神經網路模型挖礦
❶ 請簡述一下神經網路的PDB模型
資料1.人工神經網路理論基礎
包括:
(1) PDP(Parallel Distribated Processing)模式
(2) 容限理論
(3) 網路拓撲
(4) 混沌理論
1、PDP模式
PDP模式是一種認知心理的平行分布式模式。認知是信息處理過程,並且是知覺、注意、記憶、學習、表象、思維、概念形式、問題求解、語言、情緒、個性差異等等有機聯系的處理過程。PDP模式是一種接近人類思維推論的模式。人腦中知識的表達是採用分布式的表達結構,人腦的控制是實行分布式的控制方式。相互作用、相互限制是PDP模式的基本思想,平行分布是PDP模式的基本構架。
PDP模式的實施,需要一種合理的表示方法,其中一種表示方法便是人工神經網路表示法。即採用類似於大腦神經網路的體系結構,在這種基本體系結構下,使人工神經網路經過學習訓練,能適應多種知識體系。
參考:http://gamejedi.cn/bbs/dispbbs.asp?boardid=7&id=924&star=1&page=2
資料2.神經網路模型
信息加工模型有助於理論家把其理論假設進一步細致化、具體化。然而正如我們在第一節所討論過的,遵循聯結主義傳統的學者對比提出了反對意見,認為這一模型假設認知過程是繼時性流動,而事實並非總是如此,(參見Rumelhart, Hinton,和 McClelland, 1986),至少有一些認知過程更可能是同時發生的。比如說司機開車時可同時與人講話。一種用得越來越多的模型是神經網路模型(或稱並行分布模型)。這類模型認為不同的認知過程可以同時發生,這一假設與人們的主觀感覺相一致:許多東西同時出現在腦海中。這一假設還與我們已知的大腦神經的操作相一致。
神經網路模型假設有一系列相互連接的加工單元,而且這些單元的激活水平是不同的。根據不同的傳播規則,激活從一個單元傳播到與之相連的其它單元。
參考:http://jpkc.ecnu.e.cn/jxcg/931045/stu/ygg02/gg021/gg02102/gg02102c.htm
3.
❷ 神經網路是什麼
神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。
人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。
(2)神經網路模型挖礦擴展閱讀:
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
1、生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
2、建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
3、演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
❸ 神經網路挖掘模型與logistic回歸挖掘模型的不同點有哪些
邏輯回歸有點像線性回歸,但是它是當因變數不是數字時使用。比如說因變數是布爾變數(如是/否響應),這時候就需要邏輯回歸。它稱為回歸,但實際上是是根據回歸進行分類,它將因變數分類為兩個類中的任何一個。
網頁鏈接
如上所述,邏輯回歸用於預測二進制輸出。例如,如果信用卡公司打算建立一個模型來決定是否向客戶發放信用卡,它將模擬客戶是否需要這張或者能夠承擔這張信用卡 。
它給出了事件發生概率的對數,以記錄未發生事件的概率。最後,它根據任一類的較高概率對變數進行分類。
而神經網路(Neutral Network)是通過數學演算法來模仿人腦思維的,它是數據挖掘中機器學習的典型代表。神經網路是人腦的抽象計算模型,我們知道人腦中有數以百億個神經元(人腦處理信息的微單元),這些神經元之間相互連接,是的人的大腦產生精密的邏輯思維。而數據挖掘中的「神經網路」也是由大量並行分布的人工神經元(微處理單元)組成的,它有通過調整連接強度從經驗知識中進行學習的能力,並可以將這些知識進行應用。
神經網路就像是一個愛學習的孩子,您教她的知識她是不會忘記而且會學以致用的。我們把學習集(Learning Set)中的每個輸入加到神經網路中,並告訴神經網路輸出應該是什麼分類。在全部學習集都運行完成之後,神經網路就根據這些例子總結出她自己的想法,到底她是怎麼歸納的就是一個黑盒了。之後我們就可以把測試集(Testing Set)中的測試例子用神經網路來分別作測試,如果測試通過(比如80%或90%的正確率),那麼神經網路就構建成功了。我們之後就可以用這個神經網路來判斷事務的分類了。
具體來說,」神經網路「是一組互相連接的輸入/輸出單元,其中每個連接都會與一個券種相關聯。在學習階段,通過調整這些連接的權重,就能夠預測輸入觀測值的正確類標號。因此可以理解為人工神經網路是由大量神經網路元通過豐富完善的連接、抽樣、簡化和模擬而形成的一種信息處理系統。
❹ 神經網路到底能幹什麼
神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。
❺ 神經網路演算法原理
4.2.1 概述
人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。
神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。
神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。
