當前位置:首頁 » 數字幣問答 » 數字貨幣的私鑰和公鑰的區別

數字貨幣的私鑰和公鑰的區別

發布時間: 2021-05-20 10:06:11

『壹』 數字證書,公鑰和私鑰這三者之間的關系是什麼

公私鑰又稱非對稱密鑰,成對出現,只有相互可逆,一對公私鑰可集成為一張數字證書

『貳』 誠信幣中的私鑰,公鑰,地址到底是什麼關系

很多小白剛入場時,就被私鑰,公鑰,地址,等等關系弄暈頭。有的甚至把自己私鑰搞丟了,地址上特別有錢,可偏偏就是取不出來,今天小白就把私鑰,公鑰,還有地址之間的關系跟大家捋一捋。

私鑰、公鑰和地址這三者的關系是:

私鑰轉換成(生成)公鑰,再轉換成地址,如果某個地址上有比特幣或誠信幣,就可以使用轉換成這個地址的私鑰花費上面的誠信幣。公鑰和地址的生成都依賴於私鑰,所以私鑰才最重要。

手機錢包也是同樣,但因為手機的文件管理方式不像計算機那麼方便。所以一般手機錢包會提供一個名為或類似「導出私鑰」的功能,通過這個功能,就可以將私鑰用各種形式導出來。

比如比特幣手機錢包可以導出為二維碼,可以列印或者掃描到紙上。更換手機時,裝好比特幣錢包掃描一下這個二維碼,就可以實現遷移比特幣。比特幣手機錢包和誠信幣手機錢包可以導出為一份明文字元串,列印到紙上——這就是紙錢包。

紙錢包讓用戶可以到任何有比特幣或誠信幣錢包的終端來花費你的比特幣或誠信幣。

由於錢包丟失或損壞會導致失去私鑰,從而徹底失去該數字貨幣的轉賬權。要防止出現這樣的悲劇,就要記得經常備份錢包里的數據。除了地址外,備份時也保存了所有的私鑰。

總結

1,私鑰要保護好,防止丟失,防止忘記,在手機清信息時方式被清除,最好手抄一份,但不要泄露。

2,要防止自己錢包丟失或損壞,導致丟失私鑰,喪失數字貨幣的轉賬權,否則你頓再多幣取不出來,還不是沒用。

『叄』 數字簽名中的私鑰和公鑰有什麼區別

私鑰自己保存,公鑰對外公開,因為私鑰是唯一的且只有自己知道,所以完全可以作為一種身份的標識,所以可用來簽名。

『肆』 密碼、密鑰、公鑰、私鑰有什麼區別

密碼是你可以在鍵盤上輸入的字元,但密鑰是指一種硬體,常被稱為加密狗,簡稱狗。密鑰是要接在電腦主機後面的,通過硬體來解密。 公鑰和私鑰或者稱非對稱密鑰和對稱密鑰是密碼體制的兩種方式。私鑰體制指加解密的密鑰相同或容易推出,因此加解密的密鑰都是保密的。公鑰體制指加解密密鑰彼此無法推出,公鑰公開,私鑰保密。
由上定義可知,公鑰私鑰是兩種不同的密碼體制,而不是兩個不同的應用或兩個不同的密鑰。因此在加密和簽名應用中,公鑰私鑰均可以使用。

『伍』 私鑰、公鑰、證書的區別和關系

私鑰是要求你輸入個人密碼才可訪問的,一般網上銀行之類可用到。
公鑰不要求設置密碼,是已經默認了的,一般上一些安全性要求不高的網站或共享資源,如區域網。
證書是一種網站加密瀏覽方式,只有允許了才可訪問,一般為安全性較高的網站,如網上銀行;可以訪止黑客盜取客戶資料。

『陸』 公鑰和私鑰的關系

1.首先我們需要區分加密和認證這兩個基本概念。
加密是將數據資料加密,使得非法用戶即使取得加密過的資料,也無法獲取正確的資料內容,所以數據加密可以保護數據,防止監聽攻擊。其重點在於數據的安全性。身份認證是用來判斷某個身份的真實性,確認身份後,系統才可以依不同的身份給予不同的許可權。其重點在於用戶的真實性。兩者的側重點是不同的。
2.其次我們還要了解公鑰和私鑰的概念和作用。
在現代密碼體制中加密和解密是採用不同的密鑰(公開密鑰),也就是非對稱密鑰密碼系統,每個通信方均需要兩個密鑰,即公鑰和私鑰,這兩把密鑰可以互為加解密。公鑰是公開的,不需要保密,而私鑰是由個人自己持有,並且必須妥善保管和注意保密。 公鑰私鑰的原則: 一個公鑰對應一個私鑰。 密鑰對中,讓大家都知道的是公鑰,不告訴大家,只有自己知道的,是私鑰。 如果用其中一個密鑰加密數據,則只有對應的那個密鑰才可以解密。 如果用其中一個密鑰可以進行解密數據,則該數據必然是對應的那個密鑰進行的加密。

