ltc4373输入电压
① 请问有谁用过LTC1966么 手册上讲的最小RMS输入电压是5mV 这个是什么意思呀多谢各位大神啦
最小RMS输入电压是5mV是指输入电压的均方根值(先平方、再平均、然后开方,等同于有效值)最小为5mV 。
② 开关电源有谁用过LTC3810,VFB引脚处可以调节输出电压吗
帮你提问了:开关电源有谁用过LTC3810,VFB引脚处可以调节输出电压吗?
http://bbs.big-bit.com/showtopic-175981.aspx
如果帮上了你的忙,还望采纳答案!
③ 3片LTC6804-1级联读不到电压紧急求助
要是你确定硬件没有问题,那你就把你发给三块芯片的配置寄存器发一样的(按照第一块芯片的发送),还有就是看看在进行ISOSPI的延时有没有问题,参考一下手册上面的延时时间。第一块能读取数据就说明SPI的时序是对的,我认为可能的问题就是在唤醒的延时上面还有就是在配置寄存器的赋值,你可以测量先通过发送寄存器再读取寄存器的值来检测通信是否正常。
④ LTC6803测电池电压均衡的片子,您有电路图吗
应用电路二
通用的VTEMP ADC输入可用于对任何0V至4V信号进行数字转换,其准确度与第1节电池的ADC输入紧密对应。提供的一个有用信号是高准确度电压基准,例如:来自LTC6655-3.3的3.300V。利用该信号的周期性读数,主机软件能校正LTC6803读数,以把准确度提升至超过内部LTC6803基准的水平和/或验证ADC操作。图20示出了一种在LTC6803-1的GPI01输出的控制下,优先选择利用电池组对一个LTC6655-3.3进行供电的方法。如果由VREG供电,那么基准IC的操作功耗将给LTC6803增加明显的热负载,因此采用一个外部高电压NPN传输晶体管从电池组形成一个局部4.4V电源(Vbe低于VREG)。GPI01信号负责控制一个PMOS FET开关,以在即将执行校准时启动基准。由于GPIO信号在停机模式中默认至逻辑高电平,因此在空闲周期中基准将自动关断。
ltc6803中文资料(ltc6803引脚及功能_特性参数及典型应用电路图)
另一个有用的信号是电池组的总电压值。这可在正常采集过程中出现操作故障时提供一种冗余的可用电池测量,或作为一种更加快捷的监视整个电池组电压的方法。图21示出了怎样采用一个阻性分压器来获得完整电池组电压的比例表示。当IC进入待机模式时(即:当WDTB变至低电平时),采用一个MOSFET使电池组上的阻性负载断接。图中示出了一个LT6004微功率运算放大器部分,用于缓冲分压器信号以保持准确度。该电路的优点是:其转换频度大约可以比整个电池阵列的快4倍,因而提供了一个较高的采样速率选项(代价则是精度/准确度略有下降),从而为校准与电池平衡数据保留了高分辨率电池读数。
⑤ LTC3872的升压电路
参考一下这个电路。5V升压12F,如图
⑥ 电动汽车对充电机有哪些技术要求,为什么
1
、充电快速化
相比发展前景良好的镍氢和锂离子动力蓄电池而言,传统铅酸类蓄电池以其技术成熟、
成本低、电池容量大、跟随负荷输出特性好和无记忆效应等优点,但同样存在着比能量低、
一次充电续驶里程短的问题。因此,在目前动力电池不能直接提供更多续驶里程的情况下,
如果能够实现电池充电快速化,从某种意义上也就解决了电动汽车续驶里程短这个致命弱
点。
2
、充电通用化
在多种类型蓄电池、多种电压等级共存的市场背景下,用于公共场所的充电装置必须
具有适应多种类型蓄电池系统和适应各种电压等级的能力,即充电系统需要具有充电广泛
性,具备多种类型蓄电池的充电控制算法,可与各类电动汽车上的不同蓄电池系统实现充
电特性匹配,能够针对不同的电池进行充电。因此,在电动汽车商业化的早期,就应该制
定相关政策措施,规范公共场所用充电装置与电动汽车的充电接口、充电规范和接口协议
等。
3
、充电智能化
制约电动汽车发展及普及的最关键问题之一,是储能电池的性能和应用水平。优化电
池智能化充电方法的目标是要实现无损电池的充电,监控电池的放电状态,避免过放电现
象,从而达到延长电池的使用寿命和节能的目的。充电智能化的应用技术发展主要体现在
以下方面:
●优化的、智能充电技术和充电机、充电站
;
●电池电量的计算、指导和智能化管理
;
●电池故障的自动诊断和维护技术等。
4
、电能转换高效化
电动汽车的能耗指标与其运行能源费紧密相关。降低电动汽车的运行能耗,提高其经
济性,是推动电动汽车产业化的关键因素之一。对于充电站,从电能转换效率和建造成本
