当前位置:首页 » 比特币问答 » 比特币矿机4g

比特币矿机4g

发布时间: 2023-01-05 08:38:10

1. 啥叫“比特币矿机”是怎么赚钱的

比特币矿机就是进行比特币挖矿使用的硬件设别。

比特币挖矿简单来说就是利用你比特币挖矿的硬件设备计算数学难题,确然网络交易,保证整个比特币网络系统的安全。作为回报你可以获得一定的比特币奖励。

你挖矿所的比特币本身就是一种财产,你可以通过比特币交易平台兑换成人民币,俗称套现。

目前,比特币挖矿需要专业的ASIC矿机,例如一直走在行业领先地位的阿瓦隆矿机。如果你是小白建议你购买阿瓦隆3单模组矿机。当然你也可以购买更高算力的阿瓦隆矿机。

挖矿有风险,购机需谨慎!

2. 比特币矿机价格翻倍仍供不应求,什么是比特币矿机

对于现在一个经济而言,现在的经济是处在一个全球性萎缩的一个状态。所以说在这个状态之下,大多人数人都会选择将自己的家庭放在比特币如今相应的上涨,与此出现的还有比特币这个矿机,它的价格也是遭受到了一定的影响。

在面临这样的行业而言,很多人都会选择去进行相应的购买,也是非常能够理解的,因为对于这样一个赚钱的利器来说,为什么不去做呢?这也是一个非常不错的事情了。所以我们也就不难去理解,现在一个销售是非常之高的一个状态了。

3. 如何挑选比特币矿机

矿机由芯片、散热风扇、电池等等多个部件构成,“芯片”是核心部件,决定了这台矿机能否更容易的挖出更多数字货币。矿机芯片需要厂商具有非常强的研发实力,需要和全球不断上涨的算力赛跑,考验和科技接轨的能力。所以选择矿机,很重要一条就是挑选实力强大的品牌和团队。
现在全球最知名的比特币矿机厂商有两家,比特大陆的蚂蚁矿机、张楠赓的阿瓦隆矿机。后者也是世界上第一台ASIC芯片矿机的发明者。
选择矿机一看算力,二看功耗,三看历史口碑。
算力就是一台机器进行运算的能力,也就是这台机器能够每秒进行多少次哈希运算。目前主流比特币矿机的算力为14T,也就是每秒进行14*10^13c次哈希碰撞。
功耗是这矿机运转时要消耗电量的一个指标,直接关系到挖矿的成本。一般情况下,矿机会24小时不间断的运转挖矿,所以不同型号的矿机,即便功耗相差很小,一年下来所耗费的电力成本差距也是非常大的。
历史口碑代表了矿机厂商经营的稳定性,你可以从不同购买渠道了解该厂商的用户整体评价、售后服务,以及预付款矿机能否按时交货。
要说最简单的选矿机的方法,就是直接选择最新的现货矿机型号。因为最新的矿机功耗会比较小,算力比较高,投入产出比最划算。
需要提醒大家的是,矿机的噪音比较大,这也是矿机的硬伤。

4. 比特币矿机比“天河二号”超算还快专用芯片有多强

之前回答一个问题,做了一点计算和分析,所得到的结果颇为出人意料:当进行SHA-256哈希运算(比特币矿机所擅长的计算)时,一台普通的神马M20矿机就能比“天河二号”还快了,更不用说更先进的矿机,如蚂蚁S19/S19 Pro。

一台矿机竟然比超算还快?或者说,一台超算(当前世界排名第四)在进行某些运算时还不如一台普通的矿机?

是这样的。

首先要说,这二者其实没有多少可比性。一个专用、一个通用;一个微小、一个庞大。

所以,只能对比这两者的SHA-256哈希运算速度了:

所以,是的,一台一万多元的矿机,在进行特定哈希运算时,速度比一台数亿元的超级计算机还快!

那么,矿机为什么能这么快呢?

