當前位置:首頁 » 算力簡介 » 去中心化redis

去中心化redis

發布時間: 2021-12-12 08:35:59

A. 面試問題redis有哪些集群方案

P2P模式,無中心化
把key分成16384個slot
每個實例負責一部分slot
客戶端請求若不在連接的實例,該實例會轉發給對應的實例。
通過Gossip協議同步節點信息

優點:
- 組件all-in-box,部署簡單,節約機器資源
- 性能比proxy模式好
- 自動故障轉移、Slot遷移中數據可用
- 官方原生集群方案,更新與支持有保障

缺點:
- 架構比較新,最佳實踐較少
- 多鍵操作支持有限(驅動可以曲線救國)
- 為了性能提升,客戶端需要緩存路由表信息
- 節點發現、reshard操作不夠自動化

B. redis能解決什麼問題

redis是內存資料庫,訪問速度非常快,所以能夠解決的也都是些緩存類型的問題,如下:
1、會話緩存(Session Cache)
2、全頁緩存(FPC)
3、隊列
4、排行榜/計數器
5、發布/訂閱

C. Redis和Memcached的區別

Redis與Memcached的區別

傳統MySQL+ Memcached架構遇到的問題
實際MySQL是適合進行海量數據存儲的,通過Memcached將熱點數據載入到cache,加速訪問,很多公司都曾經使用過這樣的架構,但隨著業務數據量的不斷增加,和訪問量的持續增長,我們遇到了很多問題:
1.MySQL需要不斷進行拆庫拆表,Memcached也需不斷跟著擴容,擴容和維護工作占據大量開發時間。
2.Memcached與MySQL資料庫數據一致性問題。
3.Memcached數據命中率低或down機,大量訪問直接穿透到DB,MySQL無法支撐。
4.跨機房cache同步問題。
眾多NoSQL百花齊放,如何選擇
最近幾年,業界不斷涌現出很多各種各樣的NoSQL產品,那麼如何才能正確地使用好這些產品,最大化地發揮其長處,是我們需要深入研究和思考的問題,實際歸根結底最重要的是了解這些產品的定位,並且了解到每款產品的tradeoffs,在實際應用中做到揚長避短,總體上這些NoSQL主要用於解決以下幾種問題
1.少量數據存儲,高速讀寫訪問。此類產品通過數據全部in-momery 的方式來保證高速訪問,同時提供數據落地的功能,實際這正是Redis最主要的適用場景。
2.海量數據存儲,分布式系統支持,數據一致性保證,方便的集群節點添加/刪除。
3.這方面最具代表性的是dynamo和bigtable 2篇論文所闡述的思路。前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性,後者是一個中心化的方案設計,通過類似一個分布式鎖服務來保證強一致性,數據寫入先寫內存和redo log,然後定期compat歸並到磁碟上,將隨機寫優化為順序寫,提高寫入性能。
4.Schema free,auto-sharding等。比如目前常見的一些文檔資料庫都是支持schema-free的,直接存儲json格式數據,並且支持auto-sharding等功能,比如mongodb。
面對這些不同類型的NoSQL產品,我們需要根據我們的業務場景選擇最合適的產品。
Redis適用場景,如何正確的使用
前面已經分析過,Redis最適合所有數據in-momory的場景,雖然Redis也提供持久化功能,但實際更多的是一個disk-backed的功能,跟傳統意義上的持久化有比較大的差別,那麼可能大家就會有疑問,似乎Redis更像一個加強版的Memcached,那麼何時使用Memcached,何時使用Redis呢?

