Eth挂科
1. 在瑞士留学是怎样的感受
瑞士作为中欧地区的发达国家,是全球最富裕、社会最安定、经济最发达和拥有最高生活水准的国家之一,全球创新指数位列第一。那么,在这样一个相对冷门的国家留学会有怎样的体验呢?
学习虽苦,生活却十分惬意
在国内本科时,我是同学口中的“大神”,学习几乎没压力,专业课大部分90+,100也拿过几个。但到了ETH(苏黎世联邦理工学院)之后,第一个月的课程就教会了我做人。
ETH 会用严格的考核、家常便饭般的低分告诉你:努力照样会失败。
为了完成其中一门课程作业,我几乎连续一个月没有去学校上课,在家孤独地写代码,每天吃披萨度日,半夜 3:00 前没睡过觉。一个月之后,我终于提交了作业,却因此失去了远在国内的女朋友。
拼死拼活一学期后,一些科目还只能勉强及格,还有挂科的…
ETH 学习虽然艰难,生活却是十分舒适惬意,这多少给了我们一点安慰。
ETH 的 Master 学费低廉,每年1288瑞士法郎,约合人民币不到一万,绝对是海外名校中的一朵奇葩。
而且苏黎世作为世界最佳宜居城市之一,环境优美,气候宜人,交通便利,治安良好,空气清新。冬天还可以去滑雪,这也是个不错的体验。
——小C同学
/小结/
关于学习:
瑞士学校的硕士课程主要是英语授课,只要听得懂英语就没问题。学校的中国人也很少,学霸却是有很多,所以对于提升英语水平和学业能力是有很大帮助的。如果你的学业水平已经处于“独孤求败”的状态,又想好好感受一下欧洲城市的氛围,这倒是个不错的选择。
关于费用:
瑞士高校的学费较为便宜,每年学费约合人民币1万不到;
不过瑞士生活费用较高,每个月的生活费至少约需1200-1500瑞士法郎(Swiss franc CHF),约合人民币8千到1万人民币,每年需10-12万人民币;学校附近合租房的话住宿费用大概会在500~600瑞士法郎一个月,约合人民币4000元左右,单独租房就要到7000以上人民币。
总共加起来在瑞士留学一年的费用约为16万人民币,差不多是英国一年留学费用的一半。
2. 特斯拉的“纯视觉”,能否到达自动驾驶的彼岸
特斯拉最近又出大新闻了。才内部邮件宣布达成L2级自动驾驶,这次彻底“纯视觉”了。
这次是美国时间7月10日,特斯拉 FSD Beta V9.0终于在美国向用户推送。相比起上一个版本,V9.0做了FSD有史以来最大的一次更新。彻底抛弃了雷达的使用。而且,特斯拉征召了2000名车主内测,报名踊跃。不过,BUG很快就出来了。
这不,一位叫Giacaglia的网友看了一下特斯拉车主们发的视频,马上就收集了FSD 9.0 beta的11个失误瞬间。从各个动图来看,很明显现在的系统还是只能算是驾驶辅助,如果脱手或者离开人的监控,还是会出事情。这次可以看到的BUG有:
场景一:自动转弯之后径直向道路中央的绿化带撞了过去。
场景二:无法识别路中单轨道路。
场景三:闯公交车专用道。
场景四:在单行车道上逆行。
场景五:一直转换车道。路口右转时,无法判断使用哪个车道。
场景六: 汽车 压实线并线;急需换道时,因为后方车辆逼近,错过时机,只能下个路口见了。
场景七:自动并线超车之后发现道路划线,还要强行压线并道。
场景八:左转时提前换道。
场景九:左转时,差点进入对向路边停车位。
场景十: 汽车 穿过几条车道后才能左转。
场景十一:在一个只有停车标志的地方,看到两个停车标志。
“作为一个做Deep Learning方向的人表示,用神经网络的车我是肯定不敢坐的……”“是的,做ML(Machine Learning)的看现在的自动驾驶,堪比医生遇到挂科的同学给自己做手术。”“强行让机器来学人(纯靠视觉)本就是错误的发展方向,机器有自己的优势(可以自由加装雷达等设备进行辅助)而不利用,就是典型的教条主义、本本主义。”……
这都是很专业的质疑,那么,特斯拉是不是点错 科技 树?这个问题虽然见仁见智,但是从主流的CV(Computer Vision)+雷达路线来说,特斯拉有点像“西毒”欧阳锋了,为了降低成本,纯视觉一条道走到黑,“虽百死而不悔”的精神虽然有了,但是,那都是消费者的命啊……
为什么纯视觉?