上考虑,应优先选择具有电能转换效率高,建造成本低等诸多优点的充电装置。
5
、充电集成化
本着子系统小型化和多功能化的要求,以及电池可靠性和稳定性要求的提高,充电系
统将和电动汽车能量管理系统集成为一个整体,集成传输晶体管、电流检测和反向放电保
护等功能,无需外部组件即可实现体积更小、集成化更高的充电解决方案,从而为电动汽
车其余部件节约出布置空间,大大降低系统成本,并可优化充电效果,延长电池寿命
电池充电
解决方案
事实上,所有
3G
手机都采用锂离子电池作为主电源。由于散热及空间的限制,设计师必须
仔细考虑选用何种类型的电池充电器,以及还需要哪些特性来确保对电池进行安全及精确
的充电。
线性锂离子电池充电器的一个明显趋势是封装尺寸继续减小。但值得关注的是在充电周期
(
尤其在高电流阶段
)
冷却
IC
所需的板空间或通风条件。充电器的功耗会使
IC
的接合部温
度上升。加上环境温度,它会达到足够高的水平,使
IC
过热并降低电路可靠性。此外,如
果过热,许多充电器会停止充电周期,只有当接合部温度下降后才恢复工作。如果这种高
温持续存在,那么
充电器“停止和开始”的反复循环也将继续发生,从而延长充电时间。
为减少这些风险,用户只能选择减小充电电流来延长充电时间或增大板面积来散热。因此,
由于增加了
PCB
散热面积及热保护材料,整个系统成本也将上升。
对此问题有两种解决方案。首先,需要一种智能的线性锂离子电池充电器,它不必为担心
散热而牺牲
PCB
面积,并采用一种小型的热增强封装,允许它监视自己的接合部温度以防
止过热。如果达到预设的温度阈值,充电器能自动减少充电电流以限制功耗,从而使芯片
温度保持在安全水平。第二种解决方案是使用一种即使充电电流很高时也几乎不发热的充
电器。这要求使用脉冲充电器,它是一种完全不同于线性充电器的技术。脉冲充电器依靠
经过良好调节且电流受限的墙上适配器来充电。
方案一
:
LTC4059A
线性电池充电器
LTC4059A
是一款用于单节锂离子电池的线性充电器,它无需使用三个分立功率器件,可快
速充电而不用担心系统过热。监视器负责报告充电电流值,并指示充电器是何时与输入电
源连接的。它采用尽可能小的封装但没有牺牲散热性能。整个方案仅需两个分立器件
(
输入
电容器和一个充电电流编程电阻
)
,占位面积为
2.5mm
×
2.7mm
。
LTC4059A
采用
2mm
×
2mm
DFN
封装,占位面积只有
SOT-23
封装的一半,并能提供大约
60
℃
/W
的低热阻,以提高散
热效率。通过适当的
PCB
布局及散热设计,
LTC4059A
可以在输入电压为
5V
的情况下以最
高
900mA
的电流对单节锂离子电池安全充电。此外,设计时无需考虑最坏情况下的功耗,
因为
LTC4059A
采用了专利的热管理技术,可以在高功率条件
(
如环境温度过高
)
下自动减小
充电电流。
方案二
:带过流保护功能的
LTC4052
脉冲充电器
⑦ 电子信息:模块中用了LTC3108芯片,还需要滤波或者稳压么
LTC3108 LTC3109芯片输入电压是直流,输出也是
⑧ LTC3780升压电路的设计,没有输出电压,求助~
看图,你的mosfet选的是错的,应该是N沟道的,你这个是P沟道的。
另外,你的R40不需要,现在分压是1.8V左右,大于1.5V但是很危险。
⑨ 凌力尔特的LTC2943电池电量电压测试芯片有用过的吗
用电压表测量,直接测充电器两与电池的两端,不能显示电池的电压,而是充电器的电压。必须拿下电池,测电池的两端,才能显示电池的电压。但是充电过程中,最好不要反复拿下电池,中断充电。所以没有好的解决办法。
⑩ LTC1044负电压转换器什么原理,什么用
简易的频率到电压转换器
简易的频率到电压转换器 简易的频率电压转换器,在0到3.4kHz范围内提供1mV/Hz信号输出 如图是一个简易的频率到电压转换器,它使用了开关电容式电压转换器。该电路的输 出电压符合下面的等式,此处K=2.44(对于LTC1044),f为输入频率。 Vout=K×f×R1×C1 当电源电压为+5V时,Vout的最大值接近3.4V。在使用该电路时,应重视电源的稳压和滤 波。按图所示电路的参数值,在0到3.4kHz的范围内输出信号以1mV/Hz变化。你可以通过 选择C2的值来达到较理想的响应时间和脉动。在LTC1044的7脚输入的最大频率约为100k Hz。你也可以用7660等元件替换IC1,但温度稳定性不好,且一定程度上有不同的K值。