矿机的结构并不复杂,能算这么快,靠的是大量的专用芯片。

比如蚂蚁S19 Pro使用了大量的自研芯片 BM1398运算芯片。一台矿机有三块算法板,每块算法板上安装了114颗运算芯片。一台矿机就有342颗芯片并行提供算力。

BM1398芯片是采用台积电7纳米工艺生产的,由于该芯片的架构和数据保密,我们只好用一些开源信息来进行估算。

github上有一个开源的SHA-256哈希运算模块,提供Verilog源代码,当使用40纳米工艺实现时,此模块可以达到250MH/s(和一颗8核的至强芯片差的不多了),而所占用的面积只有0.0142平方毫米。如果在一颗芯片中排布100个SHA-256运算模块,面积还不到2平方毫米,而性能已经达到了25GH/s(没有计算连接、总线等面积开销)。而这仅仅是40纳米工艺而已。

举这个例子是想说明:芯片中真正用于计算的部分很少,绝大多数资源都消耗到了调度、管理等辅助功能上。

当我们所用的功能清晰、明确时,就可以使用专用芯片极大的提高运算速度。比如各种数字币挖矿(大量的哈希运算),比如4G和5G通信(大量的卷积运算),比如人工智能(大量的卷积运算)

专用芯片的性能往往超过我们的想象,而我们芯片的发展,也完全可以利用这一点。如果能降低芯片的流片成本,也未必不能复制PCB(印刷电路板)的发展历程。要知道,现在全球的PCB设计和生产,中国都占了一大半的份额,又有谁有本事卡脖子呢?

5. 比特币矿机都有哪些

比特大陆生产的蚂蚁S9是现在市面上最主流的矿机,以功耗小著称产出大。蚂蚁矿机s9采用了台积电16纳米的finFET制程.台积电(TSMC)出自iPhone芯片的代理工厂,蚂蚁在s9上也应用了全定制设计方案。所以,这就使的s9拥有了超强算力的升级,让挖矿效率更高。s9采用了最新一代芯片BM1387(共189片),单颗芯片算力达到了74GH/s.功耗方面s9保持在了0.08W/GH/s.(在0.4v的核心电压下功耗为0.08W/GH/s,每T算力墙上功耗仅为100瓦,相单于每天只需要2.4度电。额定算力为:13.5TH/s的±5%

雪豹矿机A1,矿机芯片是矿机的核心,有人称Bitmine是整个比特币矿机产业的源头,Bitmine早在2013年底就拥有自己强大算力的芯片技术,当然这也得益于Bitmine与其它公司的共同合作与努力,而雪豹矿机正是他们自己家旗下的产品。A1是全球首款矿机定制,搭载ASIC芯片(BF16BTC),芯片数量高达576PCS,单颗芯片算力为84.1GH/s,总体算力高达49TH/s±5%

战旗矿机Z4采用了Intel 赛场双核[email protected]的CUP,挖矿算力为265MH/s(ETH),配备独立显卡570x8,拥有9个Fan,并且散热器采用INTEL的原装散热器,电源:站旗2000W电源,电压为:12.4—12.6v之间。

6. 比特币的矿机是什么

你好,
比特币矿机主要显卡和运算芯片构成。
硬件支出
挖矿实际是性能的竞争、装备的竞争,由非常多张显卡组成的挖矿机,哪怕只是HD6770这种中低端显卡,“组团”之后的运算能力还是能够超越大部分用户的单张显卡的。而且这还不是最可怕的,有些挖矿机是更多这样的显卡阵列组成的,数十乃至过百的显卡一起来,显卡本身也是要钱的,算上硬件价格等各种成本,挖矿存在相当大的支出。

7. 比特币矿机是什么

1、比特币挖矿机 ,就是用于赚取比特币的电脑,这类电脑一般有专业的挖矿芯片,多采用烧显卡的方式工作,耗电量较大。用户用个人计算机下载软件然后运行特定算法,与远方服务器通讯后可得到相应比特币,是获取比特币的方式之一。

8. 比特币之挖矿与共识(二)

比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它 转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。

独立校验还确保了诚实 的矿工生成的区块可以被纳入到区块链中,从而获得奖励。行为不诚实的矿工所产生的区块将被拒绝,这不但使他们失 去了奖励,而且也浪费了本来可以去寻找工作量证明解的机会,因而导致其电费亏损。

当一个节点接收到一个新的区块,它将对照一个长长的标准清单对该区块进行验证,若没有通过验证,这个区块将被拒 绝。这些标准可以在比特币核心客户端的CheckBlock函数和CheckBlockHead函数中获得

它包括:

为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?

