、当前区块的目标哈希值、Merkle数的根值等信息。从结构来看,区块链的大部分功能都由区块头实现。
核心技术2、哈希函数:
哈希函数可将任意长度的资料经由Hash算法转换为一组固定长度的代码,原理是基于一种密码学上的单向哈希函数,这种函数很容易被验证,但是却很难破解。通常业界使用y=hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
常使用的哈希算法包括MD5、SHA-1、SHA-256、SHA-384及SHA-512等。以SHA256算法为例,将任何一串数据输入到SHA256将得到一个256位的Hash值(散列值)。其特点:相同的数据输入将得到相同的结果。输入数据只要稍有变化(比如一个1变成了0)则将得到一个完全不同的结果,且结果无法事先预知。正向计算(由数据计算其对应的Hash值)十分容易。逆向计算(破解)极其困难,在当前科技条件下被视作不可能。
核心技术3、Merkle树:
Merkle树是一种哈希二叉树,使用它可以快速校验大规模数据的完整性。在区块链网络中,Merkle树被用来归纳一个区块中的所有交易信息,最终生成这个区块所有交易信息的一个统一的哈希值,区块中任何一笔交易信息的改变都会使得Merkle树改变。
核心技术4、非对称加密算法:
非对称加密算法是一种密钥的保密方法,需要两个密钥:公钥和私钥。公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密,从而获取对应的数据价值;如果用私钥对数据进行签名,那么只有用对应的公钥才能验证签名,验证信息的发出者是私钥持有者。
因为加密和解密使用败裂仿的是两个不同的密钥,所以这种算法叫做非对称加密算法,而对称加密在加密与解密的过程中使用的是同一把密钥。
区块链技术----网络层:实现记账节点的去中心化
核心技术5、P2P网络:
P2P网络(对等网络),又称点对点技术,是没有中心服务器、依靠用户群交换信息的互联网体系。与有中心服务器的中央网络系统不同,对等网络的每个用户端既是一个节点,也有服务器的功能。国内的迅雷软件采用的就是P2P技术。P2P网络其具有去中心化与健壮性等特点。
区块链技术----共识层:调配记账节点的任务负载
核心技术6、共识机制:
共识机制,就是所有记账节点之间如何达成共识,去认定一个记录的有效性,这既是认定的手段,也是防止篡改的手段。目前主要有四大类共识机制:PoW、PoS、DPoS和分布式一致性算法。
PoW(ProofofWork,工作量证明):PoW机制,也就是像比特币的挖矿机制,矿工通过把网络尚未记录的现有交易打包到一个区块,然后不断遍历尝试来寻找一个随机数,使得新区块加上随机数的哈希值满足一定的难度条件。找到满足条件的随机数,就相当于确定了区块链最新的一个区块,也相当于获得了区块链的本轮记账权。矿工把满足挖矿难度条件的区块在源伏网络中广播出去,全网其他节点在验证该区块满足挖矿难度条件,同时区块里的交易数据符合协议规范后,将各自把该区块链接到自己版本的区块链上,从而在全网形成对当前网络状态的共识。
PoS(ProofofStake,权益证明):PoS机制,要求节点提供拥有一定数量的代币证明来获取竞争区块链记账权的一种分布式共识机制。如果单纯依靠代币余额来决定记账者必然察纤使得富有者胜出,导致记账权的中心化,降低共识的公正性,因此不同的PoS机制在权益证明的基础上,采用不同方式来增加记账权的随机性来避免中心化。例如点点币(PeerCoin)PoS机制中,拥有最多链龄长的比特币获得记账权的几率就越大。NXT和Blackcoin则采用一个公式来预测下一记账的节点。拥有多的代币被选为记账节点的概率就会大。未来以太坊也会从目前的PoW机制转换到PoS机制,从目前看到的资料看,以太坊的PoS机制将采用节点下赌注来赌下一个区块,赌中者有额外以太币奖,赌不中者会被扣以太币的方式来达成下一区块的共识。
DPoS(DelegatedProof-Of-Stake,股份授权证明):DPoS很容易理解,类似于现代企业董事会制度。比特股采用的DPoS机制是由持股者投票选出一定数量的见证人,每个见证人按序有两秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。持股人可以随时通过投票更换这些见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。
