黑洞礦池計劃
⑴ 如果想要獲得黑洞投資的投資機會應該做哪些工作呀
想要獲得黑洞投資的投資機會,放棄吧小心被騙
⑵ 怎麼尋找自己的時間黑洞
首先從自己的睡眠開始入手,自己是白天睡覺,晚上熬夜嗎?如果該睡的時候不睡,該起的時候不起,那些做錯誤的事情的時間都可以認為是時間黑洞。
一個重要的觀念:正確的時間做正確的事情!
假設三餐加午休要兩個小時,還剩15個小時。十五個小時,工作日要工作7~8個小時,剩下一半的時間怎麼度過,可能路上還有花掉1個小時,還有六七個小時可以自由支配。
你會用這些時間做些什麼呢?學習、放鬆、運動、玩手機、玩游戲、看視頻、陪伴親朋,還有一些家務事……可以做很多事情,如果自己有計劃,並且按照計劃執行了,那沒什麼可說的!自己一定很滿意,對吧?如果計劃玩一個小時游戲,結果停不下來,一直玩,超出去的時間就是時間黑洞。
⑶ 黑洞的介紹
黑洞是無限大密度的中心,無限高的時間和空間曲率,無限小的體積,無限大的奇點和周圍天空的一部分,在這個區域內是不可見的。
黑洞是現代廣義相對論宇宙中的一種天體。黑洞的引力很大,以至於地平線上的逃逸速度大於光速。
不能直接觀察黑洞,但可以間接地學習它的存在和質量,並觀察其對其他事物的影響。通過在吸入物體之前呈現由於高熱引起的伽馬射線的「邊緣消息」,可以獲得存在黑洞的信息。據推測,黑洞的存在也可以通過間接觀察恆星或星際氣團的軌跡來獲得位置和質量。
(3)黑洞礦池計劃擴展閱讀:
黑洞演化過程
黑洞是無限大密度的中心,無限高的時間和空間曲率,無限小的體積,無限大的奇點和周圍天空的一部分,在這個區域內是不可見的。根據阿爾伯特愛因斯坦的相對論,當一顆垂死的恆星坍塌時,它將聚集在一起,這將成為一個黑洞,吞沒所有光線和相鄰宇宙中的任何物質。
所謂「黑洞」中心,是指那些外界物質不容易進入、有形物質又很少的區域。因此,在「黑洞」的中心都是空白區域。由於它對四周物質的吸引力在每個方向幾乎都是均勻的,通常在「黑洞」周圍物質運行的軌跡都是圓形漩渦狀的。
因為「黑洞」物質分布密度都不相同,它的周圍通常還會伸出一些旋臂(如可見的星系旋臂),從而造成同方向輻射強弱程度不同的射線脈沖現象(即脈沖星)。
參考資料:網路-黑洞
⑷ 人類首次「看見」的那個黑洞多波段指紋被成功捕獲,這有什麼價值
來自全球32個國家和地區的近200個科研機構的760名科學家和工程師組成的團隊,使用19個望遠鏡陣列同時觀察並成功捕獲了人類首次“看見”的多波段黑洞指紋。
最新研究表明,至少2017年的觀測結果支持這些伽馬射線不在事件視界附近產生。解決這場辯論的關鍵是將其與2018年數據以及本月收集的新數據進行比較。
這些觀察結果與當前和未來事件范圍的望遠鏡觀察結果相結合,使科學家能夠分析天體物理學研究中一些最重要和最具挑戰性的領域。
三、幫助科學家估算傳輸的能量以及黑洞噴射流向周圍環境的反饋。阿姆斯特丹大學的合作者塞拉馬爾科夫表示,粒子的加速機制是科學家了解黑洞照片和噴流的關鍵。噴流將黑洞釋放的能量帶到更大的地方,就像一條巨大的能量傳送帶。這些數據將幫助科學家估算所攜帶的能量以及黑洞噴流對周圍環境的反饋。
結語:面對廣闊的宇宙,科學探索是無止境的。此次黑洞M87的數據對科學家探索宇宙的奧秘將有不計其數的價值。
⑸ 那位大蝦幫我解釋一下黑洞如何扭曲時間的,不要抽象過程 形象點
這個不需要圖解,很簡單就可以理解的。
首先明確幾個概念,根據目前的科學得知時間是無法逆轉的。也就是說你只能去到未來,但不能回到過去。
再來就是關於超光速能回到過去的傳聞。超越光速只能看到過去的「影像」,自己不能改變任何東西。
獲得萬有引力方式只有兩種:1.物體之間互相吸引 2.物理在做高速運動
再來說回黑洞。我們知道黑洞中心引力是無窮大的,連光都逃不出去。
當物體受到的萬有引力越大的時候,時間會開始變慢。
當靠近黑洞時,其重力會開始加大,直到無窮大。
黑洞也是只能令你到未來,不能回到過去。
當你受到的重力或運動速度增大時,你的相對時間就會開始變慢,當到達光速時,你的相對時間就會停止。
為什麽說你受到的重力越大你的時間就越慢呢?