这 是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒 绝,因此,该交易就不会成为总账的一部分。矿工们必须构建一个完美的区块,基于所有节点共享的规则,并且根据正 确工作量证明的解决方案进行挖矿,他们要花费大量的电力挖矿才能做到这一点。如果他们作弊,所有的电力和努力都 会浪费。这就是为什么独立校验是去中心化共识的重要组成部分。

比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块, 它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:第一种是连接到主链上的,第二种是从主链上产生分支的(备用链),最后一种是在已知链中没有 找到已知父区块的。在验证过程中,一旦发现有不符合标准的地方,验证就会失败,这样区块会被节点拒绝,所以也不 会加入到任何一条链中。

任何时候,主链都是累计了最多难度的区块链。在一般情况下,主链也是包含最多区块的那个链,除非有两个等长的链 并且其中一个有更多的工作量证明。主链也会有一些分支,这些分支中的区块与主链上的区块互为“兄弟”区块。这些区 块是有效的,但不是主链的一部分。 保留这些分支的目的是如果在未来的某个时刻它们中的一个延长了并在难度值上超 过了主链,那么后续的区块就会引用它们。

如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被 保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从 孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有 可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链, 新块本身就代表它们的投票。

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链全貌。

解决的办法是,每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就 是最长的或最大累计工作的链(greatest cumulative work chain)。节点通过累加链上的每个区块的工作量,得到建立这个链所要付出的工作量证明的总量。只要所有的节点选择最长累计工作的区块链,整个比特币网络最终会收敛到一致的状态。分叉即在不同区块链间发生的临时差异,当更多的区块添加到了某个分叉中,这个问题便会迎刃而解。

提示由于全球网络中的传输延迟,本节中描述的区块链分叉自动会发生。

然而,倒三角形的区块不会被丢弃。它被链接到星形链的父区块,并形成备用链。虽然节点X认为自己已经正确选择了获胜链,但是它还会保存“丢失”链,使得“丢失”链如果可能最终“获胜”,它还具有重新打包的所需的信息。

这是一个链的重新共识,因为这些节点被迫修改他们对块链的立场,把自己纳入更长的链。任何从事延伸星形-倒三角形的矿工现在都将停止这项工作,因为他们的候选人是“孤儿”,因为他们的父母“倒三角形”不再是最长的连锁。

“倒三角形”内的交易重新插入到内存池中用来包含在下一个块中,因为它们所在的块不再位于主链中。

整个网络重新回到单一链状态,星形-三角形-菱形,“菱形”成为链中的最后一个块。所有矿工立即开始研究以“菱形”为父区块的候选块,以扩展这条星形-三角形-菱形链。

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两个不同区块的解。

然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

2012年以来,比特币挖矿发展出一个解决区块头基本结构限制的方案。在比特币的早期,矿工可以通过遍历随机数 (Nonce)获得符合要求的hash来挖出一个块。

难度增长后,矿工经常在尝试了40亿个值后仍然没有出块。然而,这很容 易通过读取块的时间戳并计算经过的时间来解决。因为时间戳是区块头的一部分,它的变化可以让矿工用不同的随机值 再次遍历。当挖矿硬件的速度达到了4GH/秒,这种方法变得越来越困难,因为随机数的取值在一秒内就被用尽了。

当出现ASIC矿机并很快达到了TH/秒的hash速率后,挖矿软件为了找到有效的块, 需要更多的空间来储存nonce值 。可以把时间戳延后一点,但将来如果把它移动得太远,会导致区块变为无效。

区块头需要信息来源的一个新的“变革”。解决方案是使用coinbase交易作为额外的随机值来源,因为coinbase脚本可以储存2-100字节的数据,矿工们开始使用这个空间作为额外随机值的来源,允许他们去探索一个大得多的区块头值范围来找到有效的块。这个coinbase交易包含在merkle树中,这意味着任何coinbase脚本的变化将导致Merkle根的变化。

8个字节的额外随机数,加上4个字节的“标准”随机数,允许矿工每秒尝试2^96(8后面跟28个零)种可能性而无需修改时间戳。如果未来矿工穿过了以上所有的可能性,他们还可以通过修改时间戳来解决。同样,coinbase脚本中也有更多额外的空间可以为将来随机数的扩展做准备。

