當前位置:首頁 » 礦機知識 » 鉛鋅分離洗礦機

鉛鋅分離洗礦機

發布時間: 2023-08-11 18:18:25

1. 洗礦機的機械分類

圓筒洗礦機廣泛用於各種難洗的大塊礦石,該洗礦機分圓筒型和圓筒加篩條型兩種。
洗礦機-圓筒洗礦機特點
滾筒篩洗機廣泛用於各種難洗的大塊礦石,該洗礦機分圓筒型和圓筒加篩
洗礦機條型兩種。後一種可把被洗物料分成+40mm和-40mm兩級產品,-40mm可再經雙螺旋槽式洗礦機進一步擦洗可將物料分為+2mm和-2mm兩級產品,洗礦效率可達98%左右,這種組合對目前難洗礦石是最有效的方法。
洗礦機-圓筒銑礦機主要技術參數
規格型號 筒體直徑×長度 最大清洗物料 生產能力 筒體轉速 主機功率 設備重量
YTXK1030 Φ1.0×3.0 50 30~70 30 30 10800 螺旋洗礦機適用於鐵、錳、石灰石、錫礦等含泥量較多的礦石選礦前序清洗泥沙,可以對礦物的攪拌、沖洗、分離、脫泥等。也適用於建築、電站等工程石料清洗,沖洗水壓<147-196kpa。
螺旋洗礦機是利用水的浮力作用,將粉塵和雜質於砂分離。經過螺旋片的攪動,達到濾水去雜質,提升輸送目的。並且在提升過程中,也進行了拌和工作。是出砂達到攪拌均勻,無細、粗砂之分。
螺旋洗礦機具有,螺旋體長、密封系統好、結構簡單、處理能力強、維修方便。出砂含水量、含泥量底等特點。廣泛運用於各種礦石開採行業。 型號Model WCDS-1500 WCD-1118 WCDS-914 WCDS-762 螺旋直徑Screw Diameter(mm) 1500 1118 914 762 槽體長度Length of Tub(mm) 10512 9554 7815 7620 洗選粒度Washing Granularity(mm) ≤75 ≤75 ≤75 ≤75 生產能力Capacity(t/h) 220 175 100 75 螺旋轉速Speed of Screw(rpm) 22 26 32 35 電機功率Motor Power(kw) 45 37 30 22 耗水量Water Consumption(t/h) 14-190 13-168 10-80 9-63 機器重量Weight(kg) 17580 12250 11000 8700 外形尺寸Overall Dimensions(長x寬x高) (mm) 10700x3200x4575 8840x2530x3800 7530x2240x3650 8440x1950x4790 型號Model 2WCDS-1118 2WCDS-914 2WCDS-762 螺旋直徑Screw Diameter(mm) 1118 914 762 槽體長度Length of Tub(mm) 6850 6350 6380 洗選粒度Washing Granularity(mm) ≤80 ≤80 ≤80 生產能力Capacity(t/h) 200-300 150-175 100-145 螺旋轉速Speed of Screw(rpm) 26 30.33 35 電機功率Motor Power(kw) 3x37 2x30 2x22 耗水量Water Consumption(t/h) 200-250 160-220 136-182 機器重量Weight(kg) 22530 18996 16800 外形尺寸(長x寬x高) (mm) 7840x2600x3840 7350x2310x3650 8440x2091x4790

2. 螺旋洗礦機的工作原理:

螺旋洗礦機是利用水的浮力作用,將粉塵和雜質於砂分離。經過螺旋片的攪動,達到濾水去雜質,提升輸送目的。並且在提升過程中,也進行了拌和工作。是出砂達到攪拌均勻,無細、粗砂之分。
螺旋洗礦機具有,螺旋體長、密封系統好、結構簡單、處理能力強、維修方便。出砂含水量、含泥量低等特點。廣泛運用於各種礦石開採行業。

3. 磨礦機有什麼特點

機床用變頻器的發展趨勢表現為:一是高性能。目前基本上所有的變頻器都要求矢量掌握方式,並出現了少量不同層次的掌握結構及演算法。值得注意的是無速度感測器矢量掌握(SVC)正在近幾年開展較快,由於SVC可以要求低利息、高功用的處置計劃,曾經成為通用變頻器中的夢想規范和開展方向。二是易掌握性不斷提高。用戶對變頻器的需求逐步轉變為現場裝置,並在軟體上增設設置工具,磨礦機用氣動離合器以期通過用戶操作從而簡化調試進程。三是功能模塊化以及智能化需求逐步上升。據了解,一台機床需用的變頻器數量有的可達4~5台。這足以預見到機床變頻器的市場潛力。目前我國機床市場用的變頻器大部分是日系品牌,如三菱變頻器由於接近伺服器的功能,因此在機床中的運用也較多;磨礦機用氣動離合器而台達由於其功能接近三菱,但價錢廉價許多,性價比高,近年來市場份額也逐漸增加。在車床產品中,變頻器的運用范圍最多。然而,日本的安川、富士、三菱以及台灣台達等品牌佔有較大的市場份額。盡管也有一些國產品牌變頻器被機床製造企業採用,如深圳匯川變頻器在車床應用中表現不俗,但是在磨床、鍛壓機床等對變頻器產品的功能要求較高的領域中,依舊是國外品牌居多,如三菱、富士、德國西門子、台達等品牌依舊處於優勢。據2008、磨礦機用氣動離合器2009年機床的銷售數據顯示,通用型機床特別是功能繁多的車床庫存狀況相當嚴峻,而復合型機床、大型重型產品市場較好。這些機床加工范圍廣,機床實施部件具有不同的活動速度,對變頻器功能也提出了更高的要求,國產變頻器製造商更應抓住時機,耕植機床市場。