人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。
儲層特徵研究與預測
以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。
❻ 300505川金諾有礦山多少
300505川金諾有礦山8個。礦山是指在一定的開采邊界內開采礦石的獨立生產經營單位。礦山主要包括一個或多個采礦車間或坑口、礦山、露天礦等和一些輔助車間,大多數礦山還包括選礦場。礦山包括煤礦、金屬礦山、非金屬礦山、建材礦山和化工礦山。礦山規模(也稱生產能力)通常以年產量或日產量表示。年產量是指礦山每年生產的礦石量。按產量大小分為大、中、小三種。礦山規模的大小應與礦山經濟合理的使用壽命相適應。只有這樣,才能節省基建費用,降低成本。在礦山生產過程中,挖礦作業既是消耗人力物力最多、佔用資金最多、降低挖礦成本的潛力最大的環節。降低采礦成本的主要途徑是提高勞動生產率和產品質量,減少材料消耗。
拓展資料:
1、 加拿大制定了2050年要實現的長期規劃
將加拿大北部偏遠地區的一座礦山實現為無人礦山,通過薩德伯里所有礦山設備的衛星作業,實現機械自動破碎、自動切割開采;芬蘭礦業也在1992年公布了自己的智能采礦技術方案,涉及采礦實時過程式控制制、資源實時管理、礦山信息網路建設、新型機械應用和自動控制等28個課題;瑞典還制定了「grountecknik 2000」戰略計劃,進軍礦山自動化領域。中國礦業大學等單位也先後在礦山機器人、礦山地理信息系統三維地球科學模擬等方面開展了技術開發和應用研究。礦山虛擬現實、礦山GPS定位等。
2、 澳大利亞聯邦科學與工業組織制定了一項為期三年的煤炭勘探和開采研究計劃
投資3100萬美元,重點開展資源評估、采礦工藝創新六個方面的18個專項項目。礦井瓦斯控制利用、自動化、安全和精細物料控制。其中,地質評估和急救響應是最具特色的兩個。地質評價:開發基於3D區塊模型的軟體,對礦山或礦區的地層環境沉積環境進行評價;多種異構數據微震監測。數據、中子伽馬采樣數據等通過互動式 3D和 4D軟體包在 3D 中可視化;並通過有限元/有限差分模型真實模擬開采後的岩體變形。應急響應:開發了人身安全定位和監控系統。該系統由控制器、監控設備、網路信標和礦機異頻雷達收發器組成。具有無線通訊能力,即在瓦斯爆炸等井下災害發生後,仍可報告井下礦工的位置和安全狀態。
3、 應用實時礦山勘察、GPS實時導航與遠程式控制制、GIS管理與輔助決策
3DGM,建立世界部分大型露天礦包括中國平朔礦區和霍林河礦區礦床模型並可在辦公室生成采礦計劃,並與采場設備聯動,形成動態管理和遠程式控制制指揮系統。此外,專家系統、神經網路、模糊邏輯、自適應模式識別和遺傳演算法、GPS技術、並行計算技術、射頻識別技術和岩石力學問題的全局優化方法和遙感技術等人工智慧技術也得到了廣泛應用。應用於智能礦山地質勘探與調查、智能礦山設計、智能礦山開采、規劃與控制、礦山災害遙感預測等研究領域。
4、 采礦方法:
根據礦石開采過程中采場管理方式的不同,非煤礦山的開采方式可分為四類:露天采場開采法的特點是在開采過程中,采空區主要由臨時或永久性殘柱支撐。采空區總是空的。一般在礦石和圍岩非常穩定的情況下採用。崩落開采法的特點是在開采礦石時有計劃地用崩落礦體的上覆岩層和上下圍岩充填采空區,以控制礦區地壓。一般在礦體圍岩不穩定,允許地表坍塌的情況下採用。充填開采法的特點是在開采過程中,采空區由充填材料支撐。該方法能有效維護采空區,對圍岩穩定性要求不高,但生產成本較高。主要用於礦值高、充填物充足、地表無沉降和地質條件特別復雜的采礦條件。
❼ 人工神經網路的網路模型
人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:
網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。
❽ 神經網路ART1模型
一、ART1模型概述
自適應共振理論(Adaptive Resonance Theory)簡稱ART,是於1976年由美國Boston大學S.Grossberg提出來的。
這一理論的顯著特點是,充分利用了生物神經細胞之間自興奮與側抑制的動力學原理,讓輸入模式通過網路雙向連接權的識別與比較,最後達到共振來完成對自身的記憶,並以同樣的方法實現網路的回想。當提供給網路回想的是一個網路中記憶的、或是與已記憶的模式十分相似的模式時,網路將會把這個模式回想出來,提出正確的分類。如果提供給網路回想的是一個網路中不存在的模式,則網路將在不影響已有記憶的前提下,將這一模式記憶下來,並將分配一個新的分類單元作為這一記憶模式的分類標志。
S.Grossberg和G.A.Carpenter經過多年研究和不斷發展,至今已提出了ART1,ART2和ART3三種網路結構。
ART1網路處理雙極型(或二進制)數據,即觀察矢量的分量是二值的,它只取0或1。
二、ART1模型原理
ART1網路是兩層結構,分輸入層(比較層)和輸出層(識別層)。從輸入層到輸出層由前饋連接權連接,從輸出層到輸入層由反饋連接權連接。
設網路輸入層有N個神經元,網路輸出層有M個神經元,二值輸入模式和輸出向量分別為:Xp=(
ART1網路的學習及工作過程,是通過反復地將輸入學習模式由輸入層向輸出層自下而上的識別和由輸出層向輸入層自上而下的比較過程來實現的。當這種自下而上的識別和自上而下的比較達到共振,即輸出向量可以正確反映輸入學習模式的分類,且網路原有記憶沒有受到不良影響時,網路對一個輸入學習模式的記憶分類則告完成。
ART1網路的學習及工作過程,可以分為初始化階段、識別階段、比較階段和探尋階段。
