以太坊交易樹
❶ 什麼是以太坊
首先回答您什麼是以太坊,以太坊是一種編程的語言也是一個平台,而投資/投機者們所關注的以太坊其實是以太幣,也就是由以太坊衍生的一種數字代幣——eth以太幣(ethereum)
以太坊有沒有投資前景,我們只需要看它的價值,從幾十元到幾百元的漲幅之大,且不說未來的泡沫與否,單說這個階段升值的空間,還是值得大家關注的!
以太坊交易平台,目前我推薦btctrade平台(比特幣交易網)國內比較靠譜的大的交易平台!2016年就上線了以太坊,幣價漲勢驚人!
以太坊(Ethereum)是將比特幣中的一些技術和概念運用於計算領域的一項創新。比特幣被認為是一個系統,該系統維護了一個安全地記錄了所有比特幣賬單的共享的賬簿。以太坊利用了很多跟比特幣類似的機制(比如區塊鏈技術和 P2P 網路),來維護一個共享的計算平台,這個平台可以靈活且安全地運行用戶想要的任何程序(當然也包括類似比特幣的區塊鏈程序)。
❷ 以太坊解讀——Recursive Length Prefix協議圖解(上)
在以太坊中,採用了一種名為Recursive Length Prefix(RLP)的方法對交易、賬號、合約等基礎的數據結構進行序列化處理,從而實現對鏈上數據的網路傳輸和持久化存儲。RLP作為最為底層的編碼方法,其重要性是不言而喻。因此,網上介紹RLP的文章也不少,但是由於RLP是二進制編碼,又涉及到嵌套結構,造成編碼過程的可讀性較差,在學習中過程中,也一直沒有找到完整的、易於理解的說明,總是繞在各種規則之中,且不能"自拔",著實有點無奈。所以,在本文中,採用圖形化的解釋和舉例的方法,幫助大家理解RLP嵌套等特點、編解碼過程等。
和其他的序列化協議不同,RLP只支持兩種數據類型:
1)byte數組,可以是二進制數組,當然也可以是字元串;
2)byte數組的數組,也就是列表。並支持列表內的嵌套。
對於其他的數據類型,RLP都不支持,需要用戶自己先轉化為數組和列表的類型。
從RLP的命名中就可以看出兩個關鍵字:一個是遞歸Recursive和前綴Prefix。首先,關於遞歸,也就是嵌套結構,結構上非常接近「樹」,在Ethereum WiKi中,更是直接地採用樹的items來進行命名,葉子節點(leaf tress)來存儲「byte數組」,嵌套的節點就是一個樹的分叉(branching trees)。
比如,需要是對如下對象進行RLP的編碼,該對象中包含一個字元數組的列表、一個單個字元的字元數組、一個空字元數組。
< <[cat],[dog]>, [0xbf], [] >
將該對象展開為樹的結構,就如下圖。其中[0xbf]和[]屬於字元數組。<[cat], [dog]>屬於列表,可以嵌套展開,再根據各個節點,進行編碼。然後,對於不同長度的數組和列表,編碼的方法略有不同,這個也就是Length Prefix相關的內容,和「編碼過程」相關的內容,在第二節進行詳細地說明。
關於為什麼以太坊需要單獨設計一種序列化協議,目前還沒有找到官方的描述。但與其他序列化方法相比,RLP協議具有一些直接的優點,比如:
1)在以太坊中,最小貨幣單位為1 Wei,並且1 ETH = 10^18 Wei,所以在編碼中,需要考慮對很大的整數類型的序列化,在RLP中採用去除前導零(leading zero)的大端big-endian方式,可以有效處理大整數;
2)使用了靈活的長度前綴來表示數據的實際長度,並且使用遞歸的方式能編碼相當大的數據;
3)為了實現在鏈上節點的「共識Consensus」,防止出現數據的不一致,以太坊中並不支持浮點數類型,所以一般的序列化協議也不適用。