4. 成礦應力場控礦機制

成礦構造應力場的控礦機製作用是一種很有理論價值和實用價值的研究課題。

成礦構造應力場的概念揭露了構造控製成礦作用的本質,它不僅概括了地質學家使用的成礦前、成礦期和成礦後構造的時間關系,更重要的是指明了成礦作用在什麼樣應力場作用下發生以及成礦期外力作用的方式和方向,進而指明了地殼運動的方式和方向。因此,成礦構造應力場的確定是研究構造控岩控礦作用的基本前提,在這樣的前提下才導致控礦構造應力場特徵的研究。

在成礦構造應力場作用下引起的構造活動與成礦作用密切相關,這種構造活動控制著礦體的形成和分布,它們可以是新生的構造,也可以是在成礦應力場作用下引起先存構造的再次活動。然而,在成礦構造應力場作用下並非捲入成礦應力場作用的所有構造處處都成礦,只是在一些局部的有利構造部位成礦,這些構造部位就是成礦構造應力場作用強烈的部位,也就是容易引起能量積累和釋放的部位。

構造應力場的演化而導致構造形變,特別是斷裂構造的多次活動和力學性質的演化。每當一場新的構造運動發生,不僅產生一系列新的構造形跡,而且還對先存構造產生強烈的改造作用。因此,構造應力的發展演化過程是一個復雜的問題,它不僅涉及時間演化問題,還涉及各種構造的空間關系。

成礦應力場是指成礦期的應力場。成礦構造應力場控制著成礦期的構造活動。與成礦構造應力場對應的構造體系稱為成礦構造體系。例如,在南北向擠壓作用下形成東西向構造,並伴之成礦,則把南北向擠壓構造應力場稱成礦構造應力場,而把東西向構造體系稱為成礦構造體系。

在成礦構造應力場的作用下,引起成礦物質的形成、遷移和聚集。

如何確定成礦構造應力場及成礦構造體系,應首先建立區域構造格架,鑒定出礦區內各種構造成分力學性質、序次。對於多期活動的形跡,鑒定出演化歷史;再根據力學性質進行組合,從而得出區內構造體系的演化歷史。由此反演出區內構造應力場演化的歷史,最終確定出成礦作用與哪一期構造體系活動密切相關。

地殼中的成礦元素的活化、遷移和聚集,與成礦構造應力場的能量息息相關。成礦構造應力場的能量U的高值區,有利於成礦元素的活化;成礦期的構造運動,使構造應力場能量發生變化,促進成礦元素的遷移;能量降ΔU大的部位,由於放出的能量大,岩石破碎強烈,有利於活化的成礦元素的聚集。因此,能量降ΔU的高值區,是成礦的有利部位。

成礦因素非常復雜,一般認為,構造是成礦的重要因素。可是,地殼上的許多構造並不是一定都與成礦作用有必然的聯系,礦床的形成,僅與特定階段的構造和構造的特殊部位有關。

地殼在壓力(包括各種外力、內力)的作用下,產生構造應力場。設其主應力為σ1、σ2、σ3;同時也產生相應的應變場,設其主應變為ε1、ε2、ε3。地殼由於變形,各點產生位移、力的作用點也產生相應的位移,則作用力做功為

構造應力場控岩控礦

式中:Pi為作用在i點的力;δi為i點產生的位移。

假設地殼中沒有發生能量交換,則功W 以勢能的形式儲存在地殼中,稱為應變能,設單位體積中的應變能為M,則

構造應力場控岩控礦

考慮到虎克定律:

構造應力場控岩控礦

所以,

構造應力場控岩控礦

由於單位體積應變能M由兩部分組成,一部分為單位體形狀改變儲存的勢能U,另一部分為單位體體積改變儲存的勢能V,據彈性力學知識則有

M=U+V

構造應力場控岩控礦

式中:E為岩石彈性模量;μ為泊松比。

設單位體體積應變為Q,據彈性力學知識則有

構造應力場控岩控礦

當Q>0時,為地殼變形過程中,單位體體積膨大,地殼介質變得疏鬆;當Q<0時,為地殼變形過程中,單位體體積變得密實。

若地殼處於平面應力狀態,σ3=0,則得

構造應力場控岩控礦

成礦元素的活化、遷移和聚集均由地殼內儲存的能量及構造空間所決定。在成礦構造應力作用下,成礦前的斷裂構造發生活動。活動的結果是使儲存在斷裂中的應變能釋放出一部分,使整個成礦構造應力值發生變化,引起整個成礦構造應力場應變能下降,這個降值稱為能量降。形狀改變(變形)勢能U下降值ΔU最大的地方,礦液失去的能量最多,處於相對穩定狀態,易於沉澱。另一方面,在地殼變形中,體積應變Q>0的地方,地殼介質變得疏鬆,構造空間開闊,也易於礦液沉澱。若ΔU值最大,同時Q>0,這樣的部位是成礦的最有利部位。

在構造動力作用下,岩石發生流動,並伴生物理和化學變化,即形變與相變,這是元素活化遷移、聚散和成岩成礦過程。

劉迅等(1998)研究璜山金礦認為其成岩成礦經歷三個階段。

第一階段:在北西—南東向壓應力作用下,差應力為80~150MPa,應變速率為10—11~10—12s—1,溫度為400~500℃,地殼10~15km深處高壓條件下,岩石呈塑性流動狀態並發生塑性變形,形成北東向紹興—江山擠壓型韌性剪切帶,向中心帶應變數加大。可溶性SiO2、K+損耗,隨流體向高應變區遷移,形成千糜岩和石英質糜棱岩(動力分異型石英脈),殘留相黃鐵礦等載金礦物細粒集合體在高應變區聚集、構成浸染狀、條紋狀、條帶狀礦石。