如果簡單地比較Redis與Memcached的區別,大多數都會得到以下觀點:

1 Redis不僅僅支持簡單的k/v類型的數據,同時還提供list,set,zset,hash等數據結構的存儲。

2 Redis支持數據的備份,即master-slave模式的數據備份。

3 Redis支持數據的持久化,可以將內存中的數據保持在磁碟中,重啟的時候可以再次載入進行使用。

拋開這些,可以深入到Redis內部構造去觀察更加本質的區別,理解Redis的設計。

在Redis中,並不是所有的數據都一直存儲在內存中的。這是和Memcached相比一個最大的區別。Redis只會緩存所有的 key的信息,如果Redis發現內存的使用量超過了某一個閥值,將觸發swap的操作,Redis根據「swappability = age*log(size_in_memory)」計 算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在內存中清除。這種特性使得Redis可以 保持超過其機器本身內存大小的數據。當然,機器本身的內存必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將內存 中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共享這部分內存,所以如果更新需要swap的數據,Redis將阻塞這個 操作,直到子線程完成swap操作後才可以進行修改。

使用Redis特有內存模型前後的情況對比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used

當 從Redis中讀取數據的時候,如果讀取的key對應的value不在內存中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。 這里就存在一個I/O線程池的問題。在默認的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行 批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程序中,這顯然是無法滿足大並發的情況的。所以Redis運行我們設置I/O線程 池的大小,對需要從swap文件中載入相應數據的讀取請求進行並發操作,減少阻塞的時間。

如果希望在海量數據的環境中使用好Redis,我相信理解Redis的內存設計和阻塞的情況是不可缺少的。

補充的知識點:
memcached和redis的比較
1 網路IO模型
Memcached是多線程,非阻塞IO復用的網路模型,分為監聽主線程和worker子線程,監聽線程監聽網路連接,接受請求後,將連接描述字pipe 傳遞給worker線程,進行讀寫IO, 網路層使用libevent封裝的事件庫,多線程模型可以發揮多核作用,但是引入了cache coherency和鎖的問題,比如,Memcached最常用的stats 命令,實際Memcached所有操作都要對這個全局變數加鎖,進行計數等工作,帶來了性能損耗。

(Memcached網路IO模型)
Redis使用單線程的IO復用模型,自己封裝了一個簡單的AeEvent事件處理框架,主要實現了epoll、kqueue和select,對於單純只有IO操作來說,單線程可以將速度優勢發揮到最大,但是Redis也提供了一些簡單的計算功能,比如排序、聚合等,對於這些操作,單線程模型實際會嚴重影響整體吞吐量,CPU計算過程中,整個IO調度都是被阻塞住的。
2.內存管理方面
Memcached使用預分配的內存池的方式,使用slab和大小不同的chunk來管理內存,Item根據大小選擇合適的chunk存儲,內存池的方式可以省去申請/釋放內存的開銷,並且能減小內存碎片產生,但這種方式也會帶來一定程度上的空間浪費,並且在內存仍然有很大空間時,新的數據也可能會被剔除,原因可以參考Timyang的文章:http://timyang.net/data/Memcached-lru-evictions/
Redis使用現場申請內存的方式來存儲數據,並且很少使用free-list等方式來優化內存分配,會在一定程度上存在內存碎片,Redis跟據存儲命令參數,會把帶過期時間的數據單獨存放在一起,並把它們稱為臨時數據,非臨時數據是永遠不會被剔除的,即便物理內存不夠,導致swap也不會剔除任何非臨時數據(但會嘗試剔除部分臨時數據),這點上Redis更適合作為存儲而不是cache。
3.數據一致性問題
Memcached提供了cas命令,可以保證多個並發訪問操作同一份數據的一致性問題。 Redis沒有提供cas 命令,並不能保證這點,不過Redis提供了事務的功能,可以保證一串 命令的原子性,中間不會被任何操作打斷。
4.存儲方式及其它方面
Memcached基本只支持簡單的key-value存儲,不支持枚舉,不支持持久化和復制等功能
Redis除key/value之外,還支持list,set,sorted set,hash等眾多數據結構,提供了KEYS
進行枚舉操作,但不能在線上使用,如果需要枚舉線上數據,Redis提供了工具可以直接掃描其mp文件,枚舉出所有數據,Redis還同時提供了持久化和復制等功能。
5.關於不同語言的客戶端支持
在不同語言的客戶端方面,Memcached和Redis都有豐富的第三方客戶端可供選擇,不過因為Memcached發展的時間更久一些,目前看在客戶端支持方面,Memcached的很多客戶端更加成熟穩定,而Redis由於其協議本身就比Memcached復雜,加上作者不斷增加新的功能等,對應第三方客戶端跟進速度可能會趕不上,有時可能需要自己在第三方客戶端基礎上做些修改才能更好的使用。
根據以上比較不難看出,當我們不希望數據被踢出,或者需要除key/value之外的更多數據類型時,或者需要落地功能時,使用Redis比使用Memcached更合適。
關於Redis的一些周邊功能
Redis除了作為存儲之外還提供了一些其它方面的功能,比如聚合計算、pubsub、scripting等,對於此類功能需要了解其實現原理,清楚地了解到它的局限性後,才能正確的使用,比如pubsub功能,這個實際是沒有任何持久化支持的,消費方連接閃斷或重連之間過來的消息是會全部丟失的,又比如聚合計算和scripting等功能受Redis單線程模型所限,是不可能達到很高的吞吐量的,需要謹慎使用。
總的來說Redis作者是一位非常勤奮的開發者,可以經常看到作者在嘗試著各種不同的新鮮想法和思路,針對這些方面的功能就要求我們需要深入了解後再使用。
總結:
1.Redis使用最佳方式是全部數據in-memory。
2.Redis更多場景是作為Memcached的替代者來使用。
3.當需要除key/value之外的更多數據類型支持時,使用Redis更合適。
4.當存儲的數據不能被剔除時,使用Redis更合適。