1.初始化階段
ART1網路需要初始化的參數主要有3個:
即W=(wnm)N×M,T=(tnm)N×M和ρ。
反饋連接權T=(tnm)N×M在網路的整個學習過程中取0或1二值形式。這一參數實際上反映了輸入層和輸出層之間反饋比較的范圍或強度。由於網路在初始化前沒有任何記憶,相當於一張白紙,即沒有選擇比較的余的。因此可將T的元素全部設置為1,即
tnm=1,n=1,2,…,N,m=1,2,…,M。(1)
這意味著網路在初始狀態時,輸入層和輸出層之間將進行全范圍比較,隨著學習過程的深入,再按一定規則選擇比較范圍。
前饋連接權W=(wnm)N×M在網路學習結束後,承擔著對學習模式的記憶任務。在對W初始化時,應該給所有學習模式提供一個平等競爭的機會,然後通過對輸入模式的競爭,按一定規則調整W。W的初始值按下式設置:
中國礦產資源評價新技術與評價新模型
ρ稱為網路的警戒參數,其取值范圍為0<ρ≤1。
2.識別階段
ART1網路的學習識別階段發生在輸入學習模式由輸入層向輸出層的傳遞過程中。在這一階段,首先將一個輸入學習模式Xp=(
中國礦產資源評價新技術與評價新模型
中國礦產資源評價新技術與評價新模型
中國礦產資源評價新技術與評價新模型
至此,網路的識別過程只是告一段落,並沒有最後結束。此時,神經元m=g是否真正有資格代表對輸入學習模式Xp的正確分類,還有待於下面的比較和尋找階段來進一步確定。一般情況下需要對代表同一輸入學習模式的分類結果的神經元進行反復識別。
3.比較階段
ART1網路的比較階段的主要職能是完成以下檢查任務,每當給已學習結束的網路提供一個供識別的輸入模式時,首先檢查一下這個模式是否是已學習過的模式,如果是,則讓網路回想出這個模式的分類結果;如果不是,則對這個模式加以記憶,並分配一個還沒有利用過的輸出層神經元來代表這個模式的分類結果。
具體過程如下:把由輸出層每個神經元反饋到輸入層的各個神經元的反饋連接權向量Tm=(t1m,t2m,…,tNm),m=1,2,…,M作為對已學習的輸入模式的一條條記錄,即讓向量Tm=(t1m,t2m,…,tNm)與輸出層第m個神經元所代表的某一學習輸入模式Xp=(
當需要網路對某個輸入模式進行回想時,這個輸入模式經過識別階段,競爭到神經元g作為自己的分類結果後,要檢查神經元g反饋回來的向量Tg是否與輸入模式相等。如果相等,則說明這是一個已記憶過的模式,神經元g代表了這個模式的分類結果,識別與比較產生了共振,網路不需要再經過尋找階段,直接進入下一個輸入模式的識別階段;如果不相符,則放棄神經元g的分類結果,進入尋找階段。
在比較階段,當用向量Tg與輸入模式XP進行比較時,允許二者之間有一定的差距,差距的大小由警戒參數ρ決定。
首先計算
中國礦產資源評價新技術與評價新模型
Cg表示向量Tg與輸入模式XP的擬合度。
在式中,
當Tg=XP時,Cg=1。
當Cg≥ρ時,說明擬合度大於要求,沒有超過警戒線。
以上兩種情況均可以承認識別結果。
當Cg≠1且Cg>ρ時,按式(6)式(7)將前饋連接權Wg=(w1g,w2g,…,wNg)和反饋連接權Tg=(t1g,t2g,…,tNg)向著與XP更接近的方向調整。
中國礦產資源評價新技術與評價新模型
tng(t+1)=tng(t)*xn,n=1,2,…,N。(7)
當Cg<ρ時,說明擬合度小於要求,超過警戒線,則拒絕識別結果,將神經元g重新復位為0,並將這個神經元排除在下次識別范圍之外,網路轉入尋找階段。
4.尋找階段
尋找階段是網路在比較階段拒絕識別結果之後轉入的一個反復探尋的階段,在這一階段中,網路將在餘下的輸出層神經元中搜索輸入模式Xp的恰當分類。只要在輸出向量Yp=(
三、總體演算法
設網路輸入層有N個神經元,網路輸出層有M個神經元,二值輸入模式和輸出向量分別為:Xp=(
(1)網路初始化
tnm(0)=1,
中國礦產資源評價新技術與評價新模型
n=1,2,…,N,m=1,2,…,M。
0<ρ≤1。
(2)將輸入模式Xp=(
(3)計算輸出層各神經元輸入加權和
中國礦產資源評價新技術與評價新模型
(4)選擇XP的最佳分類結果
中國礦產資源評價新技術與評價新模型
令神經元g的輸出為1。
(5)計算
中國礦產資源評價新技術與評價新模型
中國礦產資源評價新技術與評價新模型
判斷
中國礦產資源評價新技術與評價新模型
當式(8)成立,轉到(7),否則,轉到(6)。
(6)取消識別結果,將輸出層神經元g的輸出值復位為0,並將這一神經元排除在下一次識別的范圍之外,返回步驟(4)。當所有已利用過的神經元都無法滿足式(8),則選擇一個新的神經元作為分類結果,轉到步驟(7)。
(7)承認識別結果,並按下式調整連接權
中國礦產資源評價新技術與評價新模型
tng(t+1)=tng(t)*xn,n=1,2,…,N。
(8)將步驟(6)復位的所有神經元重新加入識別范圍之內,返回步驟(2)對下一模式進行識別。
(9)輸出分類識別結果。
(10)結束。
四、實例
實例為ART1神經網路模型在柴北緣-東昆侖造山型金礦預測的應用。
1.建立綜合預測模型
柴北緣—東昆侖地區位於青海省的西部,是中央造山帶的西部成員——秦祁昆褶皺系的一部分,是典型的復合造山帶(殷鴻福等,1998)。根據柴北緣—東昆侖地區地質概括以及造山型金礦成礦特點,選擇與成礦相關密切的專題數據,建立柴北緣—東昆侖地區的綜合信息找礦模型:
1)金礦重砂異常數據是金礦的重要找礦標志。
2)金礦水化異常數據是金礦的重要找礦標志。
3)金礦的化探異常數據控制金礦床的分布。
4)金礦的空間分布與通過該區的深大斷裂有關。
5)研究區內斷裂密集程度控制金礦的產出。
6)重力構造的存在與否是金礦存在的一個標志。