第二階段:在南北向壓應力作用下,差應力為150~160MPa,應變速率為10—10~10—11s—1,溫度為300~380℃,地殼10~15km深處,由高壓向中壓轉變條件下,岩石仍處於塑性流動狀態,北東向紹興—江山構造帶轉變為平移型剪切性質(左行)。金元素以顯微金、中細粒金礦物賦存於黃鐵礦等硫化物和石英脈中。

第三階段:在南北向壓應力作用下,差應力水平降低至30~60MPa,應變速率升高,大於10—10s—1,溫度下降至200℃左右,處於地殼5~10km深度,由高壓轉變為中低壓環境。岩石由塑性變形向脆性變形轉化,北東向紹興—江山構造帶由平移型韌性剪切左行向平移型脆性剪切(左)轉化。SiO2在剪切帶中相對擴容部位,岩石力學性質相對偏張,碎裂變質相對強烈,導致岩石滲透率相對升高,金元素再次遷移聚集成富礦。

701礦成礦母岩為燕山晚期黑雲母花崗岩,產於區域東西向構造帶與北北東向構造帶復合部位。在構造動力作用下,該含礦岩體由侵位→定位→風化過程,也是岩體從塑性流動向碎裂流動過程。稀土元素發生活化遷移聚集以至成礦。劉迅(1998)研究認為,在南北向擠壓和南北向反扭構造應力場的長期交替活動,由於應力較低(差應力值為40~70MPa)、應變速率和冷卻率偏低,結果活動時溫度低,使岩體遭受早期塑性變形和後期脆性變形,導致稀土元素從岩體內充分分離,並逐漸向高應力區遷移聚集(圖5.2,圖5.3)。第一階段在南北向擠壓為主的構造應力作用下,富含富釔稀土的花崗岩漿從深部向淺部侵位,在溫度高於400℃和中偏高壓環境中,稀土元素伴隨岩漿晚期及期後殘余熱液、揮發分趨向聚集,在高應變區相對富集。第二階段,在南北向反扭應力與南北向擠壓應力交替作用下,溫度低於400℃和中低壓環境中,花崗岩以脆性變形為主。在高應變區,花崗岩發生鈉長石化、白雲母化、碳酸鹽化,造成稀土元素進一步高度富集。第三階段,發生次生水化作用,稀土元素呈離子狀態進入高嶺石等黏土礦物,造成次生富集。

圖5.2 701礦區稀土元素富集特徵圖

(據劉迅等,1998)

1—下白堊統紅層(未分);2—下侏羅統(余田群)中基性、中酸性、酸性火山岩;3—下三疊統大冶組鈣質頁岩、粉砂岩夾泥質灰岩;4—上二疊統龍潭組頁岩、粉砂岩、長石石英砂岩、炭質頁岩夾煤層;5—震旦—寒武系混合岩(未分);6—燕山中期鹼性長石花斑岩;7—燕山中期晚階段細粒黑雲母花崗岩;8—燕山中期黑雲母鉀長花崗岩;9—燕山中期白雲母鉀長石鹼性長石花崗岩;10—燕山早期黑雲母鹼性長石花崗岩;11—花崗偉晶岩;12—偉晶岩脈;13—接觸角岩化蝕變帶;14—南北向構造帶(壓性斷層);15—新華夏系(壓扭性斷層);16—新華夏系(北北西向壓扭—張扭性斷層);17—東西構造帶(壓性斷層);18—北東向硅化破碎帶;19—漸變地質界線;20—不整合接觸;21—富礦產區;22—次富礦產區;23—實測構造剖面

王成金(1986)用激光全息法模擬了西准噶爾金礦成礦帶成礦期構造應力場特徵(圖5.4~圖5.6),所選靶區大致沿東西向和北東向成礦帶分布,即別魯嘎希—大棍東西向異常帶、鉻門溝—紅山頭東西帶、齊I寶貝東西帶、安齊北東向異常帶、紅旗北東向帶、本哈塔依—其克提北東東向異常帶。這些成礦帶是成礦期構造應力場作用下應變能積累和釋放的集中地帶。

常文志在研究別魯阿克西金礦時,用有限單元法探討了礦區成礦構造應力場的能量和體積應變,揭示了成礦構造應力場的能量和體積應變在成礦中的作用和意義。

圖5.3 G1實測構造平面圖和某些元素含量及差應力值的變化曲線

(據劉迅等,1998)

1—白雲母花崗岩;2—糜棱岩;3—碎斑岩;4—碎裂岩;5—螢石化;6—方解石化;7—劈理化;8—透鏡化;9—節理;10—樣品位置

圖5.4 薩爾托海成礦構造應力場的模型

(據王成金)

1—載荷;2—固定邊界;3—成礦前斷裂;4—金礦點

常文志採用如圖5.7所示模式,對別魯阿克西金礦成礦構造應力場進行有限單元法計算,結果如圖5.8和圖5.9所示。

圖5.5 成礦構造應力場變形勢能圖

(單位:erg/cm3)

(據王成金)

4×104>A>3×104;3×104>B>2×104;2×104>C>1×104;1×104>D>10

圖5.6 成礦構造應力場能量降圖

(單位:erg/cm3)

(據王成金)

4×103>A>1.5×103;1.5×103>B>3×102;3×102>C>1.5×102;1.5×102>D>5×101

圖5.7 別魯阿克西礦區研究模型圖

(據常文志)

1—固定邊界;2—簡支邊界;3—載入荷;4—斷裂

圖5.8 能量降ΔU分級圖(單位:erg/cm3

(據常文志)

4.1×103>A>103;103>B>8×102;8×102>C>6×102

圖5.7顯示成礦前斷裂都將發生活動,使儲存在斷裂中的應變能M釋放出一部分,造成整個成礦構造應力的應變能M、單位體體積改變能U下降。斷層活動造成應變能改變。圖5.8為ΔU分級圖,由圖可見,A級為中心,斷裂活動引起的U降低值高,使礦液處於相對穩定狀態,易於沉澱和成礦。表明能量降低ΔU是成礦的一個重要條件。