D. memcached和redis的區別

前者是大型機器

E. redis集群中master和salve是怎麼設置的

redis cluster在設計的時候,就考慮到了去中心化,去中間件,也就是說,集群中的每個節點都是平等的關系,都是對等的,每個節點都保存各自的數據和整個集群的狀態。
每個節點都和其他所有節點連接,而且這些連接保持活躍,這樣就保證了我們只需要連接集群中的任意一個節點,就可以獲取到其他節點的數據。

F. 如何搭建redis的雙主

這方面最具代表性的是dynamo和bigtable 2篇論文所闡述的思路。前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性
後者是一個中心化的方案設計,通過類似一個分布式鎖服務來保證強一致性,數據寫入先寫內存和redo log,然後定期compat歸並到磁碟上,將隨機寫優化為順序寫,提高寫入性能。

G. 如何實現高可用的 redis 集群

Redis 因具有豐富的數據結構和超高的性能以及簡單的協議,使其能夠很好的作為資料庫的上游緩存層。但在大規模的 Redis 使用過程中,會受限於多個方面:單機內存有限、帶寬壓力、單點問題、不能動態擴容等。

基於以上, Redis 集群方案顯得尤為重要。通常有 3 個途徑:官方 Redis Cluster ;通過 Proxy 分片;客戶端分片 (Smart Client) 。以上三種方案各有利弊。

Redis Cluster( 官方 ) :雖然正式版發布已經有一年多的時間,但還缺乏最佳實踐;對協議進行了較大修改,導致主流客戶端也並非都已支持,部分支持的客戶端也沒有經過大規模生產環境的驗證;無中心化設計使整個系統高度耦合,導致很難對業務進行無痛的升級。

Proxy :現在很多主流的 Redis 集群都會使用 Proxy 方式,例如早已開源的 Codis 。這種方案有很多優點,因為支持原聲 redis 協議,所以客戶端不需要升級,對業務比較友好。並且升級相對平滑,可以起多個 Proxy 後,逐個進行升級。但是缺點是,因為會多一次跳轉,平均會有 30% 左右的性能開銷。而且因為原生客戶端是無法一次綁定多個 Proxy ,連接的 Proxy 如果掛了還是需要人工參與。除非類似 Smart Client 一樣封裝原有客戶端,支持重連到其他 Proxy ,但這也就帶來了客戶端分片方式的一些缺點。並且雖然 Proxy 可以使用多個,並且可以動態增加 proxy 增加性能,但是所有客戶端都是共用所有 proxy ,那麼一些異常的服務有可能影響到其他服務。為每個服務獨立搭建 proxy ,也會給部署帶來額外的工作。