編碼的過程就是將嵌套結構(nested sequence)的樹形結構,添加長度前綴(Length Prefix)後,轉化為順序結構(flat sequence)的過程。添加長度前綴的目的,就是在反序列化時,可以根據長度前綴(Length Prefix),將(flat sequence)重構出樹的結構(nested sequence)。
關於前綴的生成規則,《Ethereum Yellow Paper》[2]給出了非常形式化的數學符號描述,漂亮是非常漂亮,可惜不是人類的語言,非常難於理解和表達。網上大部分文章的寫法也是引用了Yellow Paper中的5個文字形式上的描述,把原文和翻譯一並給出如下:
將上面這個「長度」Length Prefix的編碼規則,通過「決策樹」可以圖形化的表達如下圖。
首先,根據編碼的類型,進行分類,分為「位元組數組」和「列表」兩類;第二,根據不同的長度,編碼的長度前綴不同。若待編碼對象的長度小於56,就是把長度和「前綴字元」進行求和,佔用一個位元組。反之,待編碼對象的長度大於56,其前綴需要多個位元組,第一個位元組,求出「長度」所佔的位元組數,再加上「前綴字元」,比如:長度為56,佔用1位元組。然後對「長度」進行編碼,其實也是一個嵌套的過程。
還是以上文中的例子,該編碼對象,已經完成了「樹的構建」,然後根據「長度前綴」的原則,對樹的各個項目進行長度前綴的計算。
< <[cat],[dog]>, [0xbf], [] >
-對於<[cat],[dog]>屬於嵌套數組,需要對內部各項非常進行長度編碼的計算
`對於[cat],屬於字元數組,且長度為3,其對應的長度為0x80+3 = 0x83
`對於[dog],屬於字元數組,且長度為3,其對應的長度為0x80+3 = 0x83
`<[cat],[dog]>整體上,其長度前綴為0xc0 + 2(新增的兩個子項的長度所佔用的位元組)+6(待編碼字元的長度)=0xC8
- 對於[0xbf], 屬於字元數組,且長度為1,其對應的長度為0x80+1 = 0x81
- 對於[dog],屬於字元數組,且長度為3,其對應的長度為0x80+3 = 0x83
- 對於[],屬於字元數組,且長度為0,其對應的長度為0x80+0=0x80
總體上,增加的「長度編碼」的位元組數為6,加上原來的長度為10,所以整個對象的長度前綴為0xC0+16d=0xD0。所以最後的編碼結果為:
D0 C8 83636174 83646F67 81B7 83646F67 80
解碼過程將在 《以太坊解讀——Recursive Length Prefix協議圖解(下)》 一文中,給出圖形化的解讀說明。
❸ 以太坊技術系列-以太坊數據結構
本篇文章和大家介紹一下以太坊的數據結構,上篇文章我們提到,以太坊為了實現智能合約這一功能,使用了基於賬戶的模型。我們來看看以太坊中數據結構。
既然是基於賬戶的模型,我們需要通過賬戶地址找到賬戶的狀態。就像通過銀行卡號可以找到你在銀行中的各種信息一樣。最簡單的想法當然是一個簡單的哈希表 key是賬戶地址 value是賬戶狀態。但這里有個問題解決不了。
輕節點如何校驗賬戶合法性?
上篇我們說過,區塊鏈中有2類節點,全節點和輕節點,輕節點只會存儲block header,所以輕節點如何才能校驗賬號是否合法呢?
這個思路和我們平時用的md5校驗一致,我們會對區塊內的信息進行hash運算從而得出區塊內信息唯一確定的值,區塊鏈所有節點中這個值都是相同的。
在這個過程中我們用到了一種數據結構Merkle Tree(哈希樹),我們先看下Merkle Tree(哈希樹)的示意圖。
上篇文章說到區塊鏈中的鏈表(哈希鏈)和我們平時常見鏈表不同的是將指針從地址改為了hash指,這里也一樣,哈希樹和二叉樹的區別有2個
1.將地址改為了哈希值
2.只有葉子節點存儲數據
回到之前的問題輕節點是如何校驗1個賬戶或交易是否是在鏈上的呢?