圖5.9為在成礦構造應力場作用下的體積應變Q分布,由圖5.9可見,除少數礦點位於Q<0區外,全區50多個礦點中的40多個點均位於體積應變Q>0的區域,所以體積應變Q>0是成礦控礦的另一個重要條件。

圖5.9 體積變化分布圖

1—體積膨大區;2—體積縮小區;3—金礦點

王成金(1986)用明膠網格法研究了豫南商城—羅山地區成礦期應力場與礦化關系。研究區圍岩彈性模量為0.34×105Pa,泊松比為0.3;岩體彈性模量為0.24×105Pa,泊松比為0.36;經研究得最大剪應變、最大剪應力和剪切應變能的分布狀態如圖5.10~圖5.12所示。應變高值區和能量高值區為礦化良好區。

圖5.10 大別山北麓應變γmax等值線圖

(據劉迅等,1998)

1—>0.35;2—>0.3;3—>0.2;4—>0.1;5—<0.1;6—斑岩銅鉬礦床;7—銅礦點;8—鉛鋅礦點;9—鎢礦點;10—雲母礦點;11—螢石礦點;12—磁異常區

圖5.11 大別山北麓剪應力等值線圖(單位:100Pa)

(據劉迅等,1998)

1—τmax>5;2—τmax>4;3—τmax>3;4—τmax>2;5—τmax>1;6—τmax>0.8

圖5.12 大別山北麓應變能U等值線圖(單位:J)

(據劉迅等,1998)

1—>7×10—4;2—>1×10—3;3—<7×10—4

西秦嶺金礦成礦構造應力場:西秦嶺碳硅泥岩型金礦床處於秦嶺東西構造帶、川滇南北向構造帶及北北東向構造帶、北東向構造帶交切復合部位。成礦構造應力場為南北向擠壓(σ1)、東西向拉伸(σ3)(劉迅,1998)。礦體絕大多數呈東西向展布。礦體和礦脈均產於斷裂帶之中,嚴格受斷裂控制。礦液的運移和富集與應力作用密切相關。因此,主成礦作用是在成礦構造應力作用下引起的能量積累和釋放過程中進行的。

劉迅(1998)按南北向擠壓的東西向構造成礦應力場加力方式,採用全息光彈實驗萃取等差線和等和線,取fp=7.28×103N/m、fc=1.2×104N/m、fd=0.5cm、fc=0.9cm、E=3.36×109Pa、μ=0.45。利用式

構造應力場控岩控礦

求出區內各點的應變能,並繪出應變能等值線圖(圖5.13)。利用式(5.19)求出區內各點的礦液運移式並繪出礦液運移勢等值線圖 圖5.14)。

圖5.13 俄都礦段全息光彈試驗能量分布圖(單位:102J/m3

(據劉迅等,1998)

1—υ<1;2—υ=1~5;3—υ=5~10;4—υ=10~15;5—υ>15

圖5.14 俄都礦段全息光彈試驗礦液運移勢圖(單位:m/s)

(據劉迅等,1998)

1—υi<1×105;2—υi=1×105~1×1010;3—υi=1×1010~1×1015;4—υi>1×1015

構造應力場控岩控礦

式中:fp、fc及dp、dc分別為條紋值和模型厚度,是由實驗測定的常數;μ和E為泊松比和彈性模量;a為介質的壓縮系數;η為礦液黏度;k0為介質流通系數,由岩石樣品實驗測定;nc為模型中各點的等差條紋級數;np為等和條紋級數;nc和np對各不同點來說是變數。

對比金土壤地球化學異常圖(圖5.15)、礦體分布圖(圖5.16)和能量分布圖(圖5.13)、礦液運移勢圖(圖5.14),顯示高能量異常區、礦液高運移勢區與金土壤地球化學高異常區和礦體分布區十分吻合。

圖5.15 俄都礦段金元素土壤地球化學異常圖

(據劉迅等,1998)

圖5.16 俄都礦段礦體分布圖

(據劉迅等,1998)

1—斷層;2—金礦體;3—實測礦體分布區;4—推測礦體分布區;5—礦段號

新疆喀拉通克銅鎳硫化物礦區Ⅰ號礦床位於額爾齊斯大斷裂及其分支構造傑爾台斷裂南側。是一大型鎳礦、中型銅礦並具有多種稀有和貴金屬大型礦床。其品位之高、礦體之大國內外少見。

礦區出露地層以下石炭統為主,為—套海相濁積含炭質沉凝灰岩和泥板岩。礦區位於北西向、北北西向、東西向構造交會部位。由斷層和褶皺組成擠壓破碎帶。礦區內基性岩體分南北兩帶,沿北西向展布。Ⅰ號岩體位於南帶,Ⅰ號岩體含礦性極高,基本上是全岩礦化,所謂Ⅰ號礦床,基本上即Ⅰ號岩體。平面上呈透鏡狀,向下逐步轉變為S形或蛇曲形(圖5.17,圖5.18,圖3.24,圖3.25);剖面上呈上大下小的「壓扁喇叭」狀,向北東斜歪(圖5.19)。

圖5.17 喀拉通克銅鎳硫化物礦區1號礦床地質圖

1—下石炭系南明水組上段上層;2—下石炭統南明水組上段下層;3—黑雲閃長岩(岩體界線據新疆地礦局四大隊資料);4—黑雲角閃蘇長岩;5—混染輝長岩;6—輝綠玢岩;7—閃長斜煌岩;8—石英斑岩;9—氧化礦體;10—岩相界線;11—北北西背斜軸;12—北北西向斜軸;13—北西向背斜軸;14—北西向向斜軸;15—北北西向壓扭性斷層;16—北西向壓扭性斷層;17—近東西向壓扭性斷層;18—勘測線位置及編號