說一個例子:
光是直線傳播的。當從一個物體傳播到另一個物體時是之前前進的。
一個物體對別的物體的萬有引力越大,其三維空間的二次平面上會出現塌陷,就是好像把一個重物放一張凌空的撐開的布的中央,布的中間會受到重力的向下陷。
當光經過這里的時候,其路程比不經過這里的路程增加了,因為經過的地方有空間的彎曲,路徑就變長了。
而速度依然沒有變,根據s=vt
v不變時s增大,t就會增大。
其時間就會增長,相對不經過這里的光的傳播時間增加了,於是相對時間變慢了。
當重力足夠大時,能達到足夠牽引光時,光經過這個塌陷時,其永遠無法出去,達到目的地,因此相對時間停止了。
黑洞就是能形成相當這種程度塌陷的物體,所以說經過其周圍時,你的相對時間變慢了,於是使你去到了未來,也就是扭曲了時間。
希望能幫到樓主
⑹ 黑洞的探索歷史
1970年,美國的「自由」號人造衛星發現了與其他射線源不同的天鵝座X-1,位於天鵝座X-1上的是一個比太陽重30多倍的巨大藍色星球,該星球被一個重約10個太陽的看不見的物體牽引著。天文學家一致認為這個物體就是黑洞,它就是人類發現的第一個黑洞。
1928年,薩拉瑪尼安·錢德拉塞卡到英國劍橋跟英國天文學家阿瑟·愛丁頓爵士(一位廣義相對論家)學習。錢德拉塞卡意識到,不相容原理所能提供的排斥力有一個極限。恆星中的粒子的最大速度差被相對論限制為光速。這意味著,恆星變得足夠緊致之時,由不相容原理引起的排斥力就會比引力的作用小。錢德拉塞卡計算出;一個大約為太陽質量一倍半的冷的恆星不能支持自身以抵抗自己的引力。(這質量稱為錢德拉塞卡極限)前蘇聯科學家列夫·達維多維奇·蘭道幾乎在同時也發現了類似的結論。
如果一顆恆星的質量比錢德拉塞卡極限小,它最後會停止收縮並終於變成一顆半徑為幾千英里和密度為每立方英寸幾百噸的「白矮星」。白矮星是它物質中電子之間的不相容原理排斥力所支持的。第一顆被觀察到的是繞著夜空中最亮的恆星——天狼星轉動的那一顆。
蘭道指出,對於恆星還存在另一可能的終態。其極限質量大約也為太陽質量的一倍或二倍,但是其體積甚至比白矮星還小得多。這些恆星是由中子和質子之間,而不是電子之間的不相容原理排斥力所支持。所以它們被叫做中子星。它們的半徑只有10英里左右,密度為每立方英寸幾億噸。在中子星被第一次預言時,並沒有任何方法去觀察它,很久以後它們才被觀察到。
另一方面,質量比錢德拉塞卡極限還大的恆星在耗盡其燃料時,會出現一個很大的問題:在某種情形下,它們會爆炸或拋出足夠的物質,使自己的質量減少到極限之下,以避免災難性的引力坍縮,不管恆星有多大,這總會發生。愛丁頓拒絕相信錢德拉塞卡的結果。愛丁頓認為,一顆恆星不可能坍縮成一點。這是大多數科學家的觀點:愛因斯坦自己寫了一篇論文,宣布恆星的體積不會收縮為零。其他科學家,尤其是他以前的老師、恆星結構的主要權威——愛丁頓的敵意使錢德拉塞卡拋棄了這方面的工作,轉去研究諸如恆星團運動等其他天文學問題。然而,他獲得1983年諾貝爾獎,至少部分原因在於他早年所做的關於冷恆星的質量極限的工作。