整個流程如上圖所示
1.輕節點需要判斷1個賬號是否合法
2.輕節點由於只存儲block header,所以拿到1個賬號的時候會向全節點發出請求
3.全節點存儲了所有賬戶狀態,將賬戶路徑中的需要計算用到的hash值返回給輕節點
4.輕節點本地進行計算根hash值,如果計算結果和自己存儲一致則賬戶合法,不一致則不合法。
那以太坊中的賬戶信息的數據結構就是這樣嗎?
直接用這樣的數據結構來存儲賬戶信息會有2個問題
查找困難
生成hash值不確定
第1個問題應該比較容易發現,在這個樹中尋找1個賬號需要的復雜度是O(n),因為沒有任何順序。
第2個問題其實也是因為無序導致的,無序的組合每個節點針對同一批賬戶生成的hash值不一致,這就導致無法達成共識。
既然2個問題都和順序有關,那我們類似二叉排序樹一樣,使用哈希排序樹是不是就可以解決問題了呢?
使用排序樹後會帶來另外1個問題
插入困難
因為要維持樹是有序的,很可能帶來樹結構的很大變動。
以太坊中使用了另外一種數據結構字典樹。和哈希樹不同,字典樹應該是很多地方都有使用。我們簡單來看下字典樹的結構。
字典樹能夠較好地解決哈希樹的2個缺點1.查找困難 2.生成的hash值不確定以及排序二叉樹的1個缺點 插入困難。
但字典樹我們可以看到可能樹的深度可能由於部分元素導致整棵樹深度非常深。
這時我們可以進一步優化,將相同路徑進行壓縮。這就是壓縮字典樹。
將哈希樹和壓縮字典樹結合,就可以得到以太坊存儲賬戶的最終數據結構-MPT。
將壓縮字典樹裡面的指針從地址改為指針,並且將數據存儲在葉子節點中即可。
介紹完狀態樹的數據結構,我們接下來討論1個問題,區塊中存儲的賬戶狀態是什麼樣的范圍。有2種選擇。
只保存當時區塊中產生交易的賬戶狀態。
保存全局所有的賬戶。
我們可以看下這2種方式,無非就是空間和時間的平衡,只保存當前區塊產生的交易意味著是做懶載入(需要的時候才去尋找賬戶),在區塊鏈中這個代價是非常大的,因為尋找的賬戶之前從未交易過,這樣會遍歷整個區塊鏈。另外一種保存全局的賬戶方式雖然看起來空間消耗較大,但查找快捷,而且空間的問題我們可以通過其他方式優化。所以最終以太坊選擇了第2種每個區塊都報錯全局所有賬戶的方式。
我們來看下以太坊中是如何保存狀態樹的。
可以看到以太坊中雖然每個區塊都保存了全部賬戶,但是會將未發生變化的賬戶狀態指向前1個節點,本身只存儲發生變化的狀態,這樣可以較大程度優化空間佔用。
介紹完以太坊中比較復雜的狀態樹後,我們繼續來看看以太坊中的另外兩棵樹,交易樹和收據樹。
首先介紹一下,為什麼需要交易樹&收據樹。
1.交易樹
雖然以太坊是基於賬戶的模型,但是就像銀行不僅會存儲銀行卡的余額,還會存儲卡中的每筆錢怎麼來的以及怎麼花的。交易樹中就存儲著當前區塊中的包含的所有交易。
2.收據樹
由於智能合約的引入增加了不少復雜性,所以以太坊用收據樹存儲著一些交易操作的額外信息。比如交易過程中執行日誌就包含在收據樹中方便查詢。收據樹和交易樹是一一對應的。每發生一次交易就會有一次收據。
和狀態樹不同交易樹和收據樹只維護當前區塊內發生的交易,因為當時區塊發生交易時不需要再去查找另外1個交易,也就之前需要可能遍歷整個區塊鏈的查找操作了。
由於以太坊中的出塊速度較快,我們進行一些查詢一些符合條件交易的時候會面臨大量數據遍歷困難的問題。收據樹中引入了布隆過濾器可以幫助我們有效緩解這一困難。
布隆過濾器將大集合中每個元素進行hash運算映射到1個較小的集合,這時再來1個元素要判斷是否在大集合的時候,不需要遍歷整個大集合,而是去進行hash運算去小集合中尋找是否存在,如果不存在,肯定不在大集合中,如果存在則不能說明任何問題。
如上圖所示,布隆過濾器只能證明某1個元素不在集合中,不能證明1個元素在結合中。