礦區褶皺、斷層及節理赤平投影分析及數理計算均顯示依次經歷海西早期→海西中晚期→印支燕山期→喜馬拉雅期四次構造運動(圖5.20),基性岩體於海西中晚期侵入,其應力分別為海西早期σ1=30°、海西中晚期σ1=50°、印支—燕山期σ1=70°、喜馬拉雅期σ1=10°。

圖5.18 710m中段地質圖

1—下石炭統南明水組上段下層;2—岩體界線;3—石英斑岩;4—緻密塊狀礦石礦體;5—稠密浸染狀礦石礦體;6—稀疏浸染狀礦石礦體;7—斷層;8—勘探線及編號;9—礦體編號

由礦床地質特徵及其與構造的關系和同位素研究表明,喀拉通克銅鎳硫化物Ⅰ號礦床為岩漿深淵熔離—貫入成因,其形成嚴格受北西向構造帶及其配套的北北西向斷裂控制,系以海西中晚期南北向順扭為主,伴隨東西向微弱擠壓外力條件下的產物。

為了解控岩控礦構造應力場特徵,我們對Ⅰ號岩體710m中段(圖5.18)和28號勘探線剖面(圖5.19)成礦期應力場進行了有限單元法計算和趨勢分析。

岩塊或地塊在外力作用下,其內部最大主應力、最小主應力、最大剪應力的大小和方向及應變能等符合下列關系式:

構造應力場控岩控礦

式中:σx、σy分別為x、y方向的直應力;τxy為剪應力;α為σ1與x軸的夾角;φ為τmax與x軸的夾角;E為岩石彈性模量;v為岩石泊松比。

圖5.19 28號勘探線Ⅰ號岩體剖面

1—緻密塊狀礦石礦體;2—稠密浸染狀礦石礦體;3—稀疏浸染狀礦石礦體;4—石英斑岩;5—基性岩體界線;6—岩性界線;7—炭質沉凝灰岩;8—斷層;9—地質界線;10—鑽孔;C1n—下石炭統南明水組;C1n3—1—下石炭統南明水組上段下層;C1n2—下石炭統南明水組中段;C1n1—下石炭統南明水組下段;δ—黑雲母角閃岩;ω—黑雲母閃蘇長岩;ωλ—黑雲母橄欖蘇長岩;λ—輝長輝綠岩

根據前述成礦期外力條件,設σx=35×105Pa,σy=0,τxy=100×105Pa採用非線性有限單元法,用電子計算機對成礦期應力場進行計算,結果表明在平面上岩體中部,即走向由北西轉為北北西,F19與F7等斷層交匯處為低圍壓區,應變能和最大剪應力處於中偏高狀態(圖5.21),有利於礦漿貫入成礦。剖面上岩體中部650~750m標高處斷裂破碎帶中下部為高圍壓區,而最大剪應力和應變能偏高(圖5.22),與實際地質構造變形基本吻合。710m中段和28線剖面成礦期圍壓、最大剪應力和應變能趨勢分析得出相同結論(圖5.23,圖5.24)。

綜上所述,成礦期低圍壓區為構造減壓區域,有利於礦漿貫入停滯、冷卻凝固形成緻密塊狀礦石礦體,這已為該礦床礦體空間分布規律所證明。

圖5.20 喀拉通克銅鎳硫化物礦區構造運動程式圖

1—北西向背斜軸;2—北西向向斜軸;3—北北西向背斜軸;4—北北西向向斜軸;5—壓性斷層;6—扭性斷層;7—張性斷層;8—南北向擠壓;9—東西向擠壓;10—南北向順時針扭動;11—基性岩體;12—隱伏基性岩體

由計算表明,Ⅰ號岩體周圍特別是西南部也出現低壓區,礦漿有可能向圍岩中有利成礦部位貫入成礦,應引起重視。

5. 金屬礦選礦奧秘

(一)金屬礦選礦的定義和作用

1. 選礦的定義

選礦最早英文解釋為 Ore Dressing 或 concentration,意為礦砂富集。隨後延伸為礦物處理,英文為 Mining process。選礦是利用礦物的物理或物理化學性質的差異,藉助不同的方法,將有用礦物同無用的礦物分離,把彼此共生的有用礦物盡可能地分離並富集成單獨的精礦,排除對冶煉和其他加工過程有害的雜質,提高選礦產品質量,以便充分、合理、經濟地利用礦產資源。

礦物是在地殼中由於自然的物理化學作用或生物作用,所產生的自然元素和自然化合物,如金、銀、銅自然元素和黃鐵礦、黃銅礦、方鉛礦等自然化合物。這些元素和化合物都具有各自的物理性質,如粒度、形狀、顏色、光澤、密度、摩擦系數、磁性、電性、放射性、表面潤澤性等。這些不同的性質為不同的選礦方法提供了依據。

2. 選礦的作用和地位

自然界蘊藏著極為豐富的礦產資源,但是,除少數富礦外,一般含量都較低,例如,很多鐵礦石含鐵只有 20% ~ 30%;銅礦石含銅小於 0.5%;鉛鋅礦石中鉛鋅的含量不到 5%;鈹礦石氧化鈹含量 0.05% ~ 0.1%;這樣的礦石直接冶煉,極不經濟。一般冶金對礦石的含量有一定的要求。如鐵礦石中鐵的含量最低不得低於 45%;銅礦石中銅的含量最低不得低於 12%;鉛礦石含鉛不得小於 40%;鋅礦石含鋅不得小於 40%;氧化鈹含量不小於 8%。對於采出的礦石在冶煉之前,必須經過選礦工藝,將主要金屬礦物的含量富集幾倍、幾十倍乃至幾百倍才能滿足冶煉工藝的要求。