錢德拉塞卡指出,不相容原理不能夠阻止質量大於錢德拉塞卡極限的恆星發生坍縮。但是,根據廣義相對論,這樣的恆星會發生什麼情況呢。這個問題被一位年輕的美國人羅伯特·奧本海默於1939年首次解決。然而,他所獲得的結果表明,用當時的望遠鏡去觀察不會再有任何結果。以後,因第二次世界大戰的干擾,奧本海默捲入到原子彈計劃中去。戰後,由於大部分科學家被吸引到原子和原子核尺度的物理中去,因而引力坍縮的問題被大部分人忘記了。
1967年,劍橋的一位研究生約瑟琳·貝爾發現了天空發射出無線電波的規則脈沖的物體,這對黑洞的存在的預言帶來了進一步的鼓舞。起初貝爾和她的導師安東尼·赫維許以為,他們可能和我們星系中的外星文明進行了接觸。在宣布他們發現的討論會上,他們將這四個最早發現的源稱為LGM1-4,LGM表示「小綠人」(「Little Green Man」)的意思。最終他們和所有其他人的結論是這些被稱為脈沖星的物體,事實上是旋轉的中子星,這些中子星由於在黑洞這個概念剛被提出的時候,共有兩種光理論:一種是牛頓贊成的光的微粒說;另一種是光的波動說。由於量子力學的波粒二象性,光既可認為是波,也可認為是粒子。在光的波動說中,不清楚光對引力如何響應。但是如果光是由粒子組成的,人們可以預料,它們正如同炮彈、火箭和行星那樣受引力的影響。起先人們以為,光粒子無限快地運動,所以引力不可能使之慢下來,但是羅麥關於光速度有限的發現表明引力對之可有重要效應。
1783年,劍橋的學監約翰·米歇爾在這個假定的基礎上,在《倫敦皇家學會哲學學報》上發表了一篇文章。他指出,一個質量足夠大並足夠緊致的恆星會有如此強大的引力場,以致於連光線都不能逃逸——任何從恆星表面發出的光,還沒到達遠處即會被恆星的引力吸引回來。米歇爾暗示,可能存在大量這樣的恆星,雖然會由於從它們那裡發出的光不會到達我們這兒而使我們不能看到它們,但我們仍然可以感到它們的引力的吸引作用。這正是我們稱為黑洞的物體。
事實上,因為光速是固定的,所以,在牛頓引力論中將光類似炮彈那樣處理不嚴謹。(從地面發射上天的炮彈由於引力而減速,最後停止上升並折回地面;然而,一個光子必須以不變的速度繼續向上,那麼牛頓引力對於光如何發生影響。)在1915年愛因斯坦提出廣義相對論之前,一直沒有關於引力如何影響光的協調的理論,之後這個理論對大質量恆星的含意才被理解。
觀察一個恆星坍縮並形成黑洞時,因為在相對論中沒有絕對時間,所以每個觀測者都有自己的時間測量。由於恆星的引力場,在恆星上某人的時間將和在遠處某人的時間不同。假定在坍縮星表面有一無畏的航天員和恆星一起向內坍縮,按照他的表,每一秒鍾發一信號到一個繞著該恆星轉動的空間飛船上去。在他的表的某一時刻,譬如11點鍾,恆星剛好收縮到它的臨界半徑,此時引力場強到沒有任何東西可以逃逸出去,他的信號再也不能傳到空間飛船了。當11點到達時,他在空間飛船中的夥伴發現,航天員發來的一串信號的時間間隔越變越長。但是這個效應在10點59分59秒之前是非常微小的。在收到10點59分58秒和10點59分59秒發出的兩個信號之間,他們只需等待比一秒鍾稍長一點的時間,然而他們必須為11點發出的信號等待無限長的時間。按照航天員的手錶,光波是在10點59分59秒和11點之間由恆星表面發出;從空間飛船上看,那光波被散開到無限長的時間間隔里。在空間飛船上收到這一串光波的時間間隔變得越來越長,所以恆星來的光顯得越來越紅、越來越淡,最後,該恆星變得如此之朦朧,以至於從空間飛船上再也看不見它,所餘下的只是空間中的一個黑洞。然而,此恆星繼續以同樣的引力作用到空間飛船上,使飛船繼續繞著所形成的黑洞旋轉。