分布式一致性算法:分布式一致性算法是基于传统的分布式一致性技术。其中有分为解决拜占庭将军问题的拜占庭容错算法,如PBFT(拜占庭容错算法)。另外解决非拜占庭问题的分布式一致性算法(Pasox、Raft),详细算法本文不做说明。该类算法目前是联盟链和私有链场景中常用的共识机制。
综合来看,POW适合应用于公链,如果搭建私链,因为不存在验证节点的信任问题,可以采用POS比较合适;而联盟链由于存在不可信局部节点,采用DPOS比较合适。
区块链技术----激励层:制定记账节点的"薪酬体系"
核心技术7、发行机制和激励机制:
以比特币为例。比特币最开始由系统奖励给那些创建新区块的矿工,该奖励大约每四年减半。刚开始每记录一个新区块,奖励矿工50个比特币,该奖励大约每四年减半。依次类推,到公元2140年左右,新创建区块就没有系统所给予的奖励了。届时比特币全量约为2100万个,这就是比特币的总量,所以不会无限增加下去。
另外一个激励的来源则是交易费。新创建区块没有系统的奖励时,矿工的收益会由系统奖励变为收取交易手续费。例如,你在转账时可以指定其中1%作为手续费支付给记录区块的矿工。如果某笔交易的输出值小于输入值,那么差额就是交易费,该交易费将被增加到该区块的激励中。只要既定数量的电子货币已经进入流通,那么激励机制就可以逐渐转换为完全依靠交易费,那么就不必再发行新的货币。
区块链技术----合约层:赋予账本可编程的特性
核心技术8、智能合约:
智能合约是一组情景应对型的程序化规则和逻辑,是通过部署在区块链上的去中心化、可信共享的脚本代码实现的。通常情况下,智能合约经各方签署后,以程序代码的形式附着在区块链数据上,经P2P网络传播和节点验证后记入区块链的特定区块中。智能合约封装了预定义的若干状态及转换规则、触发合约执行的情景、特定情景下的应对行动等。区块链可实时监控智能合约的状态,并通过核查外部数据源、确认满足特定触发条件后激活并执行合约。
以上就是小编为您带来的区块链技术有哪些?区块链核心技术介绍的全部内容。
Ⅱ 区块链的加密技术
数字加密技能是区块链技能使用和开展的关键。一旦加密办法被破解,区块链的数据安全性将受到挑战,区块链的可篡改性将不复存在。加密算法分为对称加密算法和非对称加密算法。区块链首要使用非对称加密算法。非对称加密算法中的公钥暗码体制依据其所依据的问题一般分为三类:大整数分化问题、离散对数问题和椭圆曲线问题。第一,引进区块链加密技能加密算法一般分为对称加密和非对称加密。非对称加密是指集成到区块链中以满意安全要求和所有权验证要求的加密技能。非对称加密通常在加密和解密进程中使用两个非对称暗码,称为公钥和私钥。非对称密钥对有两个特点:一是其间一个密钥(公钥或私钥)加密信息后,只能解密另一个对应的密钥。第二,公钥可以向别人揭露,而私钥是保密的,别人无法通过公钥计算出相应的私钥。非对称加密一般分为三种首要类型:大整数分化问题、离散对数问题和椭圆曲线问题。大整数分化的问题类是指用两个大素数的乘积作为加密数。由于素数的出现是没有规律的,所以只能通过不断的试算来寻找解决办法。离散对数问题类是指基于离散对数的困难性和强单向哈希函数的一种非对称分布式加密算法。椭圆曲线是指使用平面椭圆曲线来计算一组非对称的特殊值,比特币就采用了这种加密算法。非对称加密技能在区块链的使用场景首要包含信息加密、数字签名和登录认证。(1)在信息加密场景中,发送方(记为A)用接收方(记为B)的公钥对信息进行加密后发送给
B,B用自己的私钥对信息进行解密。比特币交易的加密就属于这种场景。(2)在数字签名场景中,发送方A用自己的私钥对信息进行加密并发送给B,B用A的公钥对信息进行解密,然后确保信息是由A发送的。(3)登录认证场景下,客户端用私钥加密登录信息并发送给服务器,服务器再用客户端的公钥解密认证登录信息。请注意上述三种加密计划之间的差异:信息加密是公钥加密和私钥解密,确保信息的安全性;数字签名是私钥加密,公钥解密,确保了数字签名的归属。认证私钥加密,公钥解密。以比特币体系为例,其非对称加密机制如图1所示:比特币体系一般通过调用操作体系底层的随机数生成器生成一个256位的随机数作为私钥。比特币的私钥总量大,遍历所有私钥空间获取比特币的私钥极其困难,所以暗码学是安全的。为便于辨认,256位二进制比特币私钥将通过SHA256哈希算法和Base58进行转化,构成50个字符长的私钥,便于用户辨认和书写。比特币的公钥是私钥通过Secp256k1椭圆曲线算法生成的65字节随机数。公钥可用于生成比特币交易中使用的地址。生成进程是公钥先通过SHA256和RIPEMD160哈希处理,生成20字节的摘要成果(即Hash160的成果),再通过SHA256哈希算法和Base58转化,构成33个字符的比特币地址。公钥生成进程是不可逆的,即私钥不能从公钥推导出来。比特币的公钥和私钥通常存储在比特币钱包文件中,其间私钥最为重要。丢掉私钥意味着丢掉相应地址的所有比特币财物。在现有的比特币和区块链体系中,现已依据实践使用需求衍生出多私钥加密技能,以满意多重签名等愈加灵敏杂乱的场景。