7)磁力構造線的存在也是金礦存在的一個重要標志。
8)研究區地質復雜程度也對金礦的產出具有重要的作用。
9)研究區存在的礦(化)點是一個重要的標志。
2.劃分預測單元
預測工作是在單元上進行的,預測工作的結果是與單元有著較為直接的聯系,在找礦模型指導下,以最大限度地反映成礦信息和預測單元面積最小為原則,通過對研究區內地質、地球物理、地球化學等的綜合資料分析,對可能的成礦地段圈定了預測單元。採用網格化單元作為本次研究的預測單元,網格單元的大小是,40×40,將研究區劃分成774個預測單元。
3.變數選擇(表8-6)
4.ART1模型預測結果
ART1神經網路模型演算法中,給定不同的閾值,將改變預測分類的結果。本次實驗選取得閾值為ρ=0.41,系統根據此閾值進行計算獲得計算結果,並通過將不同的分類結果賦予不同的顏色,最終獲得ART模型預測單元的分類結果。分類的結果是形成29個類別。分類結果用不同的顏色表示,其具體結果地顯示見圖8-5。圖形中顏色只代表類別號,不代表分類的好壞。將礦點專題圖層疊加以後,可以看出,顏色為灰色的單元與礦的關系更為密切。
表8-6 預測變數標志的選擇表
圖8-5 東昆侖—柴北緣地區基於ARTL模型的金礦分類結果圖
❾ 神經網路Kohonen模型
一、Kohonen模型概述
1981年芬蘭赫爾辛基大學Kohonen教授提出了一個比較完整的,分類性能較好的自組織特徵影射(Self-Organizing Feature Map)人工神經網路(簡稱SOM網路)方案。這種網路也稱為Kohonen特徵影射網路。
這種網路模擬大腦神經系統自組織特徵影射功能,它是一種競爭式學習網路,在學習中能無監督地進行自組織學習。
二、Hohonen模型原理
1.概述
SOM網路由輸入層和競爭層組成。輸入層神經元數為N,競爭層由M=R×C神經元組成,構成一個二維平面陣列或一個一維陣列(R=1)。輸入層和競爭層之間實現全互連接。
SOM網路的基本思想是網路競爭層各神經元競爭對輸入模式的響應機會,最後僅有一個神經元成為競爭的勝者,並對那些與獲勝神經元有關的各連接權朝著更有利於它競爭的方向調整,這一獲勝神經元就表示對輸入模式的分類。
SOM演算法是一種無教師示教的聚類方法,它能將任意輸入模式在輸出層映射成一維或二維離散圖形,並保持其拓撲結構不變。即在無教師的情況下,通過對輸入模式的自組織學習,在競爭層將分類結果表示出來。此外,網路通過對輸入模式的反復學習,可以使連接權矢量空間分布密度與輸入模式的概率分布趨於一致,即連接權矢量空間分布能反映輸入模式的統計特徵。
2.網路權值初始化
因為網路輸入很可能出現在中間區,因此,如果競爭層的初始權值選擇在輸入空間的中間區,則其學習效果會更加有效。
3.鄰域距離矩陣
SOM網路中的神經元可以按任何方式排列,這種排列可以用表示同一層神經元間的Manhattan距離的鄰域距離矩陣D來描述,而兩神經元的Manhattan距離是指神經元坐標相減後的矢量中,其元素絕對值之和。
4.Kohonen競爭學習規則
設SOM網路的輸入模式為Xp=(
Wj=(wj1,wj2,…,wjN),j=1,2,…,M。
Kohonen網路自組織學習過程包括兩個部分:一是選擇最佳匹配神經元,二是權矢量自適應變化的更新過程。
確定輸入模式Xp與連接權矢量Wj的最佳匹配的評價函數是兩個矢量的歐氏距離最小,即
g,確定獲勝神經元g。
dg=mjin(dj),j=1,2,…,M。
求輸入模式Xp在競爭層的獲勝神經元g及其在鄰域距離nd內的神經元的輸出。
中國礦產資源評價新技術與評價新模型
dgm為鄰域距離矩陣D的元素,為競爭層中獲勝神經元g與競爭層中其它神經元的距離。
求輸入模式Xp在競爭層的獲勝神經元g及其在鄰域距離nd內的神經元的權值修正值。
中國礦產資源評價新技術與評價新模型
式中:i=1,2,…,N;
lr為學習速率;
t為學習循環次數。
Δwjt(t+1)的其餘元素賦值為0。
進行連接權的調整
wji(t+1)=wji(t)+Δwji(t+1)。
5.權值學習中學習速率及鄰域距離的更新
(1)SOM網路的學習過程分為兩個階段
第一階段為粗學習與粗調整階段。在這一階段內,連接權矢量朝著輸入模式的方向進行調整,神經元的權值按照期望的方向在適應神經元位置的輸入空間建立次序,大致確定輸入模式在競爭層中所對應的影射位置。一旦各輸入模式在競爭層有了相對的影射位置後,則轉入精學習與細調整階段,即第二階段。在這一階段內,網路學習集中在對較小的范圍內的連接權進行調整,神經元的權值按照期望的方向在輸入空間伸展,直到保留到他們在粗調整階段所建立的拓撲次序。
學習速率應隨著學習的進行不斷減小。
(2)鄰域的作用與更新
在SOM網路中,腦神經細胞接受外界信息的刺激產生興奮與抑制的變化規律是通過鄰域的作用來體現的鄰域規定了與獲勝神經元g連接的權向量Wg進行同樣調整的其他神經元的范圍。在學習的最初階段,鄰域的范圍較大,隨著學習的深入進行,鄰域的范圍逐漸縮小。
(3)學習速率及鄰域距離的更新
在粗調整階段,
學習參數初始化
最大學習循環次數 MAX_STEP1=1000,
粗調整階段學習速率初值 LR1=1.4,
細調整階段學習速率初值 LR2=0.02,
最大鄰域距離 MAX_ND1=Dmax,
Dmax為鄰域距離矩陣D的最大元素值。
粗調階段
學習循環次數step≤MAX_STEP1,
學習速率lr從LR1調整到LR2,
鄰域距離nd 從MAX_ND1調整到1,
求更新系數r,
r=1-step/MAX_STEP1,
鄰域距離nd更新,
nd=1.00001+(MAX_ND1-1)×r。
學習速率lr更新,
