ltc2921引脚功能
Ⅰ 充电电路原理图解释
上图为充电器原理图,下面介绍工作原理。
1.恒流、限压、充电电路。该部分由02、R6、R8、ZD2、R9、R10和R13等元件组成。当接通市电叫,开关变压器T1次级感应出交流电压。经D4、C4整流滤波后提供约12.5V直流电压。一路通过R6、R1l、R14、LED3(FuL饱和指示灯)和R15形成回路,LED3点亮,表示待充状态:另一路电压通过R8限流,ZD2(5V1)稳压,再由并联的R9、R10和R13分压为Q2b极提供偏置,使Q2处于导通预充状态。恒流源机构由Q2与其基极分压电阻和ZD2等元件组成。当装入被充电池时12.5V电压即通过R6限流,经Q2的c—e极对电池恒流充电。这时由于Ul(Ul为软封装IC型号不详)与R6并联。R6两端的电压降使其①脚电位高于③脚,②脚就输出每秒约两个负脉冲。
使LED2(CH充电指示灯)频频闪烁点亮,表示正在正常充电。随着被充电池端电压的逐渐升高,即Q2 e极电位升高,升至设定的限压值(4.25V)时,由于Q2的b极电位不变,使Q2转入截止,充电结束。这时Q2c极悬空,Ul的③脚呈高电位,U1的②脚输出高电平,LED2熄灭。这时电流就通过R6、R11、R14限流对电池涓流充电,并点亮LED3。LED3作待充、饱和、涓流充电三重指示。
2.极性识别电路。此部分由R12和LEDl(TEST红色极性指示灯)构成。保护电路由Q3和R7等元件构成。假设被充电池极性接反了。
LED1就正偏点亮,警告应切换开关K,才能正常充电。如果电池一旦接反,Q3的I)极经R7获得正偏置,Q3导通,Q2的b极电位被下拉短路而截止,阻断了电流输出(否则电池就会被反充而报废),从而保护了电池和充电器两者的安全。
Ⅱ LTC4359引脚图
网页链接
在上边 ,有没有金币啊 ?
Ⅲ 开关电源有谁用过LTC3810,VFB引脚处可以调节输出电压吗
帮你提问了:开关电源有谁用过LTC3810,VFB引脚处可以调节输出电压吗?
http://bbs.big-bit.com/showtopic-175981.aspx
如果帮上了你的忙,还望采纳答案!
Ⅳ 求一个详细了解LTC6804IG-2多节电池的细说
ltc6804是凌特公司的第三代多节电池的电池组监视器,可测量多达 12 个串接电池的电压并具有低于 1.2mv 的总测量误差。0v 至 5v 的电池测量范围使 ltc6804 成为大多数电池化学组成的合适之选。所有 12 节电池可在 290μs 之内完成测量,并可选择较低的数据采集速率以实现高噪声抑制。
特点是:可测量多达 12 个串联电池的电压[1] 可堆叠式架构能支持几百个电池 内置 isospitm 接口: 1mb 隔离式串行通信 采用单根双绞线,长达 100 米 低 emi 敏感度和辐射 针对符合 iso26262 标准的系统而进行设计 采用可编程定时器的被动电池电荷平衡 5 个通用的数字 i/o 或模拟输入: 温度或其他传感器输入 可配置为一个 i2c 或 spi 主控器 1.2mv 最大总测量误差 可在 290μs 之内完成系统中所有测量 同步的电压和电流测量 具频率可编程三阶噪声滤波器的 16 位增量累加 (ΔΣ) 型 adc 4μa 睡眠模式电源电流 48 引脚 ssop 封装 其他特点包括每节电池电荷的被动电荷平衡、一个内置的 5v 稳压器和 5 根通用的 i/o 线。在睡眠模式中,电流消耗减小至 4μa.ltc6804 可直接由电池或一个隔离式电源供电。
Ⅳ 谁知道LTC1865芯片的引脚图和各个引脚的作用,在线等,很急!急!急!急!!!!!!