通過選礦手段為冶煉提供「精料」,減少冶煉的物料量,大大提高冶煉的技術經濟指標。在選礦過程中大量的廢石被排除,減少了爐渣量,一方面減低了能耗和運輸成本,同時也相應地減少了爐渣中的金屬損失,大大提高了冶煉的回收率。例如,某冶煉廠將銅精礦含量提高1%,每年可多生產粗銅 3135 噸。某鋼鐵公司將鐵精礦含量提高 1%,高爐產量提高 3%,節約石灰石 4% ~ 5%,減少爐渣量 1.8% ~ 2%。目前,我國要求入爐煉鐵磁鐵礦含量在 65% 以上,如果鐵精礦含量達到 68% 以上,可以採用直接煉鋼工藝,大大簡化冶煉流程。

通過選礦工藝可以減少冶煉原料中有害元素的危害,變害為利,綜合回收金屬資源。自然界中的礦石往往含有多種有用成分,例如,銅、鉛、鋅等有色金屬往往共生或伴生於同一礦床中;鐵既有單一的鐵礦石,也有鐵-銅、鐵-硫、釩鈦鐵等共生礦石。冶煉過程中對原料中某些共生或伴生元素,常視為有害雜質。例如,煉銅的原料中含鉛、鋅都是有害雜質。煉鐵原料中含硫、磷和其他有色金屬都是有害雜質。但將這些雜質提前通過選礦工藝使之分離分別富集後,分別冶煉,變害為利。

選礦也作為冶煉工藝中的一個中間過程,用以提高選礦、冶煉兩個過程的總的經濟效益。例如,我國金川有色金屬公司冶煉廠現有的生產流程是將銅-鎳混合精礦用電爐熔煉、轉爐吹煉,產出高冰鎳,經過緩冷後,再破碎磨礦,用浮選法獲得銅精礦和鎳精礦,用磁選法得到合金。此後分別進入各自的冶煉系統提取金屬銅、鎳和貴金屬。

選礦是冶金、化工、建材等工業部門必不可少的極其重要的一環。選礦技術的發展,大大地擴大了工業原料基地,從而使那些以前因為含量太低或成分復雜而不能在工業上應用的礦床變為有用礦床。

近 20 多年來,隨著科學技術和經濟建設的迅猛發展,對礦產資源的需求量與日俱增,礦產資源開采量翻番,周期愈來愈短,易采易選的單一富礦愈來愈少,嵌布粒度細、含量低的難選復合礦的開采量愈來愈大,對礦產品加工過程中的環保要求越來越高,這些都需要通過選礦方法來解決。

(二)選礦方法

目前常用的選礦方法主要是重選、浮選、磁選和化學選礦,除此而外還有電選、手選、摩擦選礦、光電選礦、放射性選礦等。

重力選礦法(簡稱重選法),是根據礦物密度的不同及其在介質(水、空氣、重介質等)中具有不同的沉降速度進行分選的方法,它是最古老的選礦方法之一。這種方法廣泛地用來選別煤炭和含有鉑、金、鎢、錫和其他重礦物的礦石。此外,鐵礦石、錳礦石、稀有金屬礦、非金屬礦石和部分有色金屬礦石也採用重選法進行選別。

磁選法,是根據礦物磁性的不同進行分選的方法。它主要用於選別鐵、錳等黑色金屬礦石和稀有金屬礦石。

浮游選礦法(簡稱浮選法),是根據礦物表面的潤澤性的不同選別礦物的方法。目前浮選法應用最廣,特別是細粒浸染的礦石用浮選處理效果顯著。對於復雜多金屬礦石的選別,浮選是一種最有效的方法。目前絕大多數礦石可用以浮選處理。

化學選礦法,基於礦物和礦物組分的化學性質的差異,利用化學方法改變礦物組成,然後用相應方法使目的組分富集的礦物加工工藝。目前對氧化礦石的處理效果非常明顯,也是處理和綜合利用某些貧、細、雜等難選礦物原料的有效方法之一。

電選法是根據礦物電性的不同來進行選別的方法。

手選法是根據礦物顏色和光澤的不同來進行選別的方法。

摩擦選礦是利用礦物摩擦系數的不同對礦物進行分選的方法。

光電選礦是利用礦物反射光的強度不同對礦物進行選別的方法。

放射性選礦是利用礦物天然放射性和人工放射性對礦物進行選別的方法。

(三)選礦過程

選礦是一個連續的生產過程,由一系列連續的作業組成,表示礦石連續加工的工藝過程為選礦流程(圖 6-7-1)。

礦石的選礦處理過程是在選礦廠里完成的。不論選礦廠的規模大小(小型選礦廠日處理礦石幾十噸,大型選礦廠日處理礦石量高達數萬噸以上),但無論工藝和設備如何復雜,一般都包括以下三個最基本的過程。

選別前的准備作業:一般礦石從采礦場采出的礦石粒度都較大,必須經過破碎和篩分、磨礦和分級,使有用礦物與脈石礦物、有用礦物和無用礦物相互分開,達到單體分離,為分選作業做准備。

選別作業:這是選礦過程的關鍵作業(或稱主要作業)。它根據礦物的不同性質,採用不同的選礦方法,如浮選法、重選法、磁選法等。

產品處理作業:主要包括精礦脫水和尾礦處理。精礦脫水通常由濃縮、過濾、乾燥三個階段。尾礦處理通常包括尾礦的儲存和尾水的處理。

有的選礦廠根據礦石性質和分選的需要,在選別作業前設有洗礦,預先拋廢(即在較粗的粒度下預先排出部分廢石)以及物理、化學與處理等作業,如赤鐵礦的磁化焙燒等作業。

(四)選礦技術在新疆礦山的應用

新疆應用選礦技術可追溯到古代,新疆遠在 300 年前,就在阿勒泰地區的各個溝內利用金的比重大的特點,從砂金礦中淘洗黃金,這就是重選的原始雛形。但在新中國成立之前,新疆沒有一處正規的選礦廠,全部都是採用人工方式手選和手淘,生產效率極其低下,只能處理比重差異大的砂金礦和根據顏色手選出黑鎢礦石。新中國成立後,新疆選礦技術有了長足的發展,磁選技術應用於鐵礦山,建成年處理量 80 萬噸的磁選礦廠,為鋼鐵企業源源不斷地提供高品質的鐵精粉。浮選應用於鉛鋅礦、銅礦、金礦山,先後建成康蘇鉛鋅浮選廠、喀拉通克銅鎳浮選廠、哈圖金浮選廠,促進了新疆有色工業的發展。重選、浮選、磁選聯合應用於新疆北部阿勒泰地區的稀有金屬礦山,為我國的早期國防建設提供所需的鋰、鈹、鉭、鈮等稀有金屬資源。以下是目前新疆有代表性的選礦廠。