如果特斯拉很老实地讲自己是驾驶辅助也就罢了,坏就坏在从一开始马斯克喜欢“吹”自动驾驶,直到吹破了以后在内部邮件中承认是L2级驾驶辅助。但是,现在马斯克给吹得成为一种神话,这种造神运动让马斯克骑上虎背下不来了。
而且,国内外有太多“特吹”,包括大众集团CEO赫伯特·迪斯博士。当然,迪斯博士吹特斯拉,是为了麻痹敌人,那是另外一回事。
且不说特斯拉多年排名垫底的自动驾驶功力,已经让多少人命丧黄泉,单说特斯拉靠“纯视觉”方案,说能达到全自动驾驶L4~L5级别,这就让人匪夷所思了。
苏黎世联邦理工学院(ETH Zurich)教授Marc Pollefeys则认为特斯拉不太可能放弃完全自动驾驶近在咫尺的说法,“很多人已经为此买单(特斯拉的FSD套餐),所以他们必须保持希望,”他说,“他们被困在那个故事里。”故事已经成为一种神话。
那么,为什么特斯拉取消雷达使用纯视觉?特斯拉多次强调过,摄像头数据和雷达数据在做融合的时候比较困难,当摄像头数据与雷达数据有冲突时,系统反而会更加难以抉择。
所以,马斯克也表示过,与其让二者互相扯后腿,不如只选一个并把它做到极致。而且,在他看来,特斯拉的深度学习系统已经比毫米波雷达强100倍,现在的毫米波雷达已经开始拖后腿了。
而在今年的 CVPR(计算视觉与模式识别大会)上,特斯拉首席AI科学家安乔·卡帕西(Andrej Karpathy)还讲了特斯拉如此“执拗”的原因。不过,对于走上歧路的特斯拉,我们还是奉劝要保持冷静。
为什么呢?道理其实很简单,人在开车,虽然是以视觉为主,但是其他的感官都是一体作用的,并非无用。比如听觉,身体的触觉,甚至是意识的直觉等。“事实上,人类开车的时候,是一种近乎无意识的感知,他就能够预测下一步应该怎么办,从而规避事故。”这是奇瑞 科技 有限公司总经理李中兵在世界人工智能大会的一场论坛上所讲的。而在这点,特斯拉有点过于执着在视觉上了。
通用视觉系统和神经网络
那么,这次的CVPR上,特斯拉的安乔·卡帕西(Andrej Karpathy)详细介绍的基于深度学习开发的自动驾驶系统,也就是全视觉的好处是什么?
特斯拉的底气,是采用了“通用视觉系统”和“神经网络”两种黑 科技 。当然,Karpathy 强调,基于视觉的自动驾驶,在技术角度更难实现,因为它要求神经网络仅仅基于视频输入就能达到超强性能的输出。“不过,一旦取得了突破,就能获得通用视觉系统,方便部署在地球的任何地方。”
“我们抛弃了毫米波雷达,车辆只靠视觉来行驶。”Karpathy认为,有了通用视觉系统,车辆就不再需要什么补充信息了。特斯拉始终认为,收集环境信息是一回事,利用环境信息又是另一回事。而且,传感器的种类和数量越多,互相之间的协调与整合就越难做,最终效果恐怕只是1+1 2,得不偿失。
这次特斯拉发布的FSD Beta V9.0,从技术上来说,新算法调用所有用于自动驾驶的8个摄像头,修复跨镜头畸变、时域差,拼接成环视视觉,再对周围环境进行实时的3D建模。也就是特斯拉所谓的“鸟瞰图视觉”。
具体来说,就是特斯拉将2D视图转化为模拟激光雷达数据,然后再用(激光雷达)算法处理这些数据,得到比之前好非常多的视觉测距精度。你不觉得奇怪么,既然还是得用激光雷达算法,为什么不用激光雷达呢?
