公钥生成的比特币地址以什么开头
『壹』 公钥生成的比特币地址以什么开头
公钥生成的比特币地址以1开头
比特币的所有权是通过数字密钥、比特币地址和数字签名来确立的。数字密钥实际上并不是存储在网络中,而是由用户生成并存储在一个文件或简单的数据库中,称为钱包。存储在用户钱包中的数字密钥完全独立于比特币协议,可由用户的钱包软件生成并管理,而无需区块链或网络连接。密钥实现了比特币的许多有趣特性,包括去中心化信任和控制、所有权认证和基于密码学证明的安全模型。
『贰』 入门科普:比特币的私钥、公钥和地址是什么
上一篇,我们讲到了币圈要注意防范传销、洗钱等一类的骗局,保护好自己的资产。这一篇,我要告诉大家,进行比特币交易时,都会用到的私钥、公钥与地址,如果你还不了解它们的重要性,随便交易,很容易弄丢自己的资产。那什么是私钥、公钥与地址?三者之间有着什么样的关系呢?
01
私钥
1.导出:
创建钱包后,输入密码可以导出私钥,私钥由很长的字符串组成,且是随机生成的, 一个地址只有一个私钥。
2.用途:
用于控制交易时的签名,拥有私钥才能控制账户的资金,相当于银行账户的交易密码,用来解密公钥加密的信息。
3.注意事项:
私钥是用来证明这笔交易的发起人确实是比特币的所有者。所以 私钥一定不能曝光,私钥一旦泄露,你的比特币将会有被盗的风险。 用户必须保管好私钥,防止泄露或丢失。
02
公钥
1.导出:
公钥是由私钥通过算法生成的,使用了椭圆曲线加密, 通过私钥可以计算出唯一的公钥。
2.用途:
公钥是用来验证交易的签名,一个私钥签名的数据,只有对应的公钥才能对其进行验证,公钥相当于银行账户,公开后无风险。
03
地址
1.导出:
地址由公钥生成的,使用了哈希运算。创建钱包后会生成一个以“0x” 开头的 42 位字符串,这个字符串就是钱包地址,一个钱包对应一个钱包地址, 地址唯一且不能修改,也就是说一个钱包中所有代币的转账收款地址都是一样的。
2.用途:
由于公钥太长,在交易中不方便使用,所以就有了地址,地址是由公钥生成的,地址相当于银行卡号,用来发送和接收比特币。
3.注意事项:
平台上不同代币的转账收款地址一般都不同,因此,转币到交易平台前一定要确认好地址。
总结
私钥 → 公钥 → 钱包地址 (不可逆)
私钥用来签名交易,公钥用来验证私钥签名的交易,地址用来收款。
公钥、私钥以及地址都在比特币交易中起到了不同的作用,所以才能顺利的完成一笔数字货币的交易。 所以用户必须好好保存,防止泄露重要信息。
『叁』 【区块链】什么是比特币地址
比特币地址是一串由字母和数字组成的26位到34位字符串,看起来有些像乱码。但它就是你个人的比特币账户,相当于你的银行卡卡号,任何人都可以通过你的比特币地址给你转账比特币。
它与比特币私钥不同,不会因为信息泄露而造成比特币丢失,因此你可以将比特币地址放心的告诉任何人。
通过区块链浏览器可以查看每个比特币地址所有的转账交易记录。
常用的比特币区块链浏览器有:
https://btc.com/block
https://www.blockchain.com/zh-cn/explorer
我们常用的比特币地址格式一般有如下四种。
1、BASE58格式
BASE58格式是人们常见的比特币地址格式,一般由1开头的。
例如:
2、HASH160格式
HASH160格式为RIPEMD160算法对130位公钥的SHA256签名进行计算得出的结果 。
例如:
3、WIF压缩格式
WIF压缩格式即钱包输入格式,是将BASE58格式进行压缩后的结果130位公钥格式 这是最原始的由ECDSA算法计算出来的比特币公钥。
例如:
4、60位公钥格式
60位公钥格式即130位公钥进行压缩后得出的结果。
例如:
比特币是建立在数学加密学基础上的,中本聪大神用了椭圆加密算法(ECDSA)来产生比特币的私钥和公钥。
由私钥是可以计算出公钥的,公钥的值经过一系列数字签名运算会得到比特币地址。
比特币地址是由算法随机生成,那么就会有人问,既然都是随机生成的,那么比特币的地址会不会重复呢?关于这个问题,想必就更不用担心。
因为比特币的私钥长度是256位的二进制串,那么随机生成的两个私钥正好重复的的概率是2 ^ 256 ≈ 10 ^ 77之一,这个数字大到你根本无法想象,比中彩票的概率还要小好多;所以不用担心的啦,每个人的比特币地址都是独一无二的。
『肆』 比特币交易构成 你知道多少
交易类型
产量交易(Generation)
每个Block都对应一个产量交易(Generation TX),该类交易是没有输入交易的,挖出的新币是所有币的源头。