自己去网络吧,相关资料很多。
Ⅵ LTC6803测电池电压均衡的片子,您有电路图吗
应用电路二
通用的VTEMP ADC输入可用于对任何0V至4V信号进行数字转换,其准确度与第1节电池的ADC输入紧密对应。提供的一个有用信号是高准确度电压基准,例如:来自LTC6655-3.3的3.300V。利用该信号的周期性读数,主机软件能校正LTC6803读数,以把准确度提升至超过内部LTC6803基准的水平和/或验证ADC操作。图20示出了一种在LTC6803-1的GPI01输出的控制下,优先选择利用电池组对一个LTC6655-3.3进行供电的方法。如果由VREG供电,那么基准IC的操作功耗将给LTC6803增加明显的热负载,因此采用一个外部高电压NPN传输晶体管从电池组形成一个局部4.4V电源(Vbe低于VREG)。GPI01信号负责控制一个PMOS FET开关,以在即将执行校准时启动基准。由于GPIO信号在停机模式中默认至逻辑高电平,因此在空闲周期中基准将自动关断。
ltc6803中文资料(ltc6803引脚及功能_特性参数及典型应用电路图)
另一个有用的信号是电池组的总电压值。这可在正常采集过程中出现操作故障时提供一种冗余的可用电池测量,或作为一种更加快捷的监视整个电池组电压的方法。图21示出了怎样采用一个阻性分压器来获得完整电池组电压的比例表示。当IC进入待机模式时(即:当WDTB变至低电平时),采用一个MOSFET使电池组上的阻性负载断接。图中示出了一个LT6004微功率运算放大器部分,用于缓冲分压器信号以保持准确度。该电路的优点是:其转换频度大约可以比整个电池阵列的快4倍,因而提供了一个较高的采样速率选项(代价则是精度/准确度略有下降),从而为校准与电池平衡数据保留了高分辨率电池读数。
Ⅶ Altium Designer 的LTC系列芯片元器件库(ltc3789)谁有啊,急需,769410874
LTC3789 是一款高性能、降压-升压型开关稳压控制器,可以在输入电压高于、低于或等于输出电压的情况下运作。该器件运用了恒定频率、电流模式架构,故可提供一个高达 600kHz 的可锁相频率,而一个输出电流反馈环路则提供了对电池充电的支持。凭借 4V 至 38V (最大值为 40V) 的宽输入和输出范围以及工作区之间的无缝和低噪声转换,LTC3789 成为了汽车、电信和电池供电型系统的理想选择。
该控制器的操作模式通过 MODE / PLLIN 引脚来决定。MODE / PLLIN 引脚能够在脉冲跳跃模式和强制连续模式操作之间进行选择,并允许将 IC 同步至一个外部时钟。脉冲跳跃模式在轻负载条件下可实现最低的纹波,而强制连续模式则工作于一个恒定的频率以满足噪声敏感型应用的需要。
当输出位于其设计设定点的 10% 以内时,一个电源良好输出引脚将发生指示信号。LTC3789 采用扁平的 28 引脚 4mm x 5mm QFN 封装和窄体 SSOP 封装。
LTC3789供应商:拍明芯城
应用
汽车系统
分布式 DC 电源系统
高功率电池供电式设备
工业控制
优势和特点
单电感器架构允许 VIN 高于、低于或等于稳定的 VOUT
可编程输入或输出电流
宽 VIN 范围:4V 至 38V
1% 输出电压准确度:0.8V < VOUT < 38V
同步整流:效率高达 98%
电流模式控制
可锁相固定频率:200kHz 至 600kHz
启动期间无反向电流
电源良好输出电压监视器
内部 5.5V LDO
四路 N 沟道 MOSFET 同步驱动
停机期间 VOUT 与 VIN 断接
真正软起动和 VOUT 短路保护 (即使在升压模式)
采用 28 引脚 QFN (4mm x 5mm) 和 28 引脚 SSOP 封装
Ⅷ 高频开关电源新技术应用的图书目录
前言
第一章 大型应急照明电源EPS、直流不间断电源电力柜替代传统交流UPS或柴油发电机
第一节 突然断电的不可预知性与严重危害
第二节 我国将面临长期缺电、能源紧张的严峻形势
第三节 用柴油发电机做应急电源将带来5个公害隐患
第四节 EPS应急电源简介
第五节 传统交流UPS的几大缺陷
