以太坊源代碼修改
❶ 【ETH錢包開發02】導入錢包
本文主要講解通過助記詞、keystore、私鑰 3種方式來導入錢包。導入錢包就是說根據輸入的這3者中的一個去重新生成一個新的錢包。導入錢包的過程和創建的過程其實是差不多的。
根據助記詞導入錢包不需要原始密碼,密碼可以重新設置。根據用戶輸入的助記詞,先驗證助記詞的合規性(格式、個數等),驗證正確後,配合用戶輸入的密碼重新生成一個新的錢包。
驗證助記詞的合規性(格式、個數等)
助記詞導入錢包
通過私鑰導入錢包其實和創建錢包的過程基本一致。因為私鑰在導出的時候轉換成了16進制,所以在導入私鑰的時候,要把16進制轉換為byte數組。
keystore就是錢包文件,實際上就是錢包信息的json字元串。導入keystore是需要輸入密碼的,這個密碼是你最後導出keystore時的密碼。將keystore字元串變成walletFile實例再通過 Wallet.decrypt(password, walletFile); 解密,成功則可以導入,否則不能導入。
這是Web3j的API,程序走到這里經常OOM!
具體原因的話,我就不多說了,細節大家可以看這里
https://www.jianshu.com/p/41d4a38754a3
解決辦法
根據源碼修改 decrypt 方法,這里我用一個已經修改好的第三方庫
修改後的解密方法
導入Kestore
1、導入助記詞和私鑰是不需要以前的密碼的,而是重新輸入新的密碼;導入Keystore則需要以前的密碼,如果密碼不正確,會提示地址和私鑰不匹配。
2、關於備份助記詞
用過imtoken的同學可以看到imtoken是可以導出(備份)助記詞的。這個一開始我也很困惑,後來了解到其實它實在創建錢包的時候,在app本地保存了助記詞,導出只是講數據讀取出來而已。還有一點,imtoken一旦備份了助記詞之後,之後就沒有備份那個功能了,也就是說助記詞在本地存儲中刪除了;而且導入錢包的時候也是沒有備份助記詞這個功能的。
❷ 【深度知識】以太坊數據序列化RLP編碼/解碼原理
RLP(Recursive Length Prefix),中文翻譯過來叫遞歸長度前綴編碼,它是以太坊序列化所採用的編碼方式。RLP主要用於以太坊中數據的網路傳輸和持久化存儲。
對象序列化方法有很多種,常見的像JSON編碼,但是JSON有個明顯的缺點:編碼結果比較大。例如有如下的結構:
變數s序列化的結果是{"name":"icattlecoder","sex":"male"},字元串長度35,實際有效數據是icattlecoder 和male,共計16個位元組,我們可以看到JSON的序列化時引入了太多的冗餘信息。假設以太坊採用JSON來序列化,那麼本來50GB的區塊鏈可能現在就要100GB,當然實際沒這么簡單。
所以,以太坊需要設計一種結果更小的編碼方法。
RLP編碼的定義只處理兩類數據:一類是字元串(例如位元組數組),一類是列表。字元串指的是一串二進制數據,列表是一個嵌套遞歸的結構,裡面可以包含字元串和列表,例如["cat",["puppy","cow"],"horse",[[]],"pig",[""],"sheep"]就是一個復雜的列表。其他類型的數據需要轉成以上的兩類,轉換的規則不是RLP編碼定義的,可以根據自己的規則轉換,例如struct可以轉成列表,int可以轉成二進制(屬於字元串一類),以太坊中整數都以大端形式存儲。
從RLP編碼的名字可以看出它的特點:一個是遞歸,被編碼的數據是遞歸的結構,編碼演算法也是遞歸進行處理的;二是長度前綴,也就是RLP編碼都帶有一個前綴,這個前綴是跟被編碼數據的長度相關的,從下面的編碼規則中可以看出這一點。
對於值在[0, 127]之間的單個位元組,其編碼是其本身。
例1:a的編碼是97。
如果byte數組長度l <= 55,編碼的結果是數組本身,再加上128+l作為前綴。
例2:空字元串編碼是128,即128 = 128 + 0。
例3:abc編碼結果是131 97 98 99,其中131=128+len("abc"),97 98 99依次是a b c。
如果數組長度大於55, 編碼結果第一個是183加數組長度的編碼的長度,然後是數組長度的本身的編碼,最後是byte數組的編碼。
請把上面的規則多讀幾篇,特別是數組長度的編碼的長度。
例4:編碼下面這段字元串:
The length of this sentence is more than 55 bytes, I know it because I pre-designed it
這段字元串共86個位元組,而86的編碼只需要一個位元組,那就是它自己,因此,編碼的結果如下:
184 86 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前三個位元組的計算方式如下:
184 = 183 + 1,因為數組長度86編碼後僅佔用一個位元組。
86即數組長度86
84是T的編碼
例5:編碼一個重復1024次"a"的字元串,其結果為:185 4 0 97 97 97 97 97 97 ...。
1024按 big endian編碼為004 0,省略掉前面的零,長度為2,因此185 = 183 + 2。
規則1~3定義了byte數組的編碼方案,下面介紹列表的編碼規則。在此之前,我們先定義列表長度是指子列表編碼後的長度之和。
如果列表長度小於55,編碼結果第一位是192加列表長度的編碼的長度,然後依次連接各子列表的編碼。
注意規則4本身是遞歸定義的。