合成地址交易(Script Hash)
该类交易的接收地址不是通常意义的地址,而是一个合成地址,以3开头,需要几对公私钥一起生成合成地址,在生成过程中可以指定,几对公私钥中的几个签名以后,就可以消费该地址的比特币。
通用地址交易(Pubkey Hash)
该类是最常见的交易类型,由N个输入、M个输出构成。
输入和输出可以御桥旦简单的理解成,发出币的地址就是输入,收到币的地址就是输出。
数据结构
字镇扰段
数据类型
字段大小
字段描述
versionuint32_t
4交易数据结构的版本号tx_in countvar_int1+输入交易的数量tx_intx_in[]41+输入交易的数组,每个输入=41字节
tx_out countvar_int1+输出地址的数量tx_outtx_out[]9+输入地址的数组,每个输入=9字节lock_timeuint32_t4
lock_time是一个多意字段,表示在某个高度的Block之前或某个时间点之前该交易处于锁消慎定态,无法收录进Block。
值
含义
0立即生效 500000000含义为Block高度,处于该Block之前为锁定(不生效)= 500000000含义为Unix时间戳,处于该时刻之前为锁定(不生效)
若该笔交易的所有输入交易的sequence字段,均为INT32最大值(0xffffffff),则忽略lock_time字段。否则,该交易在未达到Block高度或达到某个时刻之前,是不会被收录进Block中的。
示例
为了演示方便,我们读取稍早期的块数据,以高度116219 Block为例。
# ~ bitcoind getblock
{
hash : ,
confirmations : 144667,
size : 1536,
height : 116219,
version : 1,
merkleroot : ,
tx : [
,
,
,
,
],
time : 1301705313,
nonce : 1826107553,
bits : 1b00f339,
difficulty : 68977.78463021,
previousblockhash : ,
nextblockhash :
}
该Block里面有5笔交易,第一笔为Generation TX,解析出来看一下具体内容:
# ~ bitcoind getrawtransaction 1
{
hex : ,
txid : ,
version : 1,
locktime : 0,
vin : [
{
coinbase : 0439f3001b0134,
sequence : 4294967295
}
],
vout : [
{
value : 50.01000000,
n : 0,
scriptPubKey : {
asm : OP_CHECKSIG,
hex : 41ac,
reqSigs : 1,
type : pubkey,
addresses : [
]
}
}
],
blockhash : ,
confirmations : 145029,
time : 1301705313,
blocktime : 1301705313
}
Generation TX的输入不是一个交易,而带有coinbase字段的结构。该字段的值由挖出此Block的人填写,这是一种“特权”:可以把信息写入货币系统(大家很喜欢用系统中的数据结构字段名来命名站点,例如blockchain、coinbase等,这些词的各种后缀域名都被抢注一空)。中本聪在比特币的第一个交易中的写入的coinbase值是:
coinbase:722062616e6b731
将该段16进制转换为ASCII字符,就是那段著名的创世块留言:
The Times 03/Jan/2009 Chancellor on brink of second lout for banks1
接下来展示的是一个三个输入、两个输出的普通交易:
# ~ bitcoind getrawtransaction 1
{
hex : ,
txid : ,
version : 1,
locktime : 0,
vin : [
{
txid : ,
vout : 0,
scriptSig : {
asm : 01 ,
hex :
},
sequence : 4294967295
},
{
txid : ,
vout : 1,
scriptSig : {
asm : 01 ,
hex :
},
sequence : 4294967295
},
{
txid : ,
vout : 1,
scriptSig : {