比特币的共识机制指的是,被矿工(或矿池)试图使用自己的算力实行欺骗或破坏的难度很大,至少理论上是这样。就像我们前面讲的,比特币的共识机制依赖于这样一个前提,那就是绝大多数的矿工,出于自己利益最大化的考虑,都会 通过诚实地挖矿来维持整个比特币系统。然而,当一个或者一群拥有了整个系统中大量算力的矿工出现之后,他们就可以通过攻击比特币的共识机制来达到破坏比特币网络的安全性和可靠性的目的。

值得注意的是,共识攻击只能影响整个区块链未来的共识,或者说,最多能影响不久的过去几个区块的共识(最多影响过去10个块)。而且随着时间的推移,整个比特币块链被篡改的可能性越来越低。

理论上,一个区块链分叉可以变得很长,但实际上,要想实现一个非常长的区块链分叉需要的算力非常非常大,随着整个比特币区块链逐渐增长,过去的区块基本可以认为是无法被分叉篡改的。

同时,共识攻击也不会影响用户的私钥以及加密算法(ECDSA)。

共识攻击也 不能从其他的钱包那里偷到比特币、不签名地支付比特币、重新分配比特币、改变过去的交易或者改变比特币持有纪录。共识攻击能够造成的唯一影响是影响最近的区块(最多10个)并且通过拒绝服务来影响未来区块的生成。

共识攻击的一个典型场景就是“51%攻击”。想象这么一个场景,一群矿工控制了整个比特币网络51%的算力,他们联合起来打算攻击整个比特币系统。由于这群矿工可以生成绝大多数的块,他们就可以通过故意制造块链分叉来实现“双重支 付”或者通过拒绝服务的方式来阻止特定的交易或者攻击特定的钱包地址。

区块链分叉/双重支付攻击指的是攻击者通过 不承认最近的某个交易,并在这个交易之前重构新的块,从而生成新的分叉,继而实现双重支付。有了充足算力的保证,一个攻击者可以一次性篡改最近的6个或者更多的区块,从而使得这些区块包含的本应无法篡改的交易消失。

值得注意的是,双重支付只能在攻击者拥有的钱包所发生的交易上进行,因为只有钱包的拥有者才能生成一个合法的签名用于双重支付交易。攻击者在自己的交易上进行双重支付攻击,如果可以通过使交易无效而实现对于不可逆转的购买行为不予付款, 这种攻击就是有利可图的。

攻击者Mallory在Carol的画廊买了描绘伟大的中本聪的三联组画(The Great Fire),Mallory通过转账价值25万美金的比特币 与Carol进行交易。在等到一个而不是六个交易确认之后,Carol放心地将这幅组画包好,交给了Mallory。这时,Mallory 的一个同伙,一个拥有大量算力的矿池的人Paul,在这笔交易写进区块链的时候,开始了51%攻击。

首先,Paul利用自己矿池的算力重新计算包含这笔交易的块,并且在新块里将原来的交易替换成了另外一笔交易(比如直接转给了Mallory 的另一个钱包而不是Carol的),从而实现了“双重支付”。这笔“双重支付”交易使用了跟原有交易一致的UTXO,但收款人被替换成了Mallory的钱包地址。

然后,Paul利用矿池在伪造的块的基础上,又计算出一个更新的块,这样,包含这 笔“双重支付”交易的块链比原有的块链高出了一个块。到此,高度更高的分叉区块链取代了原有的区块链,“双重支付”交 易取代了原来给Carol的交易,Carol既没有收到价值25万美金的比特币,原本拥有的三幅价值连城的画也被Mallory白白 拿走了。

在整个过程中,Paul矿池里的其他矿工可能自始至终都没有觉察到这笔“双重支付”交易有什么异样,因为挖矿程序都是自动在运行,并且不会时时监控每一个区块中的每一笔交易。

为了避免这类攻击,售卖大宗商品的商家应该在交易得到全网的6个确认之后再交付商品。或者,商家应该使用第三方 的多方签名的账户进行交易,并且也要等到交易账户获得全网多个确认之后再交付商品。一条交易的确认数越多,越难 被攻击者通过51%攻击篡改。

