當前位置:首頁 » 區塊鏈知識 » 區塊鏈靜態

區塊鏈靜態

發布時間: 2022-09-11 23:00:00

A. 如何快速入門區塊鏈

目前市面上還沒有多少系統學習區塊鏈的視頻,自學區塊鏈還是比較難得。可以報班,黑馬程序員新開區塊鏈學科,老師以通俗易懂的授課方式,深入淺出的技術講解,肯定可以學會的哦。來源區視網,想看懂區塊鏈,看視頻教程就來這里哦!

B. 區塊鏈除了發幣,無幣區塊鏈應用的場景有哪些

金融行業

區塊鏈在金融行業的應用應該是最多的。

比如OMG(嫩模幣)2017年5月,omise宣布與支付寶合作推出一款電子錢包,是在自己的支付服務套件中整合「支付寶」支付解決方案, 幫助泰國本地電子商務商戶接受來自中國遊客的線上支付交易。

再比如PPT,它是是一個基於區塊鏈的票據金融交易系統。

博彩

博彩行業大概是在去年進入的區塊鏈,為什麼博彩會青睞區塊鏈,因為區塊鏈提供了一個相對公平的競猜系統,為什麼說相對公平,前文的介紹能看到,區塊鏈是不可篡改不可偽造的。

比如WICC(維基鏈)它是可以實現資產發行、競猜應用、版權溯源、互助保險、去中心化交易所、跨境結算等豐富的應用場景。

比如STX(拳王幣)stox應用程序旨在提供預測市場應用程序的完整功能,而不需要任何中央伺服器。預測市場需要諸如事件策劃、市場 製作、向交易者提供信息和分析、報告事件結果,當然還有收集和付款等功能。

我相信,如果把現在的彩票行業架設到區塊鏈上,那麼人們的購買熱情會越來越高,因為太多內幕讓人們放棄了這些。

物聯網

物聯網在區塊鏈上的應用還是很多的,因為區塊的可追溯性和即時性非常適應這個行業。

比如DATA就是物聯網概念,它是是一個去中心的p2p網路。 數據源可以與整個網路中任意節點連接,然後發布數據,網路將立即發送給訂閱者。通過分片模式實現水平可擴展性。這在物聯網應用上時效性和准確性是非常重要的。

游戲產業

比如GTC(G幣)是由game.com全球發行的基於以太坊erc20的去中心化數字資產,g幣致力於成為全球游戲行業的通用數字貨幣標准。

比如MANA 它是一個分布式共享虛擬平台。在這個平台上,用戶可以瀏覽和發現內容,並與其他人和實體互動。用戶還可以通過基於區塊鏈的土地賬本宣稱對虛擬領地的所有權。領地由直角坐標(x,y)來劃定,其所有者可以決定領地上發布的內容,包括從靜態 3d 場景到游戲等互動式系統。

還有其他許多產業,大帝不一一列舉,列舉了幾個有代表性的,為了說明什麼?說明區塊鏈絕對不僅僅就是幣幣的交易,它是有真實落地項目,並且是有真實實際用途的一種時代變革的產物。

人類社會的發展其實就像區塊鏈一樣,是不可逆不可阻擋的,就我的感覺,區塊鏈早晚走進千家萬戶,不論牛熊,握好手裡的價值幣,同花順已經開始數字貨幣的報價,說明社會正在一步一步的接納它,社會發展的力量不是哪個國家或者哪個人可以阻擋的。

C. 如何快速入門區塊鏈

目前市面上還沒有多少系統學習區塊鏈的視頻,自學區塊鏈還是比較難得。可以報班,黑馬程序員新開區塊鏈學科,老師以通俗易懂的授課方式,深入淺出的技術講解,肯定可以學會的哦。

D. 區塊鏈到底是什麼哪些區塊鏈有實體應用!

區塊鏈是什麼?