asm : 1d01 ,
hex :
},
sequence : 4294967295
}
],
vout : [
{
value : 0.84000000,
n : 0,
scriptPubKey : {
asm : OP_DUP OP_HASH160 OP_EQUALVERIFY OP_CHECKSIG,
hex : 76a91488ac,
reqSigs : 1,
type : pubkeyhash,
addresses : [
]
}
},
{
value : 156.83000000,
n : 1,
scriptPubKey : {
asm : OP_DUP OP_HASH160 OP_EQUALVERIFY OP_CHECKSIG,
hex : 76a91488ac,
reqSigs : 1,
type : pubkeyhash,
addresses : [
]
}
}
],
blockhash : ,
confirmations : 147751,
time : 1301705313,
blocktime : 1301705313
}5859606162636465666768
字段hex记录了所有相关信息,后面显示的是hex解析出来的各类字段信息。下面把逐个分解hex内容(hex可以从上面的直接看到):
01000000 // 版本号,UINT32
03 // Tx输入数量,变长INT。3个输入。
/*** 第一组Input Tx ***/
// Tx Hash,固定32字节
00000000 // 消费的Tx位于前向交易输出的第0个,UINT32,固定4字节
8a // 签名的长度, 0x8A = 138字节
// 138字节长度的签名,含有两个部分:公钥+签名
47 // 签名长度,0x47 = 71字节
01
41 // 公钥长度,0x41 = 65字节
ffffffff // sequence,0xffffffff = 4294967295, UINT32, 固定4字节
/*** 第二组Input Tx。与上同理,省略分解 ***/
ffff
/*** 第三组Input Tx ***/
2fffffffff
02 // Tx输出数量,变长INT。两个输出。
/*** 第一组输出 ***/
00bd010500000000 // 输出的币值,UINT64,8个字节。字节序需翻转,~= 0x000000000501bd00 = 84000000 satoshi
19 // 输出目
『伍』 什么是公钥、私钥、密码、助记词、Keystore
公钥、私钥、密码、助记词、Keystore是在使用数字货币钱包时,必须要弄清的概念:如果不搞清楚,很可能会造成数字资产的严重损失。
1.公钥:
相当于所属钱包的地址,可理解成银行账户。
公钥的地址可理解成银行卡号,是由公钥通过计算得来,就像银行先给你开户,后给你银行卡卡号。
钱包地址的主要用途是收款,也可以作为转账的凭证,就像别人汇款给你时你需要告诉他银行卡卡号一样。
常见的钱包地址样式:
比特币:普通地址:1开头、隔离见证地址:3开头
以太坊地址:0x开头:(包括基于以太坊平台代币)瑞波币地址:r开头。
莱特币地址:L开头。
2.私钥:
非常重要,相当于银行卡号+银行卡密码。
创建钱包后,输入密码即可导出私钥。私钥是由字母数字组成的字符串,一个钱包地址只有一个私钥且不能修改。私钥要离线保存,不要进行网络传输,可用纸张记录并保存。
主要用途,导入钱包。有了私钥就可以在同系列的任何一款钱包上,输入私钥并设置一个新的密码就可以把之前的A钱包的资产导入B钱包。比如手机丢了,只要你有私钥就可以恢复。
3.密码 :
相当于银行卡密码。
在创建数字货币钱包时,需要设置一个密码,一般要求不少于8个字符。
主要用途:①转账时需要输入密码,可理解成你用银行卡给别人转账需要输入密码;②用Keystore导入钱包时,必须输入这个密码。
密码可以进行修改或重置。输入原密码后,就可以直接修改新的密码了;但如果原密码忘记,可以用私钥或是助记词导入钱包,同时设置新的密码。数字货币钱包中,一个钱包在不同手机上可以用不同的密码,彼此相互独立,互不影响。
4.助记词
等于私钥=银行卡号+银行卡密码
由于私钥由64位字符串组成,不便于记录,非常容易抄错,于是就出现了助记词,方便用户记忆和记录。由12个单词组成,每个单词之间有一个空格,助记词和私钥具有同样的功能:只要输入助记词并设置一个新的密码,就可以导入钱包。
一个钱包只有一套助记词且不能修改。助记词只能备份一次,备份后,在钱包中便不会再显示。因此,在备份时一定要抄写下来,防止抄写错误,尽量多次检验。