而我們選擇了第三種方案,客戶端分片 (Smart Client) 。客戶端分片相比 Proxy 擁有更好的性能,及更低的延遲。當然也有缺點,就是升級需要重啟客戶端,而且我們需要維護多個語言的版本,但我們更愛高性能。

下面我們來介紹一下我們的Redis集群:

概貌:

如圖0所示,

我們的 Redis 集群一共由四個角色組成:

Zookeeper :保存所有 redis 集群的實例地址, redis 實例按照約定在特定路徑寫入自身地址,客戶端根據這個約定查找 redis 實例地址,進行讀寫。

Redis 實例:我們修改了 redis 源碼,當 redis 啟動或主從切換時,按照約定自動把地址寫到 zookeeper 特定路徑上。

Sentinel : redis 自帶的主從切換工具,我們通過 sentinel 實現集群高可用。

客戶端( Smart Client ):客戶端通過約定查找 redis 實例在 ZooKeeper 中寫入的地址。並且根據集群的 group 數,進行一致性哈希計算,確定 key 唯一落入的 group ,隨後對這個 group 的主庫進行操作。客戶端會在Z ooKeeper 設置監視,當某個 group 的主庫發生變化時,Z ooKeeper 會主動通知客戶端,客戶端會更新對應 group 的最新主庫。

我們的Redis 集群是以業務為單位進行劃分的,不同業務使用不同集群(即業務和集群是一對一關系)。一個 Redis 集群會由多個 group 組成 ( 一個 group 由一個主從對 redis 實例組成 ) 。即 group 越多,可以部署在更多的機器上,可利用的內存、帶寬也會更多。在圖0中,這個業務使用的 redis 集群由 2 個 group 組成,每個 group 由一對主從實例組成。

Failover

如圖1所示,

當 redis 啟動時,會 把自己的 IP:Port 寫入到 ZooKeeper 中。其中的 主實例模式啟動時會在 /redis/ 業務名 / 組名 永久節點寫入自己的 IP:Port (如果節點不存在則創建)。由 主模式 變成 從模式 時,會創建 /redis/ 業務名 / 組名 /slaves/ip:port 臨時節 點,並寫入自己的 IP:Port (如果相同節點已經存在,則先刪除,再創建)。而從實例 模式 啟動時會創建 /redis/ 業務名 / 組名 /slaves/ip:port 臨時節點,並寫入自己的 ip:port (如果相同節點已經存在,則先刪除,再創建)。由 從模式 變成 主模式 時,先刪除 /redis/ 業務名 / 組名 /slaves/ip:port 臨時節點,並在 /redis/ 業務名 / 組名 永久節點寫入自己的 IP:Port 。

ZooKeeper 會一直保存當前有效的 主從實例 IP:Port 信息。至於主從自動切換過程,使用 redis 自帶的 sentinel 實現,現設置為超過 30s 主 server 無響應,則由 sentinel 進行主從實例的切換,切換後就會觸發以主、從實例通過以上提到的一系列動作,從而完成最終的切換。

而客戶端側通過給定業務名下的所有 groupName 進行一致性哈希計算,確定 key 落入哪個組。 客戶端啟動時,會從 ZooKeeper 獲取指定業務名下所有 group 的 主從 IP:Port ,並在 ZooKeeper 中設置監視(監視的作用是當 ZooKeeper 的節點發生變化時,會主動通知客戶端)。若客戶端從 Zookeeper 收到節點變化通知,會重新獲取最新的 主從 I:Port ,並重新設置監視( ZooKeeper 監視是一次性的)。通過此方法,客戶端可以實時獲知當前可訪問最新的 主從 IP:Port 信息。

因為我們的所有 redis 實例信息都按照約定保存在 ZooKeeper 上,所以不需要針對每個實例部署監控,我們編寫了一個可以自動通過 ZooKeeper 獲取所有 redis 實例信息,並且監控 cpu 、 qps 、內存、主從延遲、主從切換、連接數等的工具。

發展:

現在 redis 集群在某些業務內存需求超過預期很多後,無法通過動態擴容進行擴展。所以我們正在做動態擴容的支持。原先的客戶端我們是通過一致性哈希進行 key 的
路由策略,但這種方式在動態擴容時會略顯復雜,所以我們決定採用實現起來相對簡單的預分片方式。一致性哈希的好處是可以無限擴容,而預分片則不是。預分片
時我們會在初始化階段指定一個集群的所有分片數量,這個數量一旦指定就不能再做改變,這個預分片數量就是後續可以擴容到最大的 redis 實例數。假設預分片 128 個 slot ,每個實例 10G 也可以達到 TB 級別的集群,對於未來數據增長很大的集群我們可以預分片 1024 ,基本可以滿足所有大容量內存需求了。

原先我們的 redis 集群有四種角色, Smart Client, redis , sentinel , ZooKeeper 。為了支持動態擴容,我們增加了一個角色, redis_cluster_manager (以下簡稱 manager ),用於管理 redis 集群。主要工作是初始化集群(即預分片),增加實例後負責修改Z ooKeeper 狀態,待客戶端做好准備後遷移數據到新增實例上。為了盡量減少數據遷移期間對現性能帶來的影響,我們每次只會遷移一個分片的數據,待遷移完成,再進行下一個分片的遷移。

如圖2所示

相比原先的方案,多了 slots 、M anager Lock 、 clients 、M igrating Clients 節點。

Slots: 所有分片會把自身信息寫入到 slots 節點下面。 Manager 在初始化集群時,根據設置的分片數,以及集群下的 group 數,進行預分片操作,把所有分片均勻分配給已有 group 。分片的信息由一個 json 串組成,記錄有分片的狀態 (stats) ,當前擁有此分片的 group(src) ,需要遷移到的 group(dst) 。分片的狀態一共有三種: online 、 pre_migrate 、 migrating 。

Online 指這個分片處於正常狀態,這時 dst 是空值,客戶端根據 src 的 group 進行讀寫。

Pre_migrate 是指這個分片被 manager 標記為需要遷移,此時 dst 仍然為空, manager 在等所有 client 都已經准備就緒,因為 ZooKeeper 回掉所有客戶端有時間差,所以如果某些 client 沒有準備就緒的時候 manager 進行了數據遷移,那麼就會有數據丟失。

Migrating 是 manager 確認了所有客戶端都已經做好遷移准備後,在 dst 寫入此分片需要遷移的目標 group 。待遷移完成,會在 src 寫入目標 group_name , dst 設為空, stats 設為 online 。

Manager Lock: 因為我們是每次只允許遷移一個 slot ,所以不允許超過一個 manager 操作一個集群。所以 manager 在操作集群前,會在M anager Lock 下注冊臨時節點,代表這個集群已經有 manager 在操作了,這樣其他 manager 想要操作這個集群時就會自動退出。

Clients 和M igrating Clients 是為了讓 manager 知道客戶端是否已經准備就緒的節點。客戶端通過 uid 代表自己,格式是 客戶端語言 _ 主機名 _pid 。當集群沒有進行遷移,即所有分片都是 online 的時候,客戶端會在 clients 下創建 uid 的臨時節點。

當某個 slot 從 online 變成 pre_migrate 後,客戶端會刪除 clients 下的 uid 臨時節點,然後在M igrating Clients 創建 uid 臨時節點。注意,因為需要保證數據不丟失,從 pre_migrate 到 migrating 期間,這個 slot 是被鎖定的,即所有對這個 slot 的讀寫都會被阻塞。所以 mananger 會最多等待 10s ,確認所有客戶端都已經切換到准備就緒狀態,如果發現某個客戶端一直未准備就緒,那麼 mananger 會放棄此次遷移,把 slot 狀態由 pre_migrate 改為 online 。如果客戶端發現 slot 狀態由 pre_migrate 變成 online 了,那麼會刪除 migrating_clients 下的 uid 節點,在 clients 下重新創建 uid 節點。還需要注意的一點是,有可能一個客戶剛啟動,並且正在往 clients 下創建 uid 節點,但是因為網路延遲還沒創建完成,導致 manager 未確認到這個 client 是否准備就緒,所以 mananger 把 slot 改為 pre_migrate 後會等待 1s 再確認所有客戶端是否准備就緒。