以太坊中如果我們要在較多區塊中尋找某1個交易,則可以利用布隆過濾器,過濾掉肯定不存在目標交易的區塊,然後進入收據樹內繼續利用布隆過濾器篩選,剩下的才是可能的目標交易的交易,進行一一比對即可。
我們介紹了以太坊的核心數據結構,狀態樹&交易樹&收據樹,他們都是使用相同的數據結構-哈希壓縮字典樹。但狀態樹是維護1顆全局賬戶樹,交易樹和收據樹則是維護本區塊內的交易或收據。
介紹完數據結構後,後面我們會用幾篇文章來介紹以太坊中的一些核心演算法,比如共識機制,挖礦演算法等。
❹ eth是什麼幣
- 01
eth以太坊是在2009年應時而生的P2P數字形式的虛擬貨幣,和我們日常使用的電子貨幣或者現金貨幣不同,以太坊是由網路節點計算後而產生的,不管是誰,都能參與到挖礦獲幣的大軍中。
以太坊(Ethereum)是一個開源的有智能合約功能的公共區塊鏈平台,通過其專用加密貨幣以太幣(Ether)提供去中心化的虛擬機來處理點對點合約。以太坊的概念首次在2013年至2014年間由程序員Vitalik Buterin提出,在2014年通過ICO眾籌得以開始發展。
比特幣開創了去中心化密碼貨幣的先河,五年多的時間充分檢驗了區塊鏈技術的可行性和安全性。比特幣的區塊鏈事實上是一套分布式的資料庫,如果再在其中加進一個符號——比特幣,並規定一套協議使得這個符號可以在資料庫上安全地轉移,並且無需信任第三方,這些特徵的組合完美地構造了一個貨幣傳輸體系——比特幣網路。
然而比特幣並不完美,其中協議的擴展性是一項不足,例如比特幣網路里只有一種符號——比特幣,用戶無法自定義另外的符號,這些符號可以是代表公司的股票,或者是債務憑證等,這就損失了一些功能。另外,比特幣協議里使用了一套基於堆棧的腳本語言,這語言雖然具有一定靈活性,使得像多重簽名這樣的功能得以實現,然而卻不足以構建更高級的應用,例如去中心化交易所等。以太坊從設計上就是為了解決比特幣擴展性不足的問題。
以太坊有一個最大的優勢就是全球流通,可以隨時進行交易,在交易的過程中,外人無法識別,也無法破解交易用戶的個人信息,從而保證以太坊交易過程的安全性。
以太坊不僅能夠用於購買虛擬產品,在現實生活中也有多個領域都支持支付以太坊。獲取以太坊的方法較多,可以直接到P2P以太坊交易網站購買,也可以挖礦獲得,現在投資以太坊的用戶越來越多,看著越來越多的人們開始加入到投資以太坊的隊伍中,大家也能意識到以太坊的投資潛力。雖然現在網路監管平台對以太坊的投資交易過程監管更為完善和嚴格,但是投資用戶們也要注意投資的安全性。
❺ 什麼是以太幣/以太坊ETH
以太坊(英語:Ethereum)是一個開源的有智能合約功能的公共區塊鏈平台。通過其專用加密貨幣以太幣(Ether,又稱「以太幣」)提供去中心化的虛擬機(稱為「以太虛擬機」Ethereum Virtual Machine)來處理點對點合約。
坊區塊鏈上的代幣稱為以太幣(Ether),代碼為ETH,可在許多加密貨幣的外匯市場上交易,它也是以太坊上用來支付交易手續費和運算服務的媒介。
以太坊的概念首次在2013至2014年間由程序員Vitalik Buterin,受比特幣啟發後提出,大意為「下一代加密貨幣與去中心化應用平台」,在2014年通過ICO眾籌得以開始發展。截至2018年2月,以太幣是市值第二高的加密貨幣,僅次於比特幣。
資料拓展:
以太坊最初由 Vitalik Buterin 在2013年提出。Vitalik 本是一名參與比特幣社區的程序員,曾向比特幣核心開發人員主張比特幣平台應該要有個更完善的編程語言讓人開發程序,但未得到他們的同意,因此決定開發一個新的平台作此用途。Buterin 認為很多程序都可以用類似比特幣的原理來達成進一步的發展。Buterin 在2013年寫下了《以太坊白皮書》,說明了建造去中心化程序的目標。然後2014年通過網路公開募資得到開發的資金,投資人用比特幣向基金會購買以太幣。