1. 康蘇鉛鋅礦浮選選礦

康蘇選礦廠是新疆第一座機械化浮選廠,1952 年開始建設,設計生產規模為 250 噸 / 天,1954 年投產。該廠是由前蘇聯專家參與指導設計,前期主要處理喀什地區沙里塔什的方鉛礦和閃鋅礦,1961 年開始處理烏拉根氧化鉛鋅礦。康蘇選廠最初投產時是採用蘇聯專家設計的流程和葯劑制度進行浮選,流程採用氰化物與硫酸鋅作閃鋅礦的抑制劑,以蘇打作 pH 值的調整劑,並添加了少量的硫化鈉,先將鉛礦優先選出後,再將鋅礦物選出。該流程沒有取得較好的經濟指標,大部分鋅礦被選入鉛礦中。後經過我國工程技術人員和蘇聯專家的共同努力,通過幾次技術改造,在流程結構、技術參數和生產管理方面進行了革新和改進。將部分德國式的浮選機改成蘇式米哈諾貝爾 5A 型充氣量大的浮選機,使用水力旋流器代替螺旋分級機,加強了中礦再磨循環,增加了鋅浮選時間,降低了鋅浮選礦漿鹼度,合理控制破碎粒度和鋼球裝入量,嚴格貫徹技術操作規程和技術監督等。使各項指標得到穩步提升。鉛回收率由 71% 提高到 90%,鋅回收率由 13% 提高到 41%。其選礦過程見浮選工藝流程圖(圖 6-7-2)。

2. 新疆八一鋼鐵廠磁鐵礦浮磁選選礦

新疆八一鋼鐵選礦廠與 1989 年建成投產,設計處理能力 80 萬噸 / 年,主要處理高硫磁鐵礦。礦石由礦山采出後,運輸到選礦廠,經兩段破碎一段磨礦後,礦漿進入浮-磁車間。選出的硫精礦銷售給新疆境內的一些化工廠和化肥廠,鐵精礦供球團和燒結使用。尾礦濃縮後,用水隔泵輸送至尾礦庫,晾乾後,一部分尾礦成為八鋼西域水泥廠鐵質校正原料。新疆八一鋼鐵廠簡易浮磁選流程圖(圖 6-7-3)。

3. 喀拉通克銅鎳礦浮選選礦

喀拉通克銅鎳礦是新疆目前最大的銅鎳生產基地,礦山一期為采冶工程,采出的特富礦塊直接進入鼓風爐熔煉成低冰鎳,經過幾年的生產特富礦逐漸減少。為充分利用礦產資源,在二期改造中增加了優先選銅-銅鎳混合浮選流程,日處理原礦 900 噸。

原礦直接從采場經豎井提升到地面,通過窄軌輸送到原礦倉,原礦倉的礦石經群式給礦機由帶式輸送機送至中間礦倉。經重型板式給礦機、帶式輸送機,送至自磨機進行一段磨礦,自磨機排礦給入與格子型球磨機閉路的高堰式雙螺旋分級機,進行二段磨礦。分級機溢流經砂泵揚送至水力旋流器組,沉砂進入溢流型球磨機,進行三段磨礦。三段磨礦排礦與第一段分級機溢流合並,經砂泵揚送至水力旋流器組,旋流器溢流,自流至浮選廠房的攪拌槽內,加葯後進入浮選作業。浮選採用一次銅粗選、一次銅精選、一次銅鎳混合浮選、一次銅鎳掃選、三次銅鎳精選後,產出銅精礦、銅鎳混合精礦及尾礦,分別送至脫水廠房。銅精礦、銅鎳混合精礦經過脫水後分別送入銅精礦庫和冶煉廠原料庫。浮選尾礦經高效濃密機脫水後,用泵楊送至采礦場充填站,作為充填原料。喀拉通克銅鎳礦簡易選礦工藝流程圖(圖 6-7-4)。

4. 哈圖金礦黃金混汞-浮選選礦

哈圖礦區是新疆歷史上有名的岩金產地,早在乾隆年間便開始開采,主要採用的是土法重選法,將采出的礦石用石碾盤碾碎,通過淘洗的方式回收比重大的金粒。大量的細粒金無法回收,致使許多淘金者虧損嚴重。

1983 年通過實驗研究,採用「混汞—浮選—部分焙燒—氰化」原則流程,哈圖金礦建成了新疆第一座現代化的黃金生產礦山,日處理原礦 100 噸。1986 年通過改進破碎工藝,新增 100噸 / 天的浮選系列,使產能達到 200 噸 / 天。哈圖金礦混汞浮選工藝流程圖(圖 6-7-5)。

