算力為1500GPU
⑴ 0.5G的GPU算是什麼水平
可以說非常的低,至少在手機端,pc端來說,即使是嵌入式端都很低,現在市面上的手機中低端的機型gpu算力在200-500GFLOPS,高端的話上1000g的算力,pc端的話,核心顯卡跟高端手機算力差不多,獨立顯卡的話,高端顯卡也有10000gflops以上的算力。
圖形處理器,縮寫GPU,又稱顯示核心、視覺處理器、顯示晶元,是一種專門在個人電腦、工作站、游戲機和一些移動設備上做圖像和圖形相關運算工作的微處理器。
應該說有顯示系統就有圖形處理器,但是早期的顯卡只包含簡單的存儲器和幀緩沖區,它們實際上只起了一個圖形的存儲和傳遞作用,一切操作都必須由CPU來控制。
這對於文本和一些簡單的圖形來說是足夠的,但是當要處理復雜場景特別是一些真實感的三維場景,單靠這種系統是無法完成任務的。所以後來發展的顯卡都有圖形處理的功能。它不單單存儲圖形,而且能完成大部分圖形功能,這樣就大大減輕了CPU的負擔,提高了顯示能力和顯示速度。
隨著電子技術的發展,顯卡技術含量越來越高,功能越來越強,許多專業的圖形卡已經具有很強的3D處理能力,而且這些3D圖卡也漸漸地走向個人計算機。
⑵ GPU和CPU到底誰運算能力強
兩者的側重點不同,GPU針對的是圖像,CPU針對的是數據,兩者不好做比較,如果非要比的話,GPU要強於CPU
⑶ 如何計算gpu的浮點運算能力
GPU計算能力強主要是因為他的大部分電路都是進行算術計算的單元,實際上加法器乘法器這些都是相對較小的電路,即使做很多這種運算單元,都不會佔用太多晶元的面積。而且由於GPU的其他部件佔得面積小,它也可以有更多的寄存器和緩存來存儲數據。
⑷ GPU的浮點運算能力為什麼會如此恐怖
GPU主要是進行是進行圖形渲染的
有人說GPU的性能達到CPU的40倍這個說法是很不全面的
如果光說GPU在並行和密集浮點運算上達到CPU40倍性能這個或許可行(個人認為沒有這么誇張,最好的GPU能達到最好的CPU的10倍就很令人吃驚的了,況且現在CPU出現了多核,這使CPU的運算大大提高了,而GPGPU貌似還限於單核),但在全運算上這么說就很沒根據了
其實把GPU當作普通處理器使用依然有著不小的難度,其中最要命的恐怕就是GPU是被專門設計來處理圖形,因此它的編程語言架構和編程環境都難通用。GPU運行非圖形程序時,往往需要依靠極其復雜的演算法和較為曲折的流程,GPU的強大運算潛力很多時候就在這樣的迂迴過程中被一點點耗盡。
除此以外,由於沒有統一的API和驅動支持,GPU程序的開發者不得不針對每個GPU架構開發對應的軟體版本,使得把GPU當作普通處理器項目的推進難度倍增。
⑸ GPU的浮點運算能力為什麼會如此恐怖
它包含了CUDA指令集架構(ISA)以及GPU內部的並行計算引擎。 開發人員現在可以使用C語言來為CUDA™架構編寫程序,C語言是應用最廣泛的一種高級編程語言。所編寫出的程序於是就可以在支持CUDA™的處理器上以超高性能運行。 將來還會支持其它語言,包括FORTRAN以及C++。
隨著顯卡的發展,GPU越來越強大,而且GPU為顯示圖像做了優化。在計算上已經超越了通用的CPU。如此強大的晶元如果只是作為顯卡就太浪費了,因此NVidia推出CUDA,讓顯卡可以用於圖像計算以外的目的。
目前只有G80、G92、G94和GT200平台的NVidia顯卡才能使用CUDA,工具集的核心是一個C語言編譯器。G80中擁有128個單獨的ALU,因此非常適合並行計算,而且數值計算的速度遠遠優於CPU。
CUDA的SDK中的編譯器和開發平台支持Windows、Linux系統,可以與Visual Studio2005集成在一起。