Ⅲ 区块链的技术原理是什么
区块链技术涉及的关键点包括:去中心化(Decentralized)、去信任(Trustless)、集体维护(Collectivelymaintain)、可靠数据库(ReliableDatabase)、时间戳(Timestamp)、非对称加密(AsymmetricCryptography)等。
区块链技术重新定义了网络中信用的生成方式:在系统中,参与者无需了解其他人的背景资料,也不需要借助第三方机构的担保或保证,区块链技术保障了系统对价值转移的活动进行记录、传输、存储,其最后的结果一定是可信的。
(3)区块链与非对称加密扩展阅读
区块链技术原理的来源可归纳为一个数学问题:拜占庭将军问题。拜占庭将军问题延伸到互联网生活中来,其内涵可概括为:在互联网大背景下,当需要与不熟悉的对手方进行价值交换活动时,人们如何才能防止不会被其中的恶意破坏者欺骗、迷惑从而做出错误的决策。
进一步将拜占庭将军问题延伸到技术领域中来,其内涵可概括为:在缺少可信任的中央节点和可信任的通道的情况下,分布在网络中的各个节点应如何达成共识。区块链技术解决了闻名已久的拜占庭将军问题——它提供了一种无需信任单个节点、还能创建共识网络的方法。
Ⅳ 区块链技术有哪些
块链的概念可以说是非常受欢迎的.在网络金融峰会上,没有人说块链技术就out了.块链技术是什么?
块链技术既可以是公开的分类(任何人都可以看到),也可以是许可的网络(只有许可的人可以看到),解决了供应链的挑战.因为是不可改变的记录,所以在网络参加者之间分享并实时更新.
块链技术-数据层:设计帐簿的数据结构
核心技术1、块__;链:
技术上,块是记录交易的数据结构,反映了交易的资金流动.系统中已经扰裂手达成的交易块连接形成主链,所有参与计算的节点都记录了主链或主链的一部分.
各块由块头和块体构成,块体只负责记录前一段时间内的所有交易信息,主要包括交易数量和交易细节,块头包括现在的版本号、前一个块地址、时间戳(记录该块产生的时间,准确到秒)、随机数(记录解密该块相关数学问题的答案值)、现在块的目标哈希值、Merkle数源磨的根值等信息.从结构上看,块链的大部分功能都由块头实现.
核心技术2、哈希函数:
.
哈希函数可以将任意长度的资料从Hash算法转换为固定长度的代码,原理是基于密码学的单向哈希函数,这个函数容易被验证,但是很难解读.业界通常以y=hash(x)的方式表示,这个哈希函数实现了运算x的哈希值y.
常用的哈希算法有MD5、SHA-1、SHA-256、SHA-384、SHA-512等.以SHA256算法为例,将任何数据输入SHA256,将获得256位Hash值(散列值).其特点:同样的数据输入会得到同样的结果.输入数据有点变化(例如,1变为0)会得到完全不同的结果,结果测.正向计算(数据计算对应的Hash值)非常简单.逆向计算极其困难,在现在的科学技术条件下被视为不可能.
核心技术3、Merkle树:
Merkle树是哈希二叉树,可以快速验证大规模数据的完整性.在块链网络中,Merkle_皇髂居糜谧芙峥橹械乃薪灰仔畔_钪丈煽橹兴薪灰仔畔⒌耐骋还V担橹腥魏谓灰仔畔⒌谋浠蓟岣谋_erkle 树木.
核心技术4、非对称加密算法:
非对称加密算法是钥匙的保密方法,需要钥匙和钥匙.公钥和私钥是一对,如果用公钥加密数据,只能用对应的私钥解密,获得对应的数据价值,如果用私钥签字数据,只能用对应的公钥验证签字,验证信息的发出者是私钥的所有者.
由于加密和解密使用两种不同的密钥,该算法称为非对称加密算法,而对称加密在加密和解密过程中使用相同的密钥.
块链缓嫌技术-网络层:实现收费节点的集中化
核心技术5,P2P网络:
P2P网络(对等网络)也称为点对点技术,是没有中心服务器、用户群交换信息的互联网系统.与有中心服务器的中央网络系统不同,对等网络的每个用户端都是节点,也有服务器的功能.国内迅雷软件采用P2P技术.P2P网络具有集中化和强化等特点.
块链技术-共识层:调配收费节点的任务负荷