lr=LR2+(LR1-LR2)×r。
在細調整階段,
學習參數初始化,
最大學習循環次數 MAX_STEP2=2000,
學習速率初值 LR2=0.02,
最大鄰域距離 MAX_ND2=1。
細調階段
MAX_STEP1<step≤MAX_STEP1+MAX_STEP2,
學習速率lr慢慢從LR2減少,
鄰域距離nd設為1,
鄰域距離nd更新,
nd=MAX_ND2+0.00001。
學習速率lr更新,
lr=LR2×(MAX_STEP1/step)。
6.網路的回想——預測
SOM網路經學習後按照下式進行回想:
中國礦產資源評價新技術與評價新模型
Yj=0,j=1,2,…,M,(j≠g)。
將需要分類的輸入模式提供給網路的輸入層,按照上述方法尋找出競爭層中連接權矢量與輸入模式最接近的神經元,此時神經元有最大的激活值1,而其它神經元被抑制而取0值。這時神經元的狀態即表示對輸入模式的分類。
三、總體演算法
1.SOM權值學習總體演算法
(1)輸入參數X[N][P]。
(2)構造權值矩陣W[M][N]。
1)由X[N][P]求Xmid[N],
2)由Xmid[N]構造權值W[M][N]。
(3)構造競爭層。
1)求競爭層神經元數M,
2)求鄰域距離矩陣D[M][M],
3)求矩陣D[M][M]元素的最大值Dmax。
(4)學習參數初始化。
(5)學習權值W[M][N]。
1)學習參數學習速率lr,鄰域距離nd更新,分兩階段:
(i)粗調階段更新;
(ii)細調階段更新。
2)求輸入模式X[N][p]在競爭層的獲勝神經元win[p]。
(i)求X[N][p]與W[m][N]的歐氏距離dm;
(ii)按距離dm最短,求輸入模式X[N][p]在競爭層的獲勝神經元win[p]。
3)求輸入模式X[N][p]在競爭層的獲勝神經元win[p]及其在鄰域距離nd內的神經元的輸出Y[m][p]。
4)求輸入模式X[N][p]在競爭層的獲勝神經元win[p]及其
在鄰域距離nd內的神經元的權值修正值ΔW[m][N],
從而得到輸入模式X[N][p]產生的權值修正值ΔW[M][N]。
5)權值修正W[M][N]=W[M][N]+ΔW[M][N]。
6)學習結束條件:
(i)學習循環到MAX_STEP次;
(ii)學習速率lr達到用戶指定的LR_MIN;
(iii)學習時間time達到用戶指定的TIME_LIM。
(6)輸出。
1)學習得到的權值矩陣W[M][N];
2)鄰域距離矩陣D[M][M]。
(7)結束。
2.SOM預測總體演算法
(1)輸入需分類數據X[N][P],鄰域距離矩陣D[M][M]。
(2)求輸入模式X[N][p]在競爭層的獲勝神經元win[p]。
1)求X[N][p]與W[m][N]的歐氏距離dm;
2)按距離dm最短,求輸入模式X[N][p]在競爭層的獲勝神經元win[p]。
(3)求獲勝神經元win[p]在競爭層排列的行列位置。
(4)輸出與輸入數據適應的獲勝神經元win[p]在競爭層排列的行列位置,作為分類結果。
(5)結束。
四、總體演算法流程圖
Kohonen總體演算法流程圖見附圖4。
五、數據流圖
Kohonen數據流圖見附圖4。
六、無模式識別總體演算法
假定有N個樣品,每個樣品測量M個變數,則有原始數據矩陣:
X=(xij)N×M,i=1,2,…,N,j=1,2,…,M。
(1)原始數據預處理
X=(xij)N×M處理為Z=(zij)N×M,
分3種處理方法:
1)襯度;
2)標准化;
3)歸一化。
程序默認用歸一化處理。
(2)構造Kohonen網
競爭層與輸入層之間的神經元的連接權值構成矩陣WQ×M。
WQ×M初始化。
(3)進入Kohonen網學習分類循環,用epoch記錄循環次數,epoch=1。
(4)在每個epoch循環中,對每個樣品n(n=1,2,…,N)進行分類。從1個樣品n=1開始。
(5)首先計算輸入層的樣品n的輸入數據znm(m=1,2,…,M)與競爭層Q個神經元對應權值wqm的距離。
(6)尋找輸入層的樣品n與競爭層Q個神經元的最小距離,距離最小的神經元Win[n]為獲勝神經元,將樣品n歸入獲勝神經元Win[n]所代表的類型中,從而實現對樣品n的分類。
(7)對樣品集中的每一個樣品進行分類:
n=n+1。
(如果n≤N,轉到5。否則,轉到8。)
(8)求分類後各神經元所對應的樣品的變數的重心,用對應的樣品的變數的中位數作為重心,用對應的樣品的變數的重心來更新各神經元的連接權值。
(9)epoch=epoch+1;
一次學習分類循環結束。
(10)如果滿足下列兩個條件之一,分類循環結束,轉到11;
否則,分類循環繼續進行,轉到4。
1)全部樣品都固定在某個神經元上,不再改變了;
2)學習分類循環達到最大迭代次數。
(11)輸出:
1)N個樣品共分成多少類,每類多少樣品,記錄每類的樣品編號;
2)如果某類中樣品個數超過1個,則輸出某類的樣品原始數據的每個變數的均值、最小值、最大值和均方差;
3)如果某類中樣品個數為1個,則輸出某類的樣品原始數據的各變數值;
4)輸出原始數據每個變數(j=1,2,…,M)的均值,最小值,最大值和均方差。
(12)結束。
七、無模式識別總體演算法流程圖
Kohonen無模式總體演算法流程圖見附圖5。
❿ 神經網路BP模型
一、BP模型概述
誤差逆傳播(Error Back-Propagation)神經網路模型簡稱為BP(Back-Propagation)網路模型。