5.Keystore:
Keystore+密码=私钥=银行卡号+银行卡密码、Keystore ≠ 银行卡号
Keystore相当于加密过后的私钥,在导入钱包时,只要输入Keystore 和密码,就能进入钱包了。这一点和用私钥或助记词导入钱包不一样,后两者不需要知道原密码,而是直接重置密码。
keystore进行交易转账等钱包操作,必须知道该keystore的密码。keystore的密码是无法更改的,一个keystore对应一个密码。但是可以通过该钱包的助记词,重新生成一个keystore。这个keystore可以用新的密码生成,重新生成新的keystore之后,最好将旧的keystore删除。
总结:
一个数字货币钱包创建完成后,公钥和私钥是成对出现的。公钥,私钥都是由字母,数字组成的较长的字符串。
keystore和助记词可以理解为私钥的另一种表现形式。助记词作为钱包私钥的友好格式,非常方便备份和导入。
地址可以通过私钥、助记词、keystore+密码,导入钱包找回。密码可以通过私钥、助记词,导入钱包重置密码。如果私钥、助记词、Keystore+密码,有一个信息泄漏,别人就可以拥有你钱包的控制权,钱包内的币就会被别人转移走。
私钥通过加密生成公钥,公钥转换一下格式生成地址。私钥可以推导出公钥,公钥可以推导出地址,但无法通过输出地址、公钥推导出私钥。
在生活中,银行开户是“开设银行账户—银行卡号—设置银行卡密码—开户成功
在币圈里,是先设置“密码”(私钥),再得到“银行账户”(公钥),最后给地址。对于钱包安全管理,主要注意防盗和防丢。防止私钥泄露及丢失。
注意事项:
1.关于各种骗局诱导交出私钥、助记词的行为,都要谨慎操作;
2.重视私钥、助记词、Keystore+密码的备份和保存!多重备份,多次备份,多重验证,防止抄写错误。
3.私钥不好备份的情况下,可选用备份助记词,具体根据钱包的备份要求。
4.不要进行联网备份,或通过微信、qq、邮箱等任何第三方工具进行传输发送你的私钥、助记词、keystore。不要截图。
5.备份内容放到安全、妥善的地方,并告诉家人(以防突发事故发生)
数字货币钱包的作用是安全存储资产,这是最重要的!从投资纪律来讲,本金安全是一切的基础。对于理财类的钱包,声称赚取收益高回报等,应该叫“数字资产理财”更恰当。你的资产他们可以随意动用拿去投资。你对资产没有完全的掌控权,如果投资顺利,本息安全,如果投资失败,血本无归。所以,请慎重使用这类钱包,应该注重的是资产的安全和私密性。
『陆』 【以太坊易错概念】nonce, 公私钥和地址,BASE64/BASE58,
以太坊里的nonce有两种意思,一个是proof of work nonce,一个是account nonce。
在智能合约里,nonce的值代表的是该合约创建的合约数量。只有当一个合约创建另一个合约的时候才会增加nonce的值。但是当一个合约调用另一个合约中的method时 nonce的值是不变的。
在以太坊中nonce的值可以这样来获取(其实也就是属于一个账户的交易数量):
但是这个方法只能获取交易once的值。目前是没有内置方法来访问contract中的nonce值的
通过椭圆曲线算法生成钥匙对(公钥和私钥),以太坊采用的是secp256k1曲线,
公钥采用uncompressed模式,生成的私钥为长度32字节的16进制字串,公钥为长度64的公钥字串。公钥04开头。
把公钥去掉04,剩下的进行keccak-256的哈希,得到长度64字节的16进制字串,丢掉前面24个,拿后40个,再加上"0x",即为以太坊地址。
整个过程可以归纳为:
2)有些网关或系统只能使用ASCII字符。Base64就是用来将非ASCII字符的数据转换成ASCII字符的一种方法,而且base64特别适合在http,mime协议下快速传输数据。Base64使用【字母azAZ数字09和+/】这64个字符编码。原理是将3个字节转换成4个字节(3 X 8) = 24 = (4 X 6)
当剩下的字符数量不足3个字节时,则应使用0进行填充,相应的,输出字符则使用'='占位,因此编码后输出的文本末尾可能会出现1至2个'='。
1)Base58是用于Bitcoin中使用的一种独特的编码方式,主要用于产生Bitcoin的钱包地址。相比Base64,Base58不使用数字"0",字母大写"O",字母大写"I",和字母小写"l",以及"+"和"/"符号。