第六节 LIPS的改革方案和工作原理
第二章 30000W应急照明电力柜直流输出DC220V高频开关电源联合
多个蓄电池组设计方案
第一节 简化的EPS电力柜设计框图及说明
第二节 铅酸蓄电池组的充电、正常运行、断电、复电过程
第三节 蓄电池的基本充放电特性
第四节 密封免维护蓄电池的外特性
第三章 韩国友联UNION优质大型蓄电池:阀控式密封铅酸
蓄电池MX00000系列和胶体蓄电池。IMX00000系列
第一节 引言
第二节 MX00000系列阀控式密封铅酸蓄电池详解
第三节 三种蓄电池系列规格
第四节 UNION阀控式密封铅酸蓄电池特性曲线
第五节 充电方法注意事项
第六节 友联胶体蓄电池JMX00000系列产品介绍
第四章 10000W高档开关电源剖析(直流输出DC 48V、200A)
第一节 10000W电源整机性能概述
第二节 10000W高档电源的三相输入端多级共模滤波器电路实体剖析
第三节 10000W朗讯UJCENT电源PFC控制板芯片
第四节 10000W全桥变换器主电路实体调查
第五节 10000W电源PFC控制板主芯片功能概况
第六节 全桥变换控制器UC3875设计特性、内部功能、电气参数、芯片各引脚安排
第五章 7000W高档开关电源剖析(直流输出350V、19A)
第一节 电源整机性能与结构概况
第二节 7000W电源数字信号监控板多只芯片的型号和引脚
第三节 7000w电源PFC功率因数校正板8只IC
第四节 7000W电源全桥变换器控制板布局与芯片规格
第五节 实测全桥变换器驱动脉冲波形
第六节 UCC3895功能框图、设计特点和电气参数
第七节 UCC3895全桥变换器移相控制芯片典型应用电路
第八节 新颖的ZCZVS PWM Boost全桥变换器
第六章 精确测量打印出电源电网输入电流波形,真实反映功率因数
校正结果的三合一简捷方法
第一节 数字功率计PF9811智能电量测量仪简介
第二节 测量打印350V/10A电源在4种负载时的电流波形、频谱特性和谐波
第三节 测量打印48V/70A电源4种不同负载时的输入电流波形、频谱特性和谐波
第七章 输出大功率的连续导通型PFC控制器UCC28019
第一节 功能设计、引脚安排、内电路框图
第二节 UCCC28019各单元电路工作原理
第三节 单元电路补充设计
第四节 设计PCB注意和应用电路、IC电气特性参数表
第五节 设计与计算过程步骤
第六节 环路补偿之一:电流环传递函数
第七节 电压环传递函数计算
第八节 布朗输出保护
第八章 最新大功率电源两相交互式PFC控制器UCC28070明显降低EMI和纹波电流
第一节 创新设计特点、简化外电路、内电路框图和各脚功能
第二节 UCC28070的工作原理
第三节 UCC28070的多相工作
第四节 IC可调节 峰值电流限制
第五节 IC增强的瞬态响应
第六节 IC先进的设计技术
第七节 采用UCC28070设计的1000W样板电路
第八节 UCC28070实用设计程序
第九章 对称式ZVS全桥变换器兼同步整流控制器ISL752
第一节 主要特性、内电路方框图与各引脚说明
第二节 各单元电路设计
第三节 由ISL6752组成的高压输入、原边控制的全桥电路
第四节 ZVS的全桥工作模式原理分析
第五节 同步整流的控制
第十章 同步整流控制器NCP4302大幅提高反激式开关电源效率
第一节 IC设计特点、引脚功能、内电路及应用
第二节 IC各单元电路工作原理
第十一章 LLC谐振半桥变换控制器NCPl396可高压直接驱动MOSFEI
第一节 IC设计特性、引脚安排、内电路方框图
第二节 IC新技术详解
第三节 压控振荡器与最大、最小开关频率调节
第四节 布朗输出保护
第五节 快速、慢速故障保护电路
第六节 起动中的状态及性能
第七节 高电压驱动
第十二章 双路交互式有源钳位PWM控制器LM5034用于正激开关电源
第一节 双路交互式控制的概念,IC各引脚内容
第二节 LM5034的工作原理
第三节 PWM控制器
第四节 输出驱动信号
第五节 软起动及交互式控制