原礦由采廠通過汽車運到原礦倉,原礦經顎式破碎機進行一段破碎。然後經皮帶運輸機運到圓錐破碎機,進行二段破碎,破碎產物由圓振篩篩分後,篩下礦物由皮帶運輸機運送至粉礦倉,篩上礦物返回圓錐破碎機再破。粉礦倉經給礦機和皮帶運輸機送至格子型球磨機磨礦,磨礦排礦自流通過鍍銀銅板(俗稱汞板)進行混汞作業,通過汞板表面粘附的汞吸附單體解理的金形成汞齊,通過冶煉回收部分黃金。礦漿經過汞板後,用高堰式螺旋分級機,溢流進入浮選工序,返砂進進球磨機再磨。浮選工序採用一次粗選、二次精選、一次掃選流程選的浮選精礦。浮選精礦脫水經過焙燒和進行冶煉後得到金錠。

5. 可可托海稀有金屬礦重、磁、電、浮聯合選礦

可可托海以稀有金屬儲量大,品種多而聞名中外,鈹、鋰、鉭、鈮、銣、銫、鋯、鉿等稀有元素在許多礦帶中均有不同程度的分布,因而造成選礦上的復雜性和難度。經過眾多科技人員 10 年的反復實驗研究,從手工選礦到單一礦物選礦,發展到最後的重磁浮聯合選礦流程,分選出鋰精礦、鈹精礦、鉭鈮精礦,突破了這一世界性的難題,促進了選礦技術的發展。

1953 年,為回收綠柱石和鉭鈮礦在 3 號礦脈小露天采場東北角興建了一座簡易的 30 多米長的手選室,改善了手選的工作環境,提高了手選效率。另外,在 3 號礦脈尾礦堆附近興建了一座 20 噸 / 天的鉭鈮重選廠,採用對滾一段破碎、跳汰、搖床、溜槽進行重選,回收鉭鈮礦。1957 ~ 1958 年,將手選篩下的尾礦,用方螺旋溜槽進行富集,每年產出的氧化鋰精礦接近萬噸。

1963 年,經過科研院所近 8 年的選礦試驗研究,國家計委批准興建 750 噸 / 天的選礦廠(「87 - 66」機選廠),綜合回收氧化鋰精礦和鉭鈮精礦。選廠工藝流程簡圖(圖 6-7-6)。根據可可托海礦偉晶岩體分帶開採的特點,選廠採用三個系統分別對三種類型的礦石(鈹礦石、鋰礦石、鉭鈮礦石)進行選別。採用聯合選礦工藝綜合回收礦石中的鋰鈹鉭鈮礦物。先利用重力-磁法-電磁法選礦,從原礦含量只有 0.01% ~ 0.02%(Ta、Nb)203 的原礦中選50% 以上的(Ta、Nb)203 鉭鈮精礦,然後再用鹼法鋰鈹優先浮選,先優浮選鋰再選鈹。

可可托海選廠選礦工藝的不斷改進,使我國花崗偉晶岩類型礦石鉭鈮、鋰、鈹選礦工藝水平進入世界先進行列。

6. 選礦技術的發展方向

在美國、日本、德國等國家對選礦技術的發展非常重視,選礦技術的不斷進步和創新,促進了這些國家礦產資源的開發和綜合利用沿著可持續發展前進。在礦物破碎方面,美國開發了超細破碎機和高壓對滾機,降低球磨機入料粒度,節約了能耗。同時在不斷研究外加電場、激光、微波、超聲、高頻振盪、等離子處理礦石對粉碎和分選的影響。在礦物分選方面,已經或正在研究「多種力場」聯合作用的分選設備,並不斷將高技術引入選礦工程領域,諸如將超導技術引入磁選,將電化學及控制技術引入浮選等。在選礦工藝管理方面,將工藝控制過程自動化,並將「專家控制系統」與「最優適時控制」相結合,以達到根據礦石性質調整控制參數,使選礦生產工藝流程全過程保持最優狀態。

隨著我國國民經濟的快速發展,對礦產品的需求不斷增長,選礦工程技術面臨著資源、能源、環保的嚴峻挑戰和發展機遇。以下領域的技術創新將是今後選礦的發展方向:

一是研究開發高效預選設備、高效節能新型破磨與分選設備,以及固液分離新技術與裝備,大幅降低礦石粉碎固液分離過程的能耗。

二是研究各種能場的預處理對礦物粉碎和分選行為的影響,開發利用各種能場的預處理新技術,以提高粉碎效率和分選精度。

三是開發高效分選設備、高效無毒的新葯劑,重點研究復合力場分選新設備、多種成分協同作用的新葯劑以及處理貧、細、雜難選礦石的綜合分選新技術。

四是在礦石綜合利用研究中,開發無廢清潔生產工藝,加強尾礦中礦物的分離、提純、超細、改性的研究,使其成為市場需要的產品,為礦物物料工業向礦物材料工業轉化提供新技術。

五是大力將高新技術引進礦物工程領域,重點開展礦物生物工程技術、電化學調控和電化學控制浮選技術、過程自動尋優技術,以及高技術改造傳統產業的新技術研究。

六是加強基礎理論與選礦技術相結合的新型邊緣科學研究,促進新一代礦物分選理論體系的形成,並派生出新興的礦物分選和提純技術。

熱點內容
區塊鏈安全方面問題 發布:2025-01-11 19:48:53 瀏覽:698
地方區塊鏈標准 發布:2025-01-11 19:44:41 瀏覽:498
孩子非洲挖礦 發布:2025-01-11 19:34:19 瀏覽:931
區塊鏈技術是一種互聯網資料庫技術 發布:2025-01-11 19:26:17 瀏覽:797
百度元宇宙就是雞肋 發布:2025-01-11 19:22:37 瀏覽:467
雷達幣宣傳區塊鏈不止一種代碼 發布:2025-01-11 19:22:27 瀏覽:664
如何做礦機託管 發布:2025-01-11 19:13:54 瀏覽:196
波卡與以太坊 發布:2025-01-11 19:13:13 瀏覽:956
比特幣是才分開賣的嗎 發布:2025-01-11 19:13:08 瀏覽:498
比特幣被收購 發布:2025-01-11 19:12:21 瀏覽:254