整數乘法算力
❶ 整數乘法的計演算法則
整數乘法法則是整數的運演算法則之一,整數的乘法法則分三種情形表述:
1、一位數的乘法法則
兩個一位數相乘,可根據乘法定義用加法計算,通常可利用乘法表直接得出任意兩個一位數的積。
2、多位數的乘法法則
依次用乘數的各個數位上的數,分別去乘被乘數的每一數位上的數,然後將乘得的積加起來。
3、對於任意數a,有
(1)整數乘法算力擴展閱讀
一、單項式多項式
單項式與多項式相乘,就是根據分配律,用單項式去乘多項式的每一項,再把所得的積相加。
注意:單項式乘以多項式,結果還是一個多項式,而且項數恰好與相乘以前那個多項式的項數相同。
二、多項式法則
多項式的乘法法則:(a+b)(m+n)=am+an+bm+bn(a、b、m、n都是單項式)
(a+b)²=a²+b²+2ab
(a-b)²=a²+b²-2ab
參考資料:網路——整數乘法法則
❷ 整式乘法公式是什麼
整式乘法公式:a*b=c。
乘法運算時,數位對齊,從右邊起,依次用第二個因數每位上的數敬悔檔去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
1、十位數是1的兩位數相乘方法:乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿 十前一。
2、個位是1的兩位數相乘方法:十位與十位相乘,得數為前積,十位與十位相前悉加,得數接著寫,滿十進一,在最後添 上1。
3、十位相同個位不同的兩位數相乘方法:被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上。
乘法的計演算法則:
1、多位數乘法法則整數乘法低位起,幾位數乘法幾次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
百位數乘得若干百,積的末位亮亂對百位計算準確對好位,幾次乘積加一起。
2、因數末尾有0的乘法法則因數末尾若有0,寫在後面先不乘,乘完積補上0,有幾個0寫幾個0。
❸ 整數乘法的算理是什麼
整數乘法算理是加法的簡便運算。相同加數相加等於加數乘以相同加數的個數。
整數乘法算理是加法的簡便運算。相同加數相加等於加數乘以相同加數的個數。從個位乘起,依次用第二個因數每位上的數去乘第一個因數;用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;再把幾次乘得的數加起來。
乘法運算性質:
1、幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
2、兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。例如: (137-125)×8=137×8-125×8=96。
❹ 整數乘法的計演算法
整數乘法法則:
(1)從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有祥納0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
乘法也可以物隱被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
。(n為正整數)
註:零和正整數統稱自然數。
整數也可分為奇數和偶數兩類。
整數中,能夠被2整除的數,叫做偶數。不能被2整除的數則叫做奇數。即當n是整數時,偶數可表示為2n(n為整數);奇數則可表示為2n+1(或2n-1)。
偶數包括正偶數(亦稱雙數)、負偶數和0。所有罩宴廳整數不是奇數,就是偶數。
在十進制里,我們可用看個位數的方式判斷該數是奇數還是偶數:個位為1,3,5,7,9的數為奇數;個位為0,2,4,6,8的數為偶數。
❺ 整數乘法是怎樣計算的
整數乘法的計算方法:把兩個因數的末尾對齊,再用第二個因數從個位起依次和第一個因數的每個位相乘;如果第二個因數是宏皮兩位數或者是兩位以上的數,高絕衡個戚做位乘完了再乘十位,然後再乘百位,最後把乘得的積相加就行了,在乘的時候要數位對齊。
❻ 整數的乘法豎式運演算法則
一、多位數乘一位數的豎式計算
1、
相同數位對齊
2、
用這個數分別去乘多位數每一個數位上的數,從個位數乘起,即從右往左乘
3、
乘到哪一位就把積寫在哪一位數位對應的下面
4、如果要進位的,哪一位的乘梁顫積滿幾十,就向前進幾,然後再繼續往下乘。
二、多位數乘兩位數
1、
把數位較多的因數寫在上面,數位較少的寫在下面
2、
下面的因數要與寫在上面的因數的數位要對齊
3、
用第二個因數(即寫在下面的因數)的個位數與寫在上面的數的個位相乘,激襪把相乘得到的積的末位寫在個位上,再與十位上的數相乘寫在十位上,……
4、
要僅為的,哪一位的乘積滿幾十,就向前進幾,然後再繼續往下乘
5、
再用寫在下面的因數的十位與寫在上面的因數的各個位數分別相乘,把相乘得到的積的末位寫在對應的十位上。
6、
然後把每次乘得的數加起來橡鉛敗。
總結,整數乘法法則:
1、相同數位對齊;
2、從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
3、然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)