官方定義:區塊鏈是分布式數據存儲、點對點傳輸共識機制加密演算法等計算機技術的新型應用模式。所謂共識機制是區塊鏈系統中實現不同節點之間建立信任、獲取權益的數學演算法。

白話理解:區塊就是按照時間順序將時間段內產生的所有數據打包,一般一個區塊的時間長度為10分鍾,也就是說在10分鍾內所有的網路上的互聯網數據被打成一個完整的包,這個完整數據包就叫做一個區塊,區塊鏈就是把這些數據包按照順序鏈接起來,形成一個結構,並以密碼學的方式保證不可篡改不可偽造形成一個分布式賬本,這就是區塊鏈。

物聯網

物聯網在區塊鏈上的應用還是很多的,因為區塊的可追溯性和即時性非常適應這個行業。

比如DATA就是物聯網概念,它是是一個去中心的p2p網路。 數據源可以與整個網路中任意節點連接,然後發布數據,網路將立即發送給訂閱者。通過分片模式實現水平可擴展性。這在物聯網應用上時效性和准確性是非常重要的。

游戲產業

比如GTC(G幣)是由game.com全球發行的基於以太坊erc20的去中心化數字資產,g幣致力於成為全球游戲行業的通用數字貨幣標准。

比如MANA 它是一個分布式共享虛擬平台。在這個平台上,用戶可以瀏覽和發現內容,並與其他人和實體互動。用戶還可以通過基於區塊鏈的土地賬本宣稱對虛擬領地的所有權。領地由直角坐標(x,y)來劃定,其所有者可以決定領地上發布的內容,包括從靜態 3d 場景到游戲等互動式系統。

還有其他許多產業,大帝不一一列舉,列舉了幾個有代表性的,為了說明什麼?說明區塊鏈絕對不僅僅就是幣幣的交易,它是有真實落地項目,並且是有真實實際用途的一種時代變革的產物。

人類社會的發展其實就像區塊鏈一樣,是不可逆不可阻擋的,就我的感覺,區塊鏈早晚走進千家萬戶,不論牛熊,握好手裡的價值幣,同花順已經開始數字貨幣的報價,說明社會正在一步一步的接納它,社會發展的力量不是哪個國家或者哪個人可以阻擋的。