例6:["abc", "def"]的編碼結果是200 131 97 98 99 131 100 101 102。
其中abc的編碼為131 97 98 99,def的編碼為131 100 101 102。兩個子字元串的編碼後總長度是8,因此編碼結果第一位計算得出:192 + 8 = 200。
如果列表長度超過55,編碼結果第一位是247加列表長度的編碼長度,然後是列表長度本身的編碼,最後依次連接各子列表的編碼。
規則5本身也是遞歸定義的,和規則3相似。
例7:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
的編碼結果是:
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前兩個位元組的計算方式如下:
248 = 247 +1
88 = 86 + 2,在規則3的示例中,長度為86,而在此例中,由於有兩個子字元串,每個子字元串本身的長度的編碼各佔1位元組,因此總共佔2位元組。
第3個位元組179依據規則2得出179 = 128 + 51
第55個位元組163同樣依據規則2得出163 = 128 + 35
例8:最後我們再來看個稍復雜點的例子以加深理解遞歸長度前綴,
["abc",["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]]
編碼結果是:
248 94 131 97 98 99 248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
列表第一項字元串abc根據規則2,編碼結果為131 97 98 99,長度為4。
列表第二項也是一個列表項:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
根據規則5,結果為
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
長度為90,因此,整個列表的編碼結果第二位是90 + 4 = 94, 佔用1個位元組,第一位247 + 1 = 248
以上5條就是RPL的全部編碼規則。
各語言在具體實現RLP編碼時,首先需要將對像映射成byte數組或列表兩種形式。以go語言編碼struct為例,會將其映射為列表,例如Student這個對象處理成列表["icattlecoder","male"]
如果編碼map類型,可以採用以下列表形式:
[["",""],["",""],["",""]]
解碼時,首先根據編碼結果第一個位元組f的大小,執行以下的規則判斷:
1.如果f∈ [0,128),那麼它是一個位元組本身。
2.如果f∈[128,184),那麼它是一個長度不超過55的byte數組,數組的長度為 l=f-128
3.如果f∈[184,192),那麼它是一個長度超過55的數組,長度本身的編碼長度ll=f-183,然後從第二個位元組開始讀取長度為ll的bytes,按照BigEndian編碼成整數l,l即為數組的長度。
4.如果f∈(192,247],那麼它是一個編碼後總長度不超過55的列表,列表長度為l=f-192。遞歸使用規則1~4進行解碼。
5.如果f∈(247,256],那麼它是編碼後長度大於55的列表,其長度本身的編碼長度ll=f-247,然後從第二個位元組讀取長度為ll的bytes,按BigEndian編碼成整數l,l即為子列表長度。然後遞歸根據解碼規則進行解碼。
以上解釋了什麼叫遞歸長度前綴編碼,這個名字本身很好的解釋了編碼規則。
(1) 以太坊源碼學習—RLP編碼( https://segmentfault.com/a/1190000011763339 )
(2)簡單分析RLP編碼原理
( https://blog.csdn.net/itchosen/article/details/78183991 )
❸ 以太坊源碼分析(一 簡介)
以太坊作為目前區塊鏈技術2.0的代表作品,無論是它獨創的智能合約以及它本身交易的速度都優於bitcoin,通過看它的白皮書以及一些文章也略微了解了它的一些原理,但是總體還是對它的實現半知半解。
因此就想分析下它的實現源碼,再結合白皮書也許可以深入的理解它的實現。
每個包的作用大致為:
以上為個人初步理解,如有不當之處望指正
註:資料查詢主要位置 wiki eip
❹ 以太坊怎麼修改數據
先以太坊的數據保存在user用戶名當中需要在硬碟的位置,一是可以備份你的私鑰,而是可以刪除錢包,還有其他的一些比較詳細的操作
原標題:《解碼以太坊智能合約數據》 正如我們在之前的文章中所討論的,智能合約交易類似於智能合約驅動的web3應用程序中的後端API調用。每個智能合約交易和結果應用程序狀態更改的細
以太坊中各種操作都需要支付gas,如存儲數據、創建合約以及執行哈希計算等操作發起方在某次操作中願意支付的最高手續費
❺ 區塊鏈項目的代碼都需要來源嗎為什麼
區塊鏈是一個共識機制,這意味著這種參與者必須是透明的,也就是說,這種運行的代碼必須是開源代碼,所謂開源代碼,就是代碼都是可見的。
每個人可以編譯並執行自己編譯的程序,也意味著每個人都可以修改其中的代碼並運行,現在機制下,可以做到不管如何修改代碼,只要這些修改代碼的人沒有超過51%,那這種修改是沒有意義的,反而浪費自己的算力。
所以,至少參與的人,必須是需要知道代碼的,如果一個區塊鏈項目,代碼沒有開源,那麼那麼運行他的程序的節點都是不透明的,相當於你把他的代理人裝到了自己的節點上,要代表這個所有人執行命令了。相當於系統開發商控制了整個網路。這種區塊鏈怎麼可行呢?