Base58Check是一种常用在比特币中的Base58编码格式,增加了错误校验码来检查数据在转录中出现的错误。 校验码长4个字节,添加到需要编码的数据之后。校验码是从需要编码的数据的哈希值中得到的,所以可以用来检测并避免转录和输入中产生的错误。使用 Base58check编码格式时,编码软件会计算原始数据的校验码并和结果数据中自带的校验码进行对比。二者不匹配则表明有错误产生,那么这个 Base58Check格式的数据就是无效的。例如,一个错误比特币地址就不会被钱包认为是有效的地址,否则这种错误会造成资金的丢失。
为了使用Base58Check编码格式对数据(数字)进行编码,首先我们要对数据添加一个称作“版本字节”的前缀,这个前缀用来明确需要编码的数 据的类型。例如,比特币地址的前缀是0(十六进制是0x00),而对私钥编码时前缀是128(十六进制是0x80)。 表4-1会列出一些常见版本的前缀。
接下来,我们计算“双哈希”校验码,意味着要对之前的结果(前缀和数据)运行两次SHA256哈希算法:
checksum = SHA256(SHA256(prefix+data))
在产生的长32个字节的哈希值(两次哈希运算)中,我们只取前4个字节。这4个字节就作为校验码。校验码会添加到数据之后。
结果由三部分组成:前缀、数据和校验码。这个结果采用之前描述的Base58字母表编码。下图描述了Base58Check编码的过程。
相同:
1) 哈希算法、Merkle树、公钥密码算法
https://blog.csdn.net/s_lisheng/article/details/77937202?from=singlemessage
2)全新的 SHA-3 加密标准 —— Keccak
https://blog.csdn.net/renq_654321/article/details/79797428
3)在线加密算法
http://tools.jb51.net/password/hash_md5_sha
4)比特币地址生成算法详解
https://www.cnblogs.com/zhaoweiwei/p/address.html
5)Base58Check编码实现示例
https://blog.csdn.net/QQ604666459/article/details/82419527
6) 比特币交易中的签名与验证
https://www.jianshu.com/p/a21b7d72532f
『柒』 4. 比特币的密钥、地址和钱包 - 精通比特币笔记
比特币的所有权是通过密钥、比特币地址和数字签名共同确定的。密钥不存在于比特币网络中,而是用户自己保存,或者利用管理私钥的软件-钱包来生成及管理。
比特币的交易必须有有效签名才会被存储在区块中,因此拥有密钥就拥有对应账户中的比特币。密钥都是成对出现的,由一个公钥和一个私钥组成。公钥相当于银行账号,私钥就相当于银行卡密码。通常情况下密钥由钱包软件管理,用户不直接使用密钥。
比特币地址通常是由公钥计算得来,也可以由比特币脚本得来。
比特币私钥通常是数字,由比特币系统随机( 因为算法的可靠性与随机性正相关,所以随机性必须是真随机,不是伪随机,因此比特币系统可以作为随机源来使用 )生成,然后将私钥作为输入,使用椭圆曲线算法这个单向加密函数生成对应的公钥,再将公钥作为输入,使用单向加密哈希函数生成地址。例如,通过公钥K得到地址A的计算方式为:
其中SHA256和PIPEMD160被称为双哈希或者HASH160,Base58Check是带有验证功能的Base58编码,验证方式为先计算原始数据(编码前)的验证码,再比较编码后数据的验证码,相同则地址有效,否则无效。而在使用Base58Check编码前,需要对数据做处理。
处理方式为: 版本前缀 + 双哈希后的数据 + 校验码
其中版本前缀是自定义的,如比特币私钥的前缀是0x80,校验码是把版本前缀和双哈希后的数据拼接起来,进行两次SHA256计算,取前4字节。得到处理的数据后,再进行Base58编码,得到最终的结果。
下图是Base58Check版本前缀和Base58编码后的结果
密钥可以采用不同的编码格式,得到的编码后结果虽然不同,但密钥本身没有任何变化,采用哪种编码格式,就看情况而论了,最终目的都是方便人们准确无误的使用和识别密钥。
下图是相同私钥采用不同编码方式的结果:
公钥也有很多种格式,不过最重要的是公钥被分为压缩格式和非压缩格式,带04前缀的公钥为非压缩格式的公钥,而03,02开头的标识压缩格式的公钥。
前面说过,公钥是椭圆曲线上的一个点,由一对坐标(x, y)表示,再加上前缀,公钥可以表示为:前缀 x y。