Pall Werbas博士於1974年在他的博士論文中提出了誤差逆傳播學習演算法。完整提出並被廣泛接受誤差逆傳播學習演算法的是以Rumelhart和McCelland為首的科學家小組。他們在1986年出版「Parallel Distributed Processing,Explorations in the Microstructure of Cognition」(《並行分布信息處理》)一書中,對誤差逆傳播學習演算法進行了詳盡的分析與介紹,並對這一演算法的潛在能力進行了深入探討。
BP網路是一種具有3層或3層以上的階層型神經網路。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。網路按有教師示教的方式進行學習,當一對學習模式提供給網路後,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網路的輸入響應。在這之後,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最後回到輸入層,故得名「誤差逆傳播學習演算法」。隨著這種誤差逆傳播修正的不斷進行,網路對輸入模式響應的正確率也不斷提高。
BP網路主要應用於以下幾個方面:
1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網路逼近一個函數;
2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;
3)分類:把輸入模式以所定義的合適方式進行分類;
4)數據壓縮:減少輸出矢量的維數以便於傳輸或存儲。
在人工神經網路的實際應用中,80%~90%的人工神經網路模型採用BP網路或它的變化形式,它也是前向網路的核心部分,體現了人工神經網路最精華的部分。
二、BP模型原理
下面以三層BP網路為例,說明學習和應用的原理。
1.數據定義
P對學習模式(xp,dp),p=1,2,…,P;
輸入模式矩陣X[N][P]=(x1,x2,…,xP);
目標模式矩陣d[M][P]=(d1,d2,…,dP)。
三層BP網路結構
輸入層神經元節點數S0=N,i=1,2,…,S0;
隱含層神經元節點數S1,j=1,2,…,S1;
神經元激活函數f1[S1];
權值矩陣W1[S1][S0];
偏差向量b1[S1]。
輸出層神經元節點數S2=M,k=1,2,…,S2;
神經元激活函數f2[S2];
權值矩陣W2[S2][S1];
偏差向量b2[S2]。
學習參數
目標誤差ϵ;
初始權更新值Δ0;
最大權更新值Δmax;
權更新值增大倍數η+;
權更新值減小倍數η-。
2.誤差函數定義
對第p個輸入模式的誤差的計算公式為
中國礦產資源評價新技術與評價新模型
y2kp為BP網的計算輸出。
3.BP網路學習公式推導
BP網路學習公式推導的指導思想是,對網路的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網路輸出誤差精度達到目標精度要求,學習結束。
各層輸出計算公式
輸入層
y0i=xi,i=1,2,…,S0;
隱含層
中國礦產資源評價新技術與評價新模型
y1j=f1(z1j),
j=1,2,…,S1;
輸出層
中國礦產資源評價新技術與評價新模型
y2k=f2(z2k),
k=1,2,…,S2。
輸出節點的誤差公式
中國礦產資源評價新技術與評價新模型
對輸出層節點的梯度公式推導
中國礦產資源評價新技術與評價新模型
E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。
其中
中國礦產資源評價新技術與評價新模型
則
中國礦產資源評價新技術與評價新模型
設輸出層節點誤差為
δ2k=(dk-y2k)·f2′(z2k),
則
中國礦產資源評價新技術與評價新模型
同理可得
中國礦產資源評價新技術與評價新模型
對隱含層節點的梯度公式推導
中國礦產資源評價新技術與評價新模型
E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。因此,上式只存在對k的求和,其中
中國礦產資源評價新技術與評價新模型
則
中國礦產資源評價新技術與評價新模型
設隱含層節點誤差為
中國礦產資源評價新技術與評價新模型
則
中國礦產資源評價新技術與評價新模型
同理可得
中國礦產資源評價新技術與評價新模型
4.採用彈性BP演算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb
1993年德國 Martin Riedmiller和Heinrich Braun 在他們的論文「A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm」中,提出Resilient Backpropagation演算法——彈性BP演算法(RPROP)。這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。
權改變的大小僅僅由權專門的「更新值」
中國礦產資源評價新技術與評價新模型
其中
權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。
中國礦產資源評價新技術與評價新模型
RPROP演算法是根據局部梯度信息實現權步的直接修改。對於每個權,我們引入它的
各自的更新值
於在誤差函數E上的局部梯度信息,按照以下的學習規則更新
中國礦產資源評價新技術與評價新模型
其中0<η-<1<η+。
在每個時刻,如果目標函數的梯度改變它的符號,它表示最後的更新太大,更新值
為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η–被設置到固定值