從理念角度去看,將區塊鏈項目比作機器的話,本身的工作機制是透明的,是一個可以信任的機器。對此是這樣理解的,第一,開源是區塊鏈項目的一個必選項,而不是可選項,不論是公有鏈還是聯盟項目都需要進行開源;第二,開源和交付源代碼,是兩個不同的概念,交付源代碼並非是公開、透明,大家共同參與的一個過程。
比如在以太坊中,曾經因為在其平台上運行的某個平台幣,存在漏洞,需要進行修改,這種修改是直接體現在代碼上的,閱讀代碼的過程中,就發現有多處出現該幣的相關代碼,就是用於處理一旦碰見了這個問題,節點應如何處理,這些處理方法都是開源代碼里寫的,每個人都可以閱讀,如果節點的負責人認可這種解決方案,他就會運行這個程序,相當於支持這種代碼的決定,事實上區塊鏈也就是通過這種機制來實現。
❻ Windows下VS2015編譯以太坊源碼cpp-ethereum失敗
1.准備工作。windows64位系統,C盤預留一定空間,下載並安裝vs2015(官方註明只支持VS2015,待驗證),cmake我用的3.10.1,將系統語言調成非unicode語言,如英文(美國),否則最後編譯時會有錯誤。
2.項目clone到本地,項目地址:
3.執行 submole updata --init。
4.將script目錄下install_deps.bat拷貝至根目錄並執行,該步驟會將hunter、boost、libjson等一系列下載至C盤,時間較長,請耐心等待。
5.控制台cd到項目所在目錄並創建build子目錄,
❼ [以太坊源碼分析][p2p網路07]:同步區塊和交易
同步,也就是區塊鏈的數據的同步。這里分為兩種同步方式,一是本地區塊鏈與遠程節點的區塊鏈進行同步,二是將交易均勻的同步給相鄰的節點。
01.同步區塊鏈
02.同步交易
03.總結
ProtocolManager 協議管理中的 go pm.syncer() 協程。
先啟動了 fetcher ,輔助同步區塊用的。然後等待不同的事件觸發不同的同步方式。
同步的過程調用 pm.synchronise 方法來進行。
ProtocolManager 協議管理中的 go pm.txsyncLoop() 協程。
同步交易循環 txsyncLoop 分為三個部分的內容:
發送交易的函數。
挑選函數。
三個監聽協程的 case 。
❽ 以太坊C++源碼解析(九)區塊頭
區塊頭定義位於libethcore\BlockHeader.h文件中,是一個非常簡單的類,我們來看看它包含哪些重要數據:
❾ 以太坊源碼分析--p2p節點發現
節點發現功能主要涉及 Server Table udp 這幾個數據結構,它們有獨自的事件響應循環,節點發現功能便是它們互相協作完成的。其中,每個以太坊客戶端啟動後都會在本地運行一個 Server ,並將網路拓撲中相鄰的節點視為 Node ,而 Table 是 Node 的容器, udp 則是負責維持底層的連接。下面重點描述它們中重要的欄位和事件循環處理的關鍵部分。
PrivateKey - 本節點的私鑰,用於與其他節點建立時的握手協商
Protocols - 支持的所有上層協議
StaticNodes - 預設的靜態 Peer ,節點啟動時會首先去向它們發起連接,建立鄰居關系
newTransport - 下層傳輸層實現,定義握手過程中的數據加密解密方式,默認的傳輸層實現是用 newRLPX() 創建的 rlpx ,這不是本文的重點
ntab - 典型實現是 Table ,所有 peer 以 Node 的形式存放在 Table
ourHandshake - 與其他節點建立連接時的握手信息,包含本地節點的版本號以及支持的上層協議
addpeer - 連接握手完成後,連接過程通過這個通道通知 Server
Server 的監聽循環,啟動底層監聽socket,當收到連接請求時,Accept後調用 setupConn() 開始連接建立過程
Server的主要事件處理和功能實現循環
Node 唯一表示網路上的一個節點
IP - IP地址
UDP/TCP - 連接使用的UDP/TCP埠號
ID - 以太坊網路中唯一標識一個節點,本質上是一個橢圓曲線公鑰(PublicKey),與 Server 的 PrivateKey 對應。一個節點的IP地址不一定是固定的,但ID是唯一的。