但是由於以下的問題,使得上述情景不是完全現實的。離開恆星越遠則引力越弱,所以作用在這位無畏的航天員腳上的引力總比作用到他頭上的大。在恆星還未收縮到臨界半徑而形成事件視界之前,這力的差就已經將航天員拉成義大利面條那樣,甚至將他撕裂!然而,在宇宙中存在質量大得多的天體,譬如星系的中心區域,它們遭受到引力坍縮而產生黑洞;一位在這樣的物體上面的航天員在黑洞形成之前不會被撕開。事實上,當他到達臨界半徑時,不會有任何異樣的感覺,甚至在通過永不回返的那一點時,都沒注意到。但是,隨著這區域繼續坍縮,只要在幾個鍾頭之內,作用到他頭上和腳上的引力之差會變得如此之大,以至於再將其撕裂。
羅傑·彭羅斯在1965年和1970年之間的研究指出,根據廣義相對論,在黑洞中必然存在無限大密度和空間——時間曲率的奇點。這和時間開端時的大爆炸相當類似,只不過它是一個坍縮物體和航天員的時間終點而已。在此奇點,科學定律和預言將來的能力都失效了。然而,任何留在黑洞之外的觀察者,將不會受到可預見性失效的影響,因為從奇點出發的不管是光還是任何其他信號都不能到達。這令人驚奇的事實導致羅傑·彭羅斯提出了宇宙監督猜測,它可以被意譯為:「上帝憎惡裸奇點。」換言之,由引力坍縮所產生的奇點只能發生在像黑洞這樣的地方,在那兒它被事件視界體面地遮住而不被外界看見。嚴格地講,這是所謂弱的宇宙監督猜測:它使留在黑洞外面的觀察者不致受到發生在奇點處的可預見性失效的影響,但它對那位不幸落到黑洞里的可憐的航天員卻是愛莫能助。
廣義相對論相關
廣義相對論方程存在一些解,這些解使得我們的航天員可能看到裸奇點。他也許能避免撞到奇點上去,而穿過一個「蟲洞」來到宇宙的另一區域。看來這給空間——時間內的旅行提供了巨大的可能性。但是不幸的是,所有這些解似乎都是非常不穩定的;最小的干擾,譬如一個航天員的存在就會使之改變,以至於他還沒能看到此奇點,就撞上去而結束了他的時間。換言之,奇點總是發生在他的將來,而從不會在過去。強的宇宙監督猜測是說,在一個現實的解里,奇點總是或者整個存在於將來(如引力坍縮的奇點),或者整個存在於過去(如大爆炸)。因為在接近裸奇點處可能旅行到過去,所以宇宙監督猜測的某種形式的成立是大有希望的。
事件視界,也就是空間——時間中不可逃逸區域的邊界,正如同圍繞著黑洞的單向膜:物體,譬如不謹慎的航天員,能通過事件視界落到黑洞里去,但是沒有任何東西可以通過事件視界而逃離黑洞。(記住事件視界是企圖逃離黑洞的光的空間——時間軌道,沒有任何東西可以比光運動得更快)人們可以將詩人但丁針對地獄入口所說的話恰到好處地用於事件視界:「從這兒進去的人必須拋棄一切希望。」任何東西或任何人一旦進入事件視界,就會很快地到達無限緻密的區域和時間的終點。