E. 主流區塊鏈技術有哪些

本文試圖對區塊鏈有關技術流派和主流平台進行一個概覽,作為學習區塊鏈技術體系的導覽,意在拋磚引玉,促進區塊鏈開發社區的討論與共識。區塊鏈技術的流派未戰先謀局,你想投入區塊鏈開發這個領域,至少先要搞清楚現在有哪些玩家,各自的主張和實力如何。劃分區塊鏈技術流派並無一定之規,據我所見,或可有以下四種方式:第一是按照節點准入規則,劃分為公有鏈、私有鏈和聯盟鏈。公有鏈的代表自然是比特幣和以太坊,私有鏈則以R3 Corda聲名最盛,聯盟鏈的代表作品是Hyperledger名下的Fabric。公有鏈注重匿名性與去中心化,而私有鏈及聯盟鏈注重高效率,而且還往往設置了准入門檻。公有鏈、私有鏈與聯盟鏈之間的這些不同都在技術中有所體現,比如私有鏈和聯盟鏈假設節點數目不大,可以採用PBFT演算法來形成共識。而公有鏈假設有大量且不斷動態變化的節點網路,用PBFT效率太低,只能採用類似抽彩票的演算法來確定意見領袖。這就意味著,私有鏈與聯盟鏈很難變成公有鏈,而用公有鏈來作聯盟鏈或私有鏈雖然容易,卻也並非即插即用。此種差異,學者不可不察。第二是按照共享目標,劃分為共享賬本和共享狀態機兩派。比特幣是典型的共享賬本,而Chain和BigchainDB也應屬此類,這幾個區塊鏈系統在各個節點之間共享一本總賬,因此對接金融應用比較方便。另一大類區塊鏈系統中,各個節點所共享的是可完成圖靈完備計算的狀態機,如以太坊、Fabric,它們都通過執行智能合約而改變共享狀態機狀態,進而達成種種復雜功能。第三是按照梅蘭妮· 斯旺所描述的代際演進,將區塊鏈系統分為1.0、2.0和3.0三代。其中1.0支撐去中心化交易和支付系統,2.0通過智能合約支撐行業應用,3.0支撐去中心化的社會體系。比特幣和Chain應屬於區塊鏈1.0系統,而以太坊和Fabric是區塊鏈2.0系統,目前尚無成功的區塊鏈3.0系統出現,不成功的嘗試倒是有那麼一個,就是著名的The DAO。第四是按照核心數據結構,分為區塊鏈和分布式總賬兩派。區塊鏈這一派在系統中真的實現了一個區塊的鏈作為核心數據結構,而分布式總賬這一派,只是吸取了區塊鏈的精神,並沒有真用一條區塊鏈作為核心數據結構,或者雖然暫時用了,但聲明說吾項庄舞區塊鏈,意在分布式總賬耳,若假以時日,因緣際會,未嘗不可取而代之也。主流區塊鏈技術平台了解流派劃分,仍是只能用來指點江山,吹牛論道,要動手,總要有個切入點。區塊鏈貨幣據說已經有上千個了,但值得關注的技術平台大概只有數十個,而如果要進入區塊鏈開發領域,打下一個好基礎,練出一身好功夫,撈到幾個好offer,則值得深入研究學習的平台,屈指可數。首先當然是比特幣。比特幣作為區塊鏈的第一個也是目前為止最成功、最重要的樣板工程,已經上線運行了八年多,本身沒有發生任何嚴重的安全和運維事故,其穩定與強悍堪稱當代軟體系統典範。比特幣Bitcoin Core是一個代碼質量高、文檔良好的開源軟體,從學習區塊鏈原理、掌握核心技術的角度來說,Bitcoin Core是最佳切入點,能夠學到原汁原味的區塊鏈技術。當然,Bitcoin Core是用C++寫的,而且用了一些C++11和Boost庫的機制,對學習者的C++水平提出了較高的要求。學習比特幣平台開發還有一個優勢,就是可以對接繁榮的比特幣技術社區。目前圍繞比特幣進行改進和提升的人很多,人多力量就大,諸如隔離驗證、閃電網路、側鏈等比較新的想法和技術,都率先在比特幣社區里落地。比如側鏈技術的主要領導者Blockstream是由密碼學貨幣元老Adam Back領銜的,而Blockstream是Bitcoin Core最大的貢獻者之一,所以一些有關側鏈的技術在比特幣社區里討論最充分。但比特幣作為一個典型的區塊鏈1.0系統,是不是支撐其他類型區塊鏈應用的最佳技術平台,存在很大的爭議。另外,也不是所有人都有能力和必要精通區塊鏈底層技術。所以對那些急於沖到區塊鏈領域里做(quān)事(qián)的人來說,可能更直截了當的學習目標是以太坊和Hyperledger Fabric。在以太坊上面用Solidity進行的智能合約開發是切入區塊鏈開發最簡單的方式,沒有之一。以太坊的理想非常宏大,由於配備了強大的圖靈完備的智能合約虛擬機,因此可以成為一切區塊鏈項目的母平台,是馱住整個區塊鏈世界的大烏龜。在以太坊上開發一個類似比特幣的加密貨幣,是一個不折不扣的小目標。一般有經驗的開發者在文檔指導下,半天到一天即可入門。問題在於,入門以後又如何?靠寫Solidity是否就可以包打天下?這是大大存疑的。我們也可以反過來說,如果以太坊+Solidity是區塊鏈的終極解決方案,那麼怎麼還會出現那麼多區塊鏈技術門派呢?特別是,以太坊似乎並沒有給現實世界中巨型的中心化組織們留下一條活路,這種徹底不妥協的革命態度有可能也成為以太坊推廣的障礙。當前以太坊項目的開發進展並不順利。一個比較突出的問題是項目過多,力量分散,導致項目質量參差不齊。但盡管如此,跟其他區塊鏈2.0平台相比,以太坊提供的開發環境是最簡單最完善的。初學區塊鏈的人絕對有必要學習以太坊,從而對區塊鏈和智能合約建立起一個最「正宗」的認識。主流區塊鏈技術平台的第三支就是Fabric,它是Hyperledger的第一個也是最知名的孵化項目。 Fabric最早來自IBM的Open Blockchain項目,到2015年11月,IBM將當時已經開發完成的44,000行Go語言代碼交給Linux基金會,並入Hyperledger項目之中。在2016年3月一次黑客馬拉松中,Blockstream和DAH兩家公司將各自的代碼並入Open Blockchain,隨後改名為Fabric。到目前為止,Fabric與Intel提供的Sawtooth Lake並列為Hyperledger的一級孵化項目,但前者得到的關注遠超後者。從技術角度來說,Fabric思路不錯,重點是滿足企業商用的需求,比如解決交易量問題。眾所周知,比特幣最大的短板是它每秒鍾7個交易的上限,完全無法滿足現實需要。而Fabric目標是實現每秒鍾10萬交易,這個量接近剛剛過去的雙十一交易量瞬時峰值,完全可以滿足正常條件下的行業級應用。Fabric用Go語言開發,也提供多種語言的API。特別值得一提的是,Fabric比較充分地運用了容器技術,比如其智能合約就運行在容器當中。這也是Go語言帶給Fabric的一項福利,因為Go語言靜態編譯部署的特徵很適合開發容器中的程序。Fabric還有一些特點,比如其membership服務可以設置節點准入審查,這是典型的聯盟鏈特徵。再比如其共識演算法是可定製的。Fabric的短板是體系較為復雜,雖有文檔,但缺少經驗的開發者學習起來障礙比較大。然而由於其定位清楚,迎合了不少企業的心態,所以已經有多家機構在基於Fabric秘密研發行業內的聯盟鏈項目。