第六节 两种不同输出电压电路结构概况
第七节 其他单元电路简介
第八节 PCB布局和实际应用电路
第十三章 全桥变换器移相控制软开关电源一个完整工作周期的12个过程分析(正、负半周不对称)
第一节 论文产生的背景说明
第二节 软开关移相控制全桥变换器的工作原理波形图,有独特详细
展宽的原边与副边电流、电压波形相位关系图
第三节 一个完整开关周期中正半周的6个工作过程详细分析
第四节 一个完整开关周期中负半周的6个工作过程详细分析
第五节 试制移相控制全桥变换器软开关稳压电源的体会
第十四章 两种3500W高档开关电源实体解剖、全面测量:直流输出48V/70A和350V/10A
第一节 实体解剖两种3500w高档开关电源:印制板铜箔、焊点走线图
第二节 用PF9811智能电量测量仪、配合联想电脑实测打印出多台3500W电源各项数据
第三节 测量记录两种3500W电源单机在多种负载时的数据
第四节 奇特的高密度、高功率因数控制板,8只IC、上百个贴片元件组合使PF≥0.9995
第五节 两种3500W电源不同的全桥变换器控制板贴片元器件拆解及等效电路初拟
第十五章 实体解剖两种6000W高档开关电源(直流输出48V/112A和350V/17A)
第一节 两种6000W电源的改进概况,拆解350V/17A电源主板绘图、全桥控制板新图
第二节 基本相同的:PFC控制板电路设计,在6000W电源改进了贴片元件的双夹层,铜箔走线设计有较大变化
第三节 两种6000W电源6只M()SFET紧固螺孔专用功率开关管转接电路印制板图
第四节 350V/17A电源主板上新增加CP[J数字信号处理监控板
第五节 开关电源全桥变换器控制电路框图,±15V稳压电源、PFC控制板
第六节 自制成功多块分立元器件PFC控制板:完成单面接线试验,实现低成本、高性能、国产化的技术价值(调正掌握关键
电路参数,与贴片阻容值有差异)
第七节 350V电源的副边整流有源钳位电路
第八节 6000W电源用SOT一227封装四螺孔连线M()SFET:FA57SA50LC
第九节 三相电网输入整流桥模块:VVY40(两端受控)
第十六章 新一代有源钳位PWM控制器UCC2891用于正激开关电源
第一节 设计特点、简化电路、内部功能方框
第二节 IC各引脚内容安排
第三节 有源钳位的工作原理
第四节 单元电路简介
第十七章 优秀的准谐振反激变换控制器NCPl337
第十八章 智能同步整流控制IC-IR1166/7A-B适用于多种变换器
第十九章 具有软式周期跳跃及频率抖动的PWM控制器——NCP1271
第二十章 准谐振单端变换器NCP1207及NCP1200系列芯片
第二十一章 铁硅铝磁粉心(Fe-Si-Al)应用在功率因数校正电路上的突出优点
第二十二章 香港公司MAGNETICS磁性材料钼坡莫合金、高磁通粉心、铁硅铝等介绍
第二十三章 平面磁集成技术的高功率密度在开关电源中的应用特点
第二十四章 单级功率因数校正控制器NCP1651
第二十五章 LTC3722同步双模式移相全桥控制器:提供自适应ZVS延迟导通,显著减少占空比丢失
第二十六章 TNY-Ⅲ新一代集成开关电源芯片用于中、小功率反激开关电源
第二十七章 实验制作20W、40W反激式开关电源,主变压器绕制工艺,实测多组高压脉冲波形
第二十八章 制作两种1000W全桥软开关电源的试验数据、实测波形、主变压器绕制方法
第二十九章 实验制作2000W全桥软开电源:重视监测原边电流波形,来选择输出电感器参数
第三十章 LTC3900同步整流控制器用于正激开关电源输出低压大电流
第三十一章 设计制作双管正激变换器高可靠200-300W开关电源实验
第三十二章 设计制作半桥变换器500W开关电源实验
第三十三章 CM6805、CM6903/4复合PFC/PWM特性;具有“ICST”输入电流整形技术的前沿调制PFC控制电路
第三十四章 用CM6800/01/02制作300-800W高功率因数开关
Ⅸ 哪位大神告诉我LTC1864 SOP封装 它实物的引脚的第一脚是哪个
左下第一个,所有的芯片都是这个规则。