廣義相對論預言,運動的重物會導致引力波的輻射,那是以光的速度傳播的空間——時間曲率的漣漪。引力波和電磁場的漣漪光波相類似,但是要探測到它則困難得多。就像光一樣,它帶走了發射它們的物體的能量。因為任何運動中的能量都會被引力波的輻射所帶走,所以可以預料,一個大質量物體的系統最終會趨向於一種不變的狀態。(這和扔一塊軟木到水中的情況相當類似,起先翻上翻下折騰了好一陣,但是當漣漪將其能量帶走,就使它最終平靜下來。)例如,繞著太陽公轉的地球即產生引力波。其能量損失的效應將改變地球的軌道,使之逐漸越來越接近太陽,最後撞到太陽上,以這種方式歸於最終不變的狀態。在地球和太陽的情形下能量損失率非常小——大約只能點燃一個小電熱器, 這意味著要用大約1千億億億年地球才會和太陽相撞,沒有必要立即去為之擔憂!地球軌道改變的過程極其緩慢,以至於根本觀測不到。但幾年以前,在稱為PSR1913+16(PSR表示「脈沖星」,一種特別的發射出無線電波規則脈沖的中子星)的系統中觀測到這一效應。此系統包含兩個互相圍繞著運動的中子星,由於引力波輻射,它們的能量損失,使之相互以螺旋線軌道靠近。
在恆星引力坍縮形成黑洞時,運動會更快得多,這樣能量被帶走的速率就高得多。所以不用太長的時間就會達到不變的狀態。人們會以為它將依賴於形成黑洞的恆星的所有的復雜特徵——不僅僅它的質量和轉動速度,而且恆星不同部分的不同密度以及恆星內氣體的復雜運動。如果黑洞就像坍縮形成它們的原先物體那樣變化多端,一般來講,對之作任何預言都將是非常困難的。
然而,加拿大科學家外奈·伊斯雷爾在1967年使黑洞研究發生了徹底的改變。他指出,根據廣義相對論,非旋轉的黑洞必須是非常簡單、完美的球形;其大小隻依賴於它們的質量,並且任何兩個這樣的同質量的黑洞必須是等同的。事實上,它們可以用愛因斯坦的特解來描述,這個解是在廣義相對論發現後不久的1917年卡爾·施瓦茲席爾德找到的。一開始,許多人(其中包括伊斯雷爾自己)認為,既然黑洞必須是完美的球形,一個黑洞只能由一個完美球形物體坍縮而形成。所以,任何實際的恆星從來都不是完美的球形只會坍縮形成一個裸奇點。
然而,對於伊斯雷爾的結果,一些人,特別是羅傑·彭羅斯和約翰·惠勒提倡一種不同的解釋。他們論證道,牽涉恆星坍縮的快速運動表明,其釋放出來的引力波使之越來越近於球形,到它終於靜態時,就變成准確的球形。按照這種觀點,任何非旋轉恆星,不管其形狀和內部結構如何復雜,在引力坍縮之後都將終結於一個完美的球形黑洞,其大小隻依賴於它的質量。這種觀點得到進一步的計算支持,並且很快就為大家所接受。
伊斯雷爾的結果只處理了由非旋轉物體形成的黑洞。1963年,紐西蘭人羅伊·克爾找到了廣義相對論方程的描述旋轉黑洞的一族解。這些「克爾」黑洞以恆常速度旋轉,其大小與形狀只依賴於它們的質量和旋轉的速度。如果旋轉為零,黑洞就是完美的球形,這解就和施瓦茲席爾德解一樣。如果有旋轉,黑洞的赤道附近就鼓出去(正如地球或太陽由於旋轉而鼓出去一樣),而旋轉得越快則鼓得越多。由此人們猜測,如將伊斯雷爾的結果推廣到包括旋轉體的情形,則任何旋轉物體坍縮形成黑洞後,將最後終結於由克爾解描述的一個靜態。