sha - 用於節點間的距離計算
Table 主要用來管理與本節點與其他節點的連接的建立更新刪除
bucket - 所有 peer 按與本節點的距離遠近放在不同的桶(bucket)中,詳見之後的 節點維護
refreshReq - 更新 Table 請求通道
Table 的主要事件循環,主要負責控制 refresh 和 revalidate 過程。
refresh.C - 定時(30s)啟動Peer刷新過程的定時器
refreshReq - 接收其他線程投遞到 Table 的 刷新Peer連接 的通知,當收到該通知時啟動更新,詳見之後的 更新鄰居關系
revalidate.C - 定時重新檢查以連接節點的有效性的定時器,詳見之後的 探活檢測
udp 負責節點間通信的底層消息控制,是 Table 運行的 Kademlia 協議的底層組件
conn - 底層監聽埠的連接
addpending - udp 用來接收 pending 的channel。使用場景為:當我們向其他節點發送數據包後(packet)後可能會期待收到它的回復,pending用來記錄一次這種還沒有到來的回復。舉個例子,當我們發送ping包時,總是期待對方回復pong包。這時就可以將構造一個pending結構,其中包含期待接收的pong包的信息以及對應的callback函數,將這個pengding投遞到udp的這個channel。 udp 在收到匹配的pong後,執行預設的callback。
gotreply - udp 用來接收其他節點回復的通道,配合上面的addpending,收到回復後,遍歷已有的pending鏈表,看是否有匹配的pending。
Table - 和 Server 中的ntab是同一個 Table
udp 的處理循環,負責控制消息的向上遞交和收發控制
udp 的底層接受數據包循環,負責接收其他節點的 packet
以太坊使用 Kademlia 分布式路由存儲協議來進行網路拓撲維護,了解該協議建議先閱讀 易懂分布式 。更權威的資料可以查看 wiki 。總的來說該協議:
源碼中由 Table 結構保存所有 bucket , bucket 結構如下
節點可以在 entries 和 replacements 互相轉化,一個 entries 節點如果 Validate 失敗,那麼它會被原本將一個原本在 replacements 數組的節點替換。
有效性檢測就是利用 ping 消息進行探活操作。 Table.loop() 啟動了一個定時器(0~10s),定期隨機選擇一個bucket,向其 entries 中末尾的節點發送 ping 消息,如果對方回應了 pong ,則探活成功。
Table.loop() 會定期(定時器超時)或不定期(收到refreshReq)地進行更新鄰居關系(發現新鄰居),兩者都調用 doRefresh() 方法,該方法對在網路上查找離自身和三個隨機節點最近的若干個節點。
Table 的 lookup() 方法用來實現節點查找目標節點,它的實現就是 Kademlia 協議,通過節點間的接力,一步一步接近目標。
當一個節點啟動後,它會首先向配置的靜態節點發起連接,發起連接的過程稱為 Dial ,源碼中通過創建 dialTask 跟蹤這個過程
dialTask表示一次向其他節點主動發起連接的任務
在 Server 啟動時,會調用 newDialState() 根據預配置的 StaticNodes 初始化一批 dialTask , 並在 Server.run() 方法中,啟動這些這些任務。
Dial 過程需要知道目標節點( dest )的IP地址,如果不知道的話,就要先使用 recolve() 解析出目標的IP地址,怎麼解析?就是先要用藉助 Kademlia 協議在網路中查找目標節點。
當得到目標節點的IP後,下一步便是建立連接,這是通過 dialTask.dial() 建立連接
連接建立的握手過程分為兩個階段,在在 SetupConn() 中實現
第一階段為 ECDH密鑰建立 :
第二階段為協議握手,互相交換支持的上層協議
如果兩次握手都通過,dialTask將向 Server 的 addpeer 通道發送 peer 的信息