η+=1.2,
η-=0.5,
這兩個值在大量的實踐中得到了很好的效果。
RPROP演算法採用了兩個參數:初始權更新值Δ0和最大權更新值Δmax
當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。
為了使權不至於變得太大,設置最大權更新值限制Δmax,默認上界設置為
Δmax=50.0。
在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如
Δmax=1.0。
我們可能達到誤差減小的平滑性能。
5.計算修正權值W、偏差b
第t次學習,權值W、偏差b的的修正公式
W(t)=W(t-1)+ΔW(t),
b(t)=b(t-1)+Δb(t),
其中,t為學習次數。
6.BP網路學習成功結束條件每次學習累積誤差平方和
中國礦產資源評價新技術與評價新模型
每次學習平均誤差
中國礦產資源評價新技術與評價新模型
當平均誤差MSE<ε,BP網路學習成功結束。
7.BP網路應用預測
在應用BP網路時,提供網路輸入給輸入層,應用給定的BP網路及BP網路學習得到的權值W、偏差b,網路輸入經過從輸入層經各隱含層向輸出層的「順傳播」過程,計算出BP網的預測輸出。
8.神經元激活函數f
線性函數
f(x)=x,
f′(x)=1,
f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。
一般用於輸出層,可使網路輸出任何值。
S型函數S(x)
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。
f′(x)=f(x)[1-f(x)],
f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,
一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。
在用於模式識別時,可用於輸出層,產生逼近於0或1的二值輸出。
雙曲正切S型函數
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。
f′(x)=1-f(x)·f(x),
f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。
一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。
階梯函數
類型1
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
f′(x)=0。
類型2
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。
f′(x)=0。
斜坡函數
類型1
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。
中國礦產資源評價新技術與評價新模型
f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
類型2
中國礦產資源評價新技術與評價新模型
f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。
中國礦產資源評價新技術與評價新模型
f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
三、總體演算法
1.三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體演算法
(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];
(2)計算輸入模式X[N][P]各個變數的最大值,最小值矩陣 Xmax[N],Xmin[N];
(3)隱含層的權值W1,偏差b1初始化。
情形1:隱含層激活函數f( )都是雙曲正切S型函數
1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];
2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];
3)計算W,b的幅度因子Wmag;
4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];
5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];
6)計算W[S1][S0],b[S1];
7)計算隱含層的初始化權值W1[S1][S0];
8)計算隱含層的初始化偏差b1[S1];
9))輸出W1[S1][S0],b1[S1]。
情形2:隱含層激活函數f( )都是S型函數
1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];
2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];
3)計算W,b的幅度因子Wmag;
4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];
5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];
6)計算W[S1][S0],b[S1];
7)計算隱含層的初始化權值W1[S1][S0];
8)計算隱含層的初始化偏差b1[S1];