『柒』 公鑰和私鑰技術的區別

(一)對稱加密(Symmetric Cryptography)
對稱加密是最快速、最簡單的一種加密方式,加密(encryption)與解密(decryption)用的是同樣的密鑰(secret key),這種方法在密碼學中叫做對稱加密演算法。對稱加密有很多種演算法,由於它效率很高,所以被廣泛使用在很多加密協議的核心當中。
對稱加密通常使用的是相對較小的密鑰,一般小於256 bit。因為密鑰越大,加密越強,但加密與解密的過程越慢。如果你只用1 bit來做這個密鑰,那黑客們可以先試著用0來解密,不行的話就再用1解;但如果你的密鑰有1 MB大,黑客們可能永遠也無法破解,但加密和解密的過程要花費很長的時間。密鑰的大小既要照顧到安全性,也要照顧到效率,是一個trade-off。
2000年10月2日,美國國家標准與技術研究所(NIST--American National Institute of Standards and Technology)選擇了Rijndael演算法作為新的高級加密標准(AES--Advanced Encryption Standard)。.NET中包含了Rijndael演算法,類名叫RijndaelManaged,下面舉個例子。
加密過程:

private string myData = "hello";
private string myPassword = "OpenSesame";
private byte[] cipherText;
private byte[] salt = { 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0 };

private void mnuSymmetricEncryption_Click(object sender, RoutedEventArgs e)
{
var key = new Rfc2898DeriveBytes(myPassword, salt);
// Encrypt the data.
var algorithm = new RijndaelManaged();
algorithm.Key = key.GetBytes(16);
algorithm.IV = key.GetBytes(16);
var sourceBytes = new System.Text.UnicodeEncoding().GetBytes(myData);
using (var sourceStream = new MemoryStream(sourceBytes))
using (var destinationStream = new MemoryStream())
using (var crypto = new CryptoStream(sourceStream, algorithm.CreateEncryptor(), CryptoStreamMode.Read))
{
moveBytes(crypto, destinationStream);
cipherText = destinationStream.ToArray();
}
MessageBox.Show(String.Format("Data:{0}{1}Encrypted and Encoded:{2}", myData, Environment.NewLine, Convert.ToBase64String(cipherText)));
}
private void moveBytes(Stream source, Stream dest)
{
byte[] bytes = new byte[2048];
var count = source.Read(bytes, 0, bytes.Length);
while (0 != count)
{
dest.Write(bytes, 0, count);
count = source.Read(bytes, 0, bytes.Length);
}
}

解密過程:

private void mnuSymmetricDecryption_Click(object sender, RoutedEventArgs e)
{
if (cipherText == null)
{
MessageBox.Show("Encrypt Data First!");
return;
}
var key = new Rfc2898DeriveBytes(myPassword, salt);
// Try to decrypt, thus showing it can be round-tripped.
var algorithm = new RijndaelManaged();
algorithm.Key = key.GetBytes(16);
algorithm.IV = key.GetBytes(16);
using (var sourceStream = new MemoryStream(cipherText))
using (var destinationStream = new MemoryStream())
using (var crypto = new CryptoStream(sourceStream, algorithm.CreateDecryptor(), CryptoStreamMode.Read))
{
moveBytes(crypto, destinationStream);
var decryptedBytes = destinationStream.ToArray();
var decryptedMessage = new UnicodeEncoding().GetString(
decryptedBytes);
MessageBox.Show(decryptedMessage);
}
}

對稱加密的一大缺點是密鑰的管理與分配,換句話說,如何把密鑰發送到需要解密你的消息的人的手裡是一個問題。在發送密鑰的過程中,密鑰有很大的風險會被黑客們攔截。現實中通常的做法是將對稱加密的密鑰進行非對稱加密,然後傳送給需要它的人。

(二)非對稱加密(Asymmetric Cryptography)
1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。相對於「對稱加密演算法」這種方法也叫做「非對稱加密演算法」。
非對稱加密為數據的加密與解密提供了一個非常安全的方法,它使用了一對密鑰,公鑰(public key)和私鑰(private key)。私鑰只能由一方安全保管,不能外泄,而公鑰則可以發給任何請求它的人。非對稱加密使用這對密鑰中的一個進行加密,而解密則需要另一個密鑰。比如,你向銀行請求公鑰,銀行將公鑰發給你,你使用公鑰對消息加密,那麼只有私鑰的持有人--銀行才能對你的消息解密。與對稱加密不同的是,銀行不需要將私鑰通過網路發送出去,因此安全性大大提高。
目前最常用的非對稱加密演算法是RSA演算法,是Rivest, Shamir, 和Adleman於1978年發明,他們那時都是在MIT。.NET中也有RSA演算法,請看下面的例子:
加密過程:

private byte[] rsaCipherText;
private void mnuAsymmetricEncryption_Click(object sender, RoutedEventArgs e)
{
var rsa = 1;
// Encrypt the data.
var cspParms = new CspParameters(rsa);
cspParms.Flags = CspProviderFlags.UseMachineKeyStore;
cspParms.KeyContainerName = "My Keys";
var algorithm = new RSACryptoServiceProvider(cspParms);
var sourceBytes = new UnicodeEncoding().GetBytes(myData);
rsaCipherText = algorithm.Encrypt(sourceBytes, true);
MessageBox.Show(String.Format("Data: {0}{1}Encrypted and Encoded: {2}",
myData, Environment.NewLine,
Convert.ToBase64String(rsaCipherText)));
}

解密過程:

private void mnuAsymmetricDecryption_Click(object sender, RoutedEventArgs e)
{
if(rsaCipherText==null)
{
MessageBox.Show("Encrypt First!");
return;
}
var rsa = 1;
// decrypt the data.
var cspParms = new CspParameters(rsa);
cspParms.Flags = CspProviderFlags.UseMachineKeyStore;
cspParms.KeyContainerName = "My Keys";
var algorithm = new RSACryptoServiceProvider(cspParms);
var unencrypted = algorithm.Decrypt(rsaCipherText, true);
MessageBox.Show(new UnicodeEncoding().GetString(unencrypted));
}

雖然非對稱加密很安全,但是和對稱加密比起來,它非常的慢,所以我們還是要用對稱加密來傳送消息,但對稱加密所使用的密鑰我們可以通過非對稱加密的方式發送出去。為了解釋這個過程,請看下面的例子:
(1) Alice需要在銀行的網站做一筆交易,她的瀏覽器首先生成了一個隨機數作為對稱密鑰。
(2) Alice的瀏覽器向銀行的網站請求公鑰。
(3) 銀行將公鑰發送給Alice。
(4) Alice的瀏覽器使用銀行的公鑰將自己的對稱密鑰加密。
(5) Alice的瀏覽器將加密後的對稱密鑰發送給銀行。
(6) 銀行使用私鑰解密得到Alice瀏覽器的對稱密鑰。
(7) Alice與銀行可以使用對稱密鑰來對溝通的內容進行加密與解密了。

(三)總結
(1) 對稱加密加密與解密使用的是同樣的密鑰,所以速度快,但由於需要將密鑰在網路傳輸,所以安全性不高。
(2) 非對稱加密使用了一對密鑰,公鑰與私鑰,所以安全性高,但加密與解密速度慢。
(3) 解決的辦法是將對稱加密的密鑰使用非對稱加密的公鑰進行加密,然後發送出去,接收方使用私鑰進行解密得到對稱加密的密鑰,然後雙方可以使用對稱加密來進行溝通。

『捌』 密鑰裡面公鑰和私鑰有啥區別

公鑰和私鑰或者稱非對稱密鑰和對稱密鑰是密碼體制的兩種方式。私鑰體制指加解密的密鑰相同或容易推出,因此加解密的密鑰都是保密的。公鑰體制指加解密密鑰彼此無法推出,公鑰公開,私鑰保密。
由上定義可知,公鑰私鑰是兩種不同的密碼體制,而不是兩個不同的應用或兩個不同的密鑰。因此在加密和簽名應用中,公鑰私鑰均可以使用。

『玖』 什麼是公鑰和私鑰

公鑰和私鑰是通過一種演算法得到的一個密鑰對(即一個公鑰和一個私鑰),將其中的一個向外界公開,稱為公鑰;另一個自己保留,稱為私鑰。通過這種演算法得到的密鑰對能保證在世界范圍內是唯一的。使用這個密鑰對的時候,如果用其中一個密鑰加密一段數據,必須用另一個密鑰解密。比如用公鑰加密數據就必須用私鑰解密,如果用私鑰加密也必須用公鑰解密,否則解密將不會成功。

熱點內容
ltc價位 發布:2024-11-17 16:44:10 瀏覽:2
貨幣杠桿借usdt 發布:2024-11-17 16:35:53 瀏覽:913
區塊鏈心態貼 發布:2024-11-17 16:32:48 瀏覽:642
幣圈的製作方法和步驟 發布:2024-11-17 16:31:33 瀏覽:512
元宇宙虛擬世界游戲 發布:2024-11-17 16:11:22 瀏覽:548
我的世界挖礦機怎麼做19 發布:2024-11-17 16:11:16 瀏覽:630
萊特幣被那些國家承認 發布:2024-11-17 16:00:16 瀏覽:767
鄭州挖礦機怎麼買 發布:2024-11-17 15:58:53 瀏覽:987
幣圈最火的電視劇 發布:2024-11-17 15:44:26 瀏覽:232
比特幣公司在哪裡北京 發布:2024-11-17 15:42:09 瀏覽:454