F. 相關專業知識進入區塊鏈行業,需要學習哪些專業知識

如果你對區塊鏈技術感興趣,你在開始可以學學密碼學的知識,了解如何通過數字加強除了信任之外的契約,這個是區塊鏈的最基本原理,然後你可以看看編程類的書籍,對基本的代碼做過了解,會進行簡單的編程,之後,你就可以下載一些常見的區塊鏈,研究它的代碼排列,看看它是如何把合約加入的,做做簡單的修改,就能建立自己的智能合約約。當然,如果你僅僅是受近來的價格和炒作影響,決定入這行,建議你多了解下炒作它的牛人,聽聽他們的言論,學學人家是如何收割的!

G. 三. 區塊鏈系統的核心之一-分布式共識機制

        拜占庭將軍問題(Byzantine Generals Problem),是由萊斯利·蘭波特在其同名論文中提出的分布式對等網路通信容錯問題。

        在分布式計算中,不同的計算機通過通訊交換信息達成共識而按照同一套協作策略行動。但有時候,系統中的成員計算機可能出錯而發送錯誤的信息,用於傳遞信息的通訊網路也可能導致信息損壞,使得網路中不同的成員關於全體協作的策略得出不同結論,從而破壞系統一致性。這個難題被稱為「拜占庭容錯」,或者「兩軍問題」。

        拜占庭假設是對現實世界的模型化。拜占庭將軍問題被認為是容錯性問題中最難的問題類型之一。拜占庭容錯協議要求能夠解決由於硬體錯誤、網路擁塞或斷開以及遭到惡意攻擊,其他計算機和網路可能出現不可預料的行為而帶來的各種問題。並且拜占庭容錯協議還要滿足所要解決的問題要求的規范。

        在拜占庭時代有一個牆高壁厚的城邦——拜占庭,高牆之內存放在世人無法想像多的財富。拜占庭被其他10個城邦所環繞,這10個城邦也很富饒,但和拜占庭相比就有天壤之別了。

        拜占庭的十個鄰居都覬覦它的財富,並希望侵略並佔領它。但是,拜占庭的防禦非常強大,任何單個城邦的入侵行動都會失敗,而入侵者的軍隊也會被殲滅,使得該城邦自身遭到其他互相覬覦對方的九個城邦的入侵和劫掠。

        拜占庭的防禦很強,十個城邦中要有一半以上同時進攻才能攻破它。也就是說,如果有六個或者以上的相鄰城邦一起進攻,他們就會成功並獲得拜占庭的財富。然而,如果其中有一個或者更多城邦背叛了其他城邦,答應一起入侵但在其他城邦進攻的時候又不幹了,也就導致只有五支或者更少的城邦的軍隊在同時進攻,那麼所有的進攻城邦的軍隊都會被殲滅,並隨後被其他的(包括背叛他們的那(幾)個)城邦所入侵和劫掠。