按照特斯拉的说法,其自动驾驶系统是基于神经网络的特征识别、预判和规控,对于道路环境项目进行学习,比如交通路牌的含义到底是什么,需要通过很多场景素材训练系统,训练得越多系统能处理的场景越多。通过几百万车主积累的大数据,表现出来的能力就是,特斯拉可以轻松做到目前城市道路的自主驾驶。
实际上,马斯克一直都希望将特斯拉的制造成本压到最低。从成本上来说,目前特斯拉Model 3的自动驾驶摄像头成本只需要65美元。而激光雷达的成本,还基本上在1000美元以上级别。要知道,2018年的时候,Velodyne的64线激光雷达HDL-64售价可是高达7.5万美元的。
支撑特斯拉车价一降再降的当然是成本的控制。但是,马斯克和特斯拉还是过于迷信软件和AI的力量了。对于自动驾驶的“长尾问题”,特斯拉认为靠AI和超级计算机能解决,这都是有问题的。就算完成了99%,最后的1%依然是不可跨越的鸿沟。
此外,已经有外媒认为,美国本土的传统车企通用 汽车 将在2021年超越特斯拉,原因就在于特斯拉在自动驾驶方面已经落后,特别是又在“纯视觉”的路线上一条道走到黑。
传感器融合才是未来
就纯视觉的局限来说,有业内人士认为,在一些极端的场景中是无法满足对于感知探测能力的KPI指标的。比如一些复杂的天气情况,如大雨、大雾、沙尘、强光、夜晚,这对于视觉和激光雷达都是非常恶劣的场景,难以用一种传感器应对。主要体现在几个大的方面:
1)天气环境因素造成的视觉传感器致盲(如逆光炫目、沙尘暴遮挡等);
2)小目标物体在中低分辨率视觉感知系统中,可能造成目标晚识别(如减速带、小动物、锥桶等);
3)异形目标由于未经训练可能造成无法匹配,被漏识别(道路落石、前车掉落轮胎等);
4)视觉传感器本身的识别要理要求,对于视觉识别的高算力需求等。
就算一些自动驾驶测试或比较成熟厂商,在智能驾驶中也多次发生撞车事故,为传感器系统的失效付出惨痛代价。所以,传感器融合是构建稳定感知系统的必要条件。毕竟,视觉感知能力有局限,必须结合毫米波雷达或激光雷达做优势互补才能实现。
回头来说,这次特斯拉的内测BUG里面,但凡有一个场景没有人类驾驶员眼明手快接手的话,就会演变成为交通事故。这能让人放心吗?特斯拉的车主们也忒心大了。
此外,我们知道,摄像头如何感知深度只是自动驾驶问题的一部分。特斯拉依靠的最先进的机器学习只是识别模式,这意味着它会在新情况下挣扎。一挣扎,就会产生误判。
与人类司机不同的是,如果系统没有遇到场景,它就无法推理该做什么。“任何AI系统都不了解实际发生的事情,”研究自动驾驶 汽车 计算机视觉的康奈尔大学副教授克里安·温伯格(Kilian Weinberger)如此表示。
还有一点是,虽说,FSD 9.0给智能辅助驾驶系统是创造了更广阔的应用场景,但是,在L2级别的驾驶辅助系统(而不是自动驾驶系统)这个前提下,这些功能多少仍显得有些鸡肋,因为驾驶过程中根本无法脱手。而且,人类驾驶员不仅需要手握方向盘,还需要在城市道路上与车载电脑系统较劲,增加了额外负担和心理压力。
FSD BETA V9.0的这些内测BUG会在实际道路上反复出现,毫无疑问这为城市交通也制造了更多的隐患。不过,这套系统能不能用在更加复杂的中国的开放道路上?公社的小伙伴中还是有对特斯拉超有信心的,“大家都没开过,怎么知道行不行呢?”是啊,是骡子是马,特斯拉总会拉出来遛遛。