黑洞是科學史上極為罕見的情形之一,在沒有任何觀測到的證據證明其理論是正確的情形下,作為數學的模型被發展到非常詳盡的地步。的確,這經常是反對黑洞的主要論據:怎麼能相信一個其依據只是基於令人懷疑的廣義相對論的計算的對象呢?然而,1963年,加利福尼亞的帕羅瑪天文台的天文學家馬丁·施密特測量了在稱為3C273(即是劍橋射電源編目第三類的273號)射電源方向的一個黯淡的類星體的紅移。他發現引力場不可能引起這么大的紅移——如果它是引力紅移,這類星體必須具有如此大的質量,並離地球如此之近,以至於會干擾太陽系中的行星軌道。這暗示此紅移是由宇宙的膨脹引起的,進而表明此物體離地球非常遠。由於在這么遠的距離還能被觀察到,它必須非常亮,也就是必須輻射出大量的能量。人們會想到,產生這么大量能量的唯一機制看來不僅僅是一個恆星,而是一個星系的整個中心區域的引力坍縮。人們還發現了許多其他類星體,它們都有很大的紅移。但是它們都離開地球太遠了,所以對之進行觀察太困難,以至於不能。
發現「超大」黑洞
2015年3月1日,科學家稱在一座發光類星體里發現了一片質量為太陽120億倍的黑洞,並且該星體早在宇宙形成的早期就已經存在。科學家稱,如此巨大的黑洞的形成無法用現有黑洞理論解釋。
該發現對2014年之前的宇宙形成理論帶出了挑戰。至2015年的宇宙理論認為,黑洞及其宿主星系的發展形態基本上是亘古不變的。
德國麥克斯普蘭喀天文機構的研究員布拉姆·維尼曼斯(BramVenemans)說道,最新發現的黑洞體量相當於太陽的400億倍,比先前發現的同時期黑洞的總和還大出一倍。而在銀河系的中央潛伏的黑洞比太陽大20倍-500萬倍。
科學家無法解釋最新發現的黑洞為何增長速度如此快。從理論上來說,它周圍的氣體不能使它變得如此龐大。北京大學首席研究員吳學兵說:「我們的發現對早期宇宙黑洞形成的理論提出了挑戰。」他還說,「黑洞在短期內增長可能需要非常特殊的方式,或者在第一代行星和星系形成時就留有黑洞種子。但是這兩種可能性都很難用當今的理論來解釋」。
看清黑洞磁場
科學家認為,黑洞引擎是由磁場驅動的。藉助事件視界望遠鏡(Event Horizon Telescope,EHT),天文學家在我們銀河系中心超大黑洞事件視界的外側探測到了磁場。發現在靠近黑洞的某些區域是混亂的,有著雜亂的磁圈和渦漩,就像攪在一起的義大利面。相反,其他區域的磁場則有序得多,可能是物質噴流產生的區域。還發現,黑洞周邊的磁場在短至15分鍾的時間段內都會發生明顯變化。
理論修改
2015年3月,霍金對黑洞理論進行了修改,宣稱黑洞實際上是「灰色的」。新「灰洞」理論稱,物質和能量被黑洞困住一段時間後,又會被重新釋放到宇宙中。
2016年1月,霍金同物理學家馬爾科姆·佩里、安德魯·施特羅明格提出了新理論:讓信息「逃逸」的黑洞裂口由「柔軟的帶電毛發」組成,它們是位於視界線上的光子和引力子組成的粒子,這些能量極低甚至為零的粒子能捕獲並存儲落入黑洞的粒子的信息。
⑺ 科學家成功捕獲黑洞多波段指紋,人類為了觀測宇宙這些年有多拼
近日,來自全球各地的科學家團隊通過使用19台望遠鏡陣同步觀測,成功捕獲M87黑洞的多波段指紋,人類有史以來的首張黑洞照片,就是觀測M87星系中央超大質量黑洞獲得的,這個超大質量黑洞距離地球5500萬光年,質量約為太陽的65億倍,真是無法想像的“龐大”。事實上,人類為了觀測宇宙,最硬性的條件就是天文望遠鏡的解析度,換句話說現階段的天文探測,少瞭望遠鏡是無法進行的,那麼人類又下了多少努力呢?