对于大宗商品的交易,即使在付款24小时之后再发货,对买卖双方来说使用比特币支付也 是方便并且有效率的。而24小时之后,这笔交易的全网确认数将达到至少144个(能有效降低被51%攻击的可能性)。

需要注意的是,51%攻击并不是像它的命名里说的那样,攻击者需要至少51%的算力才能发起,实际上,即使其拥有不 到51%的系统算力,依然可以尝试发起这种攻击。之所以命名为51%攻击,只是因为在攻击者的算力达到51%这个阈值 的时候,其发起的攻击尝试几乎肯定会成功。

本质上来看,共识攻击,就像是系统中所有矿工的算力被分成了两组,一 组为诚实算力,一组为攻击者算力,两组人都在争先恐后地计算块链上的新块,只是攻击者算力算出来的是精心构造 的、包含或者剔除了某些交易的块。因此,攻击者拥有的算力越少,在这场决逐中获胜的可能性就越小。

从另一个角度 讲,一个攻击者拥有的算力越多,其故意创造的分叉块链就可能越长,可能被篡改的最近的块或者或者受其控制的未来 的块就会越多。一些安全研究组织利用统计模型得出的结论是,算力达到全网的30%就足以发动51%攻击了。全网算力的急剧增长已经使得比特币系统不再可能被某一个矿工攻击,因为一个矿工已经不可能占据全网哪怕的1%算 力。

待补充

待补充

9. 一文了解以太坊矿机及挖矿原理

在以前的文章中,我们分别了解了比特币挖矿和以太坊挖矿的区别。本文重点介绍以太坊挖矿及矿机部分。

以太坊是一个开源的有智能合约功能的公共区块链平台,通过其专用加密货币ETH提供去中心化的以太虚拟机来处理点对点合约。目前ETH的挖矿主要是通过显卡矿机,所谓显卡矿机,其实就是类似家用台式机,只不过每台机器里面有6-10张显卡,并且没有显示器(如图)。

图:显卡矿机

之所以以太坊没有发展出类似于BTC一样的ASIC矿机,主要是由于ETH的特殊挖矿机制决定的。

在ETH挖矿过程中,会产生一个DAG文件,该文件需要一直被调用,因此必须有专门的存储空间放置。这个对于存储空间的硬性需求会导致即使生产出来了ASIC芯片,也并不能大幅度降低单位算力的成本。简单来说,就是性价比很差。

以太坊的DAG大小自2016年6月份引入Dagger-Hashimoto 算法时的1GB开始,以每年约520MB的速度增大到了现在的 3.7G,预计2020年底以太坊的DAG大小将增加至4G。届时,显存小于4G的显卡都将被陆续淘汰。

还需要介绍一点的是,由于显卡矿机的体积通常是比特币矿机的2-4倍,而消耗的电力却只有比特币矿机的1/2甚至更低,这就导致一般人不愿意修建专门的显卡矿机矿场(因为矿场主要赚取的是电费差价,同样面积的场地,可以放置的显卡数量少,消耗的电量更少)。即使有少量的显卡矿场,收取的电费成本通常也比比特币矿机矿场的高。

10. 显卡挖矿什么意思

“显卡挖矿”其实就是用显卡去挖比特币,让显卡高负荷工作挖,淘汰了的就成了矿卡,矿卡一般背面核心pc板严重变色。

热点内容
bfc币对usdt 发布:2025-04-16 16:34:11 浏览:780
怡亚通区块链平台 发布:2025-04-16 16:18:36 浏览:532
区块链百倍币有哪些 发布:2025-04-16 16:13:31 浏览:913
如何通过百度区块链赚钱 发布:2025-04-16 16:11:54 浏览:156
区块链的演化逻辑与经济学意义 发布:2025-04-16 15:58:22 浏览:933
usdt转化成人民币的汇率 发布:2025-04-16 15:47:13 浏览:756
北交所跟USDT 发布:2025-04-16 15:44:02 浏览:241
犇比特币是中国的吗 发布:2025-04-16 15:07:50 浏览:607
xrp中心化分析 发布:2025-04-16 15:07:06 浏览:310
eth到现在多少年了 发布:2025-04-16 14:52:46 浏览:666