9)輸出W1[S1][S0],b1[S1]。
情形3:隱含層激活函數f( )為其他函數的情形
1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];
2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];
3)計算W,b的幅度因子Wmag;
4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];
5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];
6)計算W[S1][S0],b[S1];
7)計算隱含層的初始化權值W1[S1][S0];
8)計算隱含層的初始化偏差b1[S1];
9)輸出W1[S1][S0],b1[S1]。
(4)輸出層的權值W2,偏差b2初始化
1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];
2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];
3)輸出W2[S2][S1],b2[S2]。
2.應用彈性BP演算法(RPROP)學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b總體演算法
函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)
(1)輸入參數
P對模式(xp,dp),p=1,2,…,P;
三層BP網路結構;
學習參數。
(2)學習初始化
1)
2)各層W,b的梯度值
(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE
(4)進入學習循環
epoch=1
(5)判斷每次學習誤差是否達到目標誤差要求
如果MSE<ϵ,
則,跳出epoch循環,
轉到(12)。
(6)保存第epoch-1次學習產生的各層W,b的梯度值
(7)求第epoch次學習各層W,b的梯度值
1)求各層誤差反向傳播值δ;
2)求第p次各層W,b的梯度值
3)求p=1,2,…,P次模式產生的W,b的梯度值
(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值
(9)求各層W,b的更新
1)求權更新值Δij更新;
2)求W,b的權更新值
3)求第epoch次學習修正後的各層W,b。
(10)用修正後各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE
(11)epoch=epoch+1,
如果epoch≤MAX_EPOCH,轉到(5);
否則,轉到(12)。
(12)輸出處理
1)如果MSE<ε,
則學習達到目標誤差要求,輸出W1,b1,W2,b2。
2)如果MSE≥ε,
則學習沒有達到目標誤差要求,再次學習。
(13)結束
3.三層BP網路(含輸入層,隱含層,輸出層)預測總體演算法
首先應用Train3lBP_RPROP( )學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b,然後應用三層BP網路(含輸入層,隱含層,輸出層)預測。
函數:Simu3lBP( )。
1)輸入參數:
P個需預測的輸入數據向量xp,p=1,2,…,P;
三層BP網路結構;
學習得到的各層權值W、偏差b。
2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網路輸出 y2[S2][P],輸出預測結果y2[S2][P]。
四、總體演算法流程圖
BP網路總體演算法流程圖見附圖2。
五、數據流圖
BP網數據流圖見附圖1。
六、實例
實例一 全國銅礦化探異常數據BP 模型分類
1.全國銅礦化探異常數據准備
在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。
2.模型數據准備
根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。這7類分別是岩漿岩型銅礦、斑岩型銅礦、矽卡岩型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。
3.測試數據准備
全國化探數據作為測試數據集。
4.BP網路結構
隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。
表8-1 模型數據表
續表
5.計算結果圖
如圖8-2、圖8-3。
圖8-2
圖8-3 全國銅礦礦床類型BP模型分類示意圖
實例二 全國金礦礦石量品位數據BP 模型分類
1.模型數據准備
根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠岩型金礦、與中酸性浸入岩有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。
2.測試數據准備
模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。
3.BP網路結構
輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。
表8-2 模型數據
4.計算結果
結果見表8-3、8-4。
表8-3 訓練學習結果
表8-4 預測結果(部分)
續表