目前這項技術處在起步階段,僅支持32位系統,編譯器不支持雙精度數據等問題要在晚些時候解決。Geforce8CUDA(Compute Unified Device Architecture)是一個新的基礎架構,這個架構可以使用GPU來解決商業、工業以及科學方面的復雜計算問題。它是一個完整的GPGPU解決方案,提供了硬體的直接訪問介面,而不必像傳統方式一樣必須依賴圖形API介面來實現GPU的訪問。
在架構上採用了一種全新的計算體系結構來使用GPU提供的硬體資源,從而給大規模的數據計算應用提供了一種比CPU更加強大的計算能力。CUDA採用C語言作為編程語言提供大量的高性能計算指令開發能力,使開發者能夠在GPU的強大計算能力的基礎上建立起一種效率更高的密集數據計算解決方案。
⑹ gpu計算能力1.0是什麼意思
計算能力是Nvidia公司在發布CUDA(統一計算架構,Compute Unified Device Architecture,一種對GPU進行編程的語言,類似於C語言對CPU進行編程)時提出的一個概念。因為顯卡本身是一個浮點計算晶元,可以作為計算卡使用,所以顯卡就具有計算能力。不同的顯卡具有不同的計算能力,為了以示區分,Nvidia就在不同時期的產品上提出了相應版本的計算能力x.x。計算能力1.0出現在早期的圖形卡上,例如,最初的8800 Ultras和許多8000系列卡以及Tesla C/D/S870s卡,與這些顯卡相應發布的是CUDA1.0。今天計算能力1.0已經被市場淘汰了。此後還有計算能力1.1,這個出現在許多9000系列圖形卡上。計算能力1.2與GT200系列顯卡一起出現,而計算能力1.3是從GT200升級到GT200 a/b修訂版時提出的。再往後還有計算能力2.0、2.1、3.0等版本。最新發布的版本是計算能力6.1,由最新的帕斯卡架構顯卡所支持,同時CUDA版本也更新到CUDA8.0。
對於普通用戶無需關心顯卡的計算能力,只有GPU編程人員在編寫CUDA程序,對GPU的計算進行開發時才關心這個問題。只要知道自己電腦所帶的顯卡型號就能查詢到相應的計算能力,這里貼上官方網址:https://developer.nvidia.com/cuda-gpus。
⑺ 聽說GPU 比CPU 計算能力強10倍以上,
看來NVIDIA忽悠了不少人啊。GPU計算圖形的能力是比CPU強,但是用電腦就光處理圖像?
⑻ 為什麼GPU的運算能力比CPU高那麼多,卻還是要使用CPU
GPU是一個圖形專用晶元,只處理圖形顯示與運算,不能替代CPU的綜合處理能力。
⑼ 算力的大小是怎麼評估的
您好,您說的應該是某些區塊鏈平台所謂的算力吧,現在這種平台其實他們的演算法參差不齊,國內真正的區塊鏈平台實際上是零,這種算力是根據用戶的活躍度,以及其他的一些統計率值計算的。
⑽ 請問下什麼是GPU的浮點運算能力主要干什麼的
GPU計算能力強主要是因為他的大部分電路都是進行算術計算的單元,實際上加法器乘法器這些都是相對較小的電路,即使做很多這種運算單元,都不會佔用太多晶元的面積。而且由於GPU的其他部件佔得面積小,它也可以有更多的寄存器和緩存來存儲數據。CPU之所以那麼慢,一方面是因為有大量的處理其他程序如分支循環之類的單元,並且由於cpu處理要求有一定的靈活性,那麼cpu的算術邏輯單元的結構也要復雜很多。簡單的說,就為了提高分支指令的處理速度,cpu的很多部件都用於做分支預測,以及在分支預測錯誤的時候,修正和恢復算術邏輯單元的結果。這些都大大的增加了器件的復雜度。
另外,實際上現在的CPU的設計上也在向GPU學習,就是增加並行計算的,沒有那麼多控制結構的浮點運算單元。例如intel的sse指令集,到目前可以實現同時進行4個浮點運算,而且增加了很多寄存器 另外,想學習GPU計算的話,去下載一個CUDA的SDK,裡面有很詳細的說明文檔