一、早期科學家的努力
伽利略改造望遠鏡觀測天體、證實日心說,但被迫害以至終身軟禁。由於長期觀測太陽沒有保護眼睛,他晚年雙眼失明。在望遠鏡前觀測天體,又是多麼的枯燥乏味的,觀測員們都是在夜晚工作於荒郊野外,抵禦著寒冷長時間盯著望遠鏡幾個小時,就為了捕捉轉瞬即逝的圖象。人類為了觀測宇宙這些年,有人付出的是生命的代價。涅德林災難,在場的一百多名科學家都因為火箭爆炸而遇難。即便如此,人類觀測宇宙的腳步始終沒有停止。
⑻ 關於黑洞的許多問題
「黑洞」很容易讓人望文生義地想像成一個「大黑窟窿」,其實不然。所謂「黑洞」,就是這樣一種天體:它的引力場是如此之強,就連光也不能逃脫出來。
根據廣義相對論,引力場將使時空彎曲。當恆星的體積很大時,它的引力場對時空幾乎沒什麼影響,從恆星表面上某一點發的光可以朝任何方向沿直線射出。而恆星的半徑越小,它對周圍的時空彎曲作用就越大,朝某些角度發出的光就將沿彎曲空間返回恆星表面。
等恆星的半徑小到一特定值(天文學上叫「史瓦西半徑」)時,就連垂直表面發射的光都被捕獲了。到這時,恆星就變成了黑洞。說它「黑」,是指它就像宇宙中的無底洞,任何物質一旦掉進去,「似乎」就再不能逃出。實際上黑洞真正是「隱形」的,等一會兒我們會講到。
那麼,黑洞是怎樣形成的呢?其實,跟白矮星和中子星一樣,黑洞很可能也是由恆星演化而來的。
我們曾經比較詳細地介紹了白矮星和中子星形成的過程。當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡。
質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星。而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量。如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮。
這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積趨於零、密度趨向無限大的「點」。而當它的半徑一旦收縮到一定程度(史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯系——「黑洞」誕生了。
與別的天體相比,黑洞是顯得太特殊了。例如,黑洞有「隱身術」,人們無法直接觀察到它,連科學家都只能對它內部結構提出各種猜想。那麼,黑洞是怎麼把自己隱藏起來的呢?答案就是——彎曲的空間。我們都知道,光是沿直線傳播的。這是一個最基本的常識。可是根據廣義相對論,空間會在引力場作用下彎曲。這時候,光雖然仍然沿任意兩點間的最短距離傳播,但走的已經不是直線,而是曲線。形象地講,好像光本來是要走直線的,只不過強大的引力把它拉得偏離了原來的方向。
在地球上,由於引力場作用很小,這種彎曲是微乎其微的。而在黑洞周圍,空間的這種變形非常大。這樣,即使是被黑洞擋著的恆星發出的光,雖然有一部分會落入黑洞中消失,可另一部分光線會通過彎曲的空間中繞過黑洞而到達地球。所以,我們可以毫不費力地觀察到黑洞背面的星空,就像黑洞不存在一樣,這就是黑洞的隱身術。
更有趣的是,有些恆星不僅是朝著地球發出的光能直接到達地球,它朝其它方向發射的光也可能被附近的黑洞的強引力折射而能到達地球。這樣我們不僅能看見這顆恆星的「臉」,還同時看到它的側面、甚至後背!
「黑洞」無疑是本世紀最具有挑戰性、也最讓人激動的天文學說之一。許多科學家正在為揭開它的神秘面紗而辛勤工作著,新的理論也不斷地提出。不過,這些當代天體物理學的最新成果不是在這里三言兩語能說清楚的。有興趣的朋友可以去參考專門的論著。
黑洞是愛因斯坦的廣義相對論的最著名的預測之一。它提出了引力場將使時空彎曲。當恆星的體積很大時,它的引力場對時空幾乎沒什麼影響,從恆星表面上某一點發的光可以朝任何方向沿直線射出。而恆星的半徑越小,它對周圍的時空彎曲作用就越大,朝某些角度發出的光就將沿彎曲空間返回恆星表面。
等恆星的半徑小到一特定值(天文學上叫「史瓦西半徑」)時,就連垂直表面發射的光都被捕獲了。到這時,恆星就變成了黑洞。說它「黑」,是指它就像宇宙中的無底洞,任何物質一旦掉進去,「似乎」就再不能逃出。
特別報道
當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡。
質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星。而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量。如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮。
這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積趨於零、密度趨向無限大的「點」。而當它的半徑一旦收縮到一定程度(史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯系——「黑洞」誕生了。
⑼ 戴森球計劃黑洞有什麼用
黑洞出磁極礦。
劇情:
在未來,人類踏入高級文明的行列之時,科技的強大帶來了飛速的發展,虛擬現實迭代了空間與時間。人類創造了超級計算機——「主腦」,以期待利用其強大的計算能力來進一步擴大虛擬世界的運用。
(9)黑洞礦池計劃擴展閱讀:
背景設定:
在遙遠的未來,人類進入高級文明,利用虛擬現實迭代模擬了空間與時間,並逐漸把人的意識轉移到虛擬世界裡。虛擬世界的運行需要強大的計算能力與能量,為此人類將超級計算機——「主腦」完全包裹太陽以獲得持續的能量支持。