如果 Manager 看到 clients 下已經沒有客戶端的話(都已經准備就緒),會把 slot 狀態改為 migrating 。 Slot 變成 migrating 後,鎖定也隨之解除, manager 會遍歷 src group 的數據,把對應 slot 的數據遷移到 dst group 里。客戶端在 migrating 期間如果有讀寫 migrating slot 的 key ,那麼客戶端會先把這個 key 從 src group 遷移到 dst group ,然後再做讀寫操作。即這期間客戶端性能會有所下降。這也是為什麼每次只遷移一個 slot 的原因。這樣即使只有 128 個分片的集群,在遷移期間受到性能影響的 key 也只有 1/128 ,是可以接受的。

Manager 發現已經把 slot 已經遷移完畢了,會在 src 寫入目標 group_name , dst 設為空, stats 設為 online 。客戶端也刪除 migrating_clients 下的 uid ,在 clients 下創建 uid 節點。

H. Redis適合存儲海量小文件嗎

最近學習下redis,作為一個高性能的k/v資料庫,如果數據不用swap的話,redis的性能是無以倫比的。最近在做一個系統附件的緩存,試著把附件放到redis試試,寫了個保存文件的方法。public class TestRedis{ Jedis redis = new Jedis("localhost");...

I. redis2 和 redis3 的區別

前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性
後者是一個中心化的方案設計,通過類似一個分布式鎖服務來保證強一致性,數據寫入先寫內存和redo log,然後定期compat歸並到磁碟上,將隨機寫優化為順序寫,提高寫入性能。

J. 如何實現高可用的redis集群

基於以上,Redis集群方案顯得尤為重要。通常有3個途徑:官方Redis Cluster;通過Proxy分片;客戶端分片(Smart Client)。以上三種方案各有利弊。

Redis Cluster(官方):雖然正式版發布已經有一年多的時間,但還缺乏最佳實踐;對協議進行了較大修改,導致主流客戶端也並非都已支持,部分支持的客戶端也沒有經過大規模生產環境的驗證;無中心化設計使整個系統高度耦合,導致很難對業務進行無痛的升級。

Proxy:現在很多主流的Redis集群都會使用Proxy方式,例如早已開源的Codis。這種方案有很多優點,因為支持原聲redis協議,所以客戶端不需要升級,對業務比較友好。並且升級相對平滑,可以起多個Proxy後,逐個進行升級。但是缺點是,因為會多一次跳轉,平均會有30%左右的性能開銷。而且因為原生客戶端是無法一次綁定多個Proxy,連接的Proxy如果掛了還是需要人工參與。除非類似Smart Client一樣封裝原有客戶端,支持重連到其他Proxy,但這也就帶來了客戶端分片方式的一些缺點。並且雖然Proxy可以使用多個,並且可以動態增加proxy增加性能,但是所有客戶端都是共用所有proxy,那麼一些異常的服務有可能影響到其他服務。為每個服務獨立搭建proxy,也會給部署帶來額外的工作。

熱點內容
虛擬星球區塊鏈 發布:2024-11-19 00:49:58 瀏覽:424
比特幣未來會歸零 發布:2024-11-19 00:24:33 瀏覽:993
魔力寶貝手游挖礦轉 發布:2024-11-19 00:23:40 瀏覽:499
區塊鏈的特徵不包括 發布:2024-11-19 00:14:11 瀏覽:861
幣圈網一個賬號能互轉幣嗎 發布:2024-11-19 00:12:40 瀏覽:686
我的世界怎麼載入一鍵挖礦 發布:2024-11-18 23:58:31 瀏覽:929
區塊鏈初期項目 發布:2024-11-18 23:37:49 瀏覽:854
比特幣日交易限制 發布:2024-11-18 23:36:14 瀏覽:171
usdt怎麼提現到btc錢包 發布:2024-11-18 23:30:40 瀏覽:758
幣圈圖表是什麼意思 發布:2024-11-18 23:30:33 瀏覽:785