比如一个公钥的坐标为:
以非压缩格式为例,公钥为(略长):
压缩格式的公钥可以节省一定的存储,对于每天成千上万的比特币交易记录来说,这一点点的节省能起到很大效果。
因为椭圆曲线实际上是一个方程(y2 mod p = (x3 + 7)mod P, y2是y的平方,x3是x的立方),而公钥是椭圆曲线上的一个点,那么公钥即为方程的一个解,如果公钥中只保留x,那么可以通过解方程得到y,而压缩公钥格式有两个前缀是因为对y2开方,会得到正负两个解,在素数p阶的有限域上使用二进制算术计算椭圆曲线的时候,y坐标或奇或偶,所以用02表示y为奇数,03表示y为偶数。
所以压缩格式的公钥可以表示为:前缀x
以上述公钥的坐标为准,y为奇数为例,公钥K为:
不知道大家发现没有,这种压缩方式存在一个问题,即一个私钥可以得出两个公钥,压缩和非压缩公钥,而这两个公钥都对应同一个私钥,都合法,但生成的比特币地址却不相同,这就涉及到钱包软件的实现方式,是使用压缩公钥还是非压缩公钥,或者二者皆用,这个问题后面来介绍。
比特币钱包最主要的功能就是替用户保管比特币私钥,比特币钱包有很多种,比如非确定性(随机)钱包,确定性(种子)钱包。所谓的非确定性是指钱包运行时会生成足够的私钥(比如100个私钥),每个私钥仅会使用一次,这样私钥管理就很麻烦。确定性钱包拥有一个公共种子,单向离散方程使用种子生成私钥,种子足够回收所有私钥,所以在钱包创建时,简单备份下,就可以在钱包之间转移输入。
这里要特别介绍下助记码词汇。助记码词汇是英文单词序列,在BIP0039中提出。这些序列对应着钱包中的种子,种子可以生成随机数,随机数生成私钥,私钥生成公钥,便有了你需要的一切。所以单词的顺序就是钱包的备份,通过助记码词汇能重建钱包,这比记下一串随机数要强的多。
BIP0039定义助记码和种子的创建过程如下:
另外一种重要的钱包叫做HD钱包。HD钱包提供了随机(不确定性) 钥匙有两个主要的优势。
第一,树状结构可以被用来表达额外的组织含义。比如当一个特定分支的子密钥被用来接收交易收入并且有另一个分支的子密钥用来负责支付花费。不同分支的密钥都可以被用在企业环境中,这就可以支配不同的分支部门,子公司,具体功能以及会计类别。
第二,它可以允许让使用者去建立一个公共密钥的序列而不需要访问相对应的私钥。这可允许HD钱包在不安全的服务器中使用或者在每笔交易中发行不同的公共钥匙。公共钥匙不需要被预先加载或者提前衍生,但是在服务器中不具有可用来支付的私钥。
BIP0038提出了一个通用标准,使用一个口令加密私钥并使用Base58Check对加密的私钥进行编码,这样加密的私钥就可以安全地保存在备份介质里,安全地在钱包间传输,保持密钥在任何可能被暴露情况下的安全性。这个加密标准使用了AES,这个标准由NIST建立,并广泛应用于商业和军事应用的数据加密。
BIP0038加密方案是: 输入一个比特币私钥,通常使用WIF编码过,base58chek字符串的前缀“5”。此外BIP0038加密方案需要一个长密码作为口令,通常由多个单词或一段复杂的数字字母字符串组成。BIP0038加密方案的结果是一个由base58check编码过的加密私钥,前缀为6P。如果你看到一个6P开头的的密钥,这就意味着该密钥是被加密过,并需个口令来转换(解码) 该密钥回到可被用在任何钱包WIF格式的私钥(前缀为5)。许多钱包APP现在能够识别BIP0038加密过的私钥,会要求用户提供口令解码并导入密钥。
最通常使用BIP0038加密的密钥用例是纸钱包一一张纸张上备份私钥。只要用户选择了强口令,使用BIP0038加密的私钥的纸钱包就无比的安全,这也是一种很棒的比特币离线存储方式(也被称作“冷存储”)。
P2SH函数最常见的实现时用于多重签名地址脚本。顾名思义,底层脚本需要多个签名来证明所有权,然后才能消费资金。这类似在银行开设一个联合账户。
你可以通过计算,生成特殊的比特币地址,例如我需要一个Hello开头的地址,你可以通过脚本来生成这样一个地址。但是每增加一个字符,计算量会增加58倍,超过7个字符,需要专门的硬件或者矿机来生成,如果是8~10个字符,那么计算量将无法想象。
『捌』 虚拟币D开头的地址
应该就是像3开头的比特币地址一样。
虚拟货币地址是一种安全标识符,由一组唯一的字符串标记组成,允许交易者通过地址向个人或实体进行转账付款。虚拟货币地址通常需要一个私钥来专门访问存于其中的资金。
例如,比特币地址是以1或3开头的字母数字字符串,而以太坊地址以“0x”开头。比特币地址通常为26-35个字符,以太坊地址为40个字符。