最初以太坊程序是由一間位在瑞士的公司 Ethereum Switzerland GmbH 開發,之後轉移至一個非營利機構「以太坊基金會」(Ethereum Foundation)。
❻ 以太坊錢包里的以太坊幣,如何交易
騙局,小心一點,遠離。
❼ 如何看待以太坊的ETH2.0
我個人非常看好以太坊2.0之後的發展,但我並不是特別看好以太坊之後的價格。
當以太坊升級到2.0以後,以太坊的證明模式將會發生變化。在此之前,以太坊一直通過POW的方式來提供證明。但在此之後,以太坊將會把證明模式調整為POS。當以太坊正式進入到2.0時代之後,以太坊的交易速度將會進一步提高,交易手續費也會大幅壓縮,都會顯著解決當前以太坊的交易困境。從某種程度上來說,以太坊到時候將會成為真正意義上的第一公鏈。至於以太坊以後的價格問題,當以太坊失去礦工的支持之後,我覺得價格很難突破新高。
綜上所述,在以太坊沒有正式升級到2.0之前,一切討論都只不過是猜測而已,你可以參考一下。
❽ 以太坊架構是怎麼樣的
以太坊最上層的是DApp。它通過Web3.js和智能合約層進行交換。所有的智能合約都運行在EVM(以太坊虛擬機)上,並會用到RPC的調用。在EVM和RPC下面是以太坊的四大核心內容,包括:blockChain, 共識演算法,挖礦以及網路層。除了DApp外,其他的所有部分都在以太坊的客戶端里,目前最流行的以太坊客戶端就是Geth(Go-Ethereum)
❾ 以太坊的行情怎麼樣
以太坊的行情現在不錯的,價值570美元一個。現在虛擬貨幣這么火熱,很多人在炒以太幣。所以我個人很看好它的前景。關於以太坊和虛擬貨幣挖鏈網有很多信息哦!
❿ 以太坊的 ChainId 與 NetworkId
ChainId 是 EIP-155 引入的一個用來區分不同 EVM 鏈的一個標識。如下圖所示,主要作用就是避免一個交易在簽名之後被重復在不同的鏈上提交。最開始主要是為了防止以太坊交易在以太經典網路上重放或者以太經典交易在以太坊網路上重放。在以太坊網路上是從 2675000 這個區塊通過 Spurious Dragon 這個硬分叉升級激活。
引入 ChainId 後,帶來了哪些影響呢?
NetworkId 主要用來在網路層標識當前的區塊鏈網路。NetworkId 不一致的兩個節點無法建立連接。
NetworkId 無法通過配置文件指定,智能通過參數 --networkid 來指定。所以我們啟動自己私鏈節點上需要記得加上這個參數。如果不加這個參數也不指定網路類型,默認 NetworkId 的值和以太坊主網一致。
不是。
這個根據上面的介紹可以很明顯的看出,兩者並沒有非常高的關聯度。
網上幾乎所有提到搭建以太坊私鏈的文章,都要強調 NetworkId 需要和 genesis 文件里 ChainId 的值相同。事實上是沒必要的。
就像下面這張圖展示的這樣,很多已經在主網運行的 EVM 鏈,它們的 ChainId 和 NetworkId 並不相同。比如以太經典,它的 ChainId 是 61,但 NetworkId 和以太坊主網一樣都是 1。
之所以很多文章強調 ChainId 和 NetworkId 要保持一致,可能因為在某一段時間內,一些開發工具比如 MetaMask,會把 NetworkId 當作 ChainId 來用。不過現在 MetaMask 已經支持自定義 ChainId,以太坊也添加了 「eth_chainId」 這個 RPC API,相信兩者誤用的情況會越來越少。