        這是一個由許多不互相信任的城邦構成的一個網路。城邦們必須一起努力以完成共同的使命。而且,各個城邦之間通訊和協調的唯一途徑是通過信使騎馬在城邦之間傳遞信息。城邦的決策者們無法聚集在一個地方開個會(所有的城邦的決策者都不互相信任自己的安全會在自己的城堡或者軍隊范圍之外能夠得到保障)。

        城邦的決策者可以在任意時間以任意頻率派出任意數量的信使到任意的對方。每條信息都包含如下的內容:「我城邦將在某一天的某個時間發動進攻,你城邦願意加入嗎?」。如果收信城邦同意了,該城邦就會在原信上附上一份簽名了的或蓋了圖章的(以就是驗證了的)回應然送回發信城邦。然後,再把新合並了的信息的拷貝一一發送給其他八個城邦,要求他們也如此這樣做。最後的目標是,通過在原始信息鏈上蓋上他們所有十個城邦的決策者的圖章,讓他們在時間上達成共識。最後的結果是,會有一個蓋有十個同意同一時間發動進攻的圖章信息包,和一些被拋棄了的包含部分但不是全部圖章的信息包。

        在這個過程中首先出現了第一個問題,就是如果每個城邦向其他九個城邦派出一名信使,那麼就是十個城邦每個派出了九名信使,也就是在任何一個時間又總計90次的傳輸,並且每個城市分別收到九個信息,可能每一封都寫著不同的進攻時間。

        在這個過程中還有第二個問題,就是部分城邦會答應超過一個的攻擊時間,故意背叛進攻發起人,所以他們將重新廣播超過一條(甚至許許多多條)的信息包,由此產生許多甚至無數的足以淹沒一切的雜音。

        有了以上兩個問題,整個網路系統可能迅速變質,並演變成不可信的信息和攻擊時間相互矛盾的糾結體。

         拜占庭假設是對現實網路世界的一種模型化。在現實網路世界中由於硬體錯誤、網路擁塞或斷開以及遭到惡意攻擊,網路可能出現許許多多不可預料的行為。拜占庭容錯協議必須處理這些失效,並且還要使這些協議滿足所要解決的問題所要求的規范。

        對於拜占庭將軍問題中本聰的區塊鏈給出了比較圓滿的解決方案。也就是比較圓滿的解決了上述的兩個問題。

        拜占庭將軍問題的第一個問題從本質上來講就是時間和空間的障礙導致信息的不準確和不及時。

        區塊鏈對於第一個問題的解決方案是利用分布式存儲技術和比特流技術(BT技術,一種新型的點對點傳輸技術,具有節點同時作為客戶端和伺服器端和沒有中心伺服器等特點),將整個網路系統內的所有交易信息匯總為一個統一的,分布式存儲的,近乎實時同步更新的電子總賬。統一的分布式共同賬本就解決了空間障礙問題;而近乎同步進行的,實時的,持續的對所有賬本備份的更新、對賬則解決了時間障礙問題。

        這個過程較具體一點的描述大概是將區塊鏈系統內所有的交易活動的記錄數據統一於一種標准化的總帳上;區塊鏈系統的每一個節點都會保存一份總帳的備份;所有總帳的備份都是在實時的,持續的更新、對賬、以及同步著。區塊鏈系統的每一個節點能在這本總帳里記上添加記錄;每一筆新添加的記錄都會實時的廣播到區塊鏈系統內;所以在每一個節點上的每一份總帳的備份都是幾乎同時更新的,並且所有的總帳的備份保持著同步。

        拜占庭將軍問題的第二個問題從本質上來講就是關於信息過量問題和信息干擾問題。信息過量和信息干擾問題導致決策延遲,甚至決策系統崩潰而無法決策。

        區塊鏈對於第二個問題的解決方案是區塊鏈系統的任何一個節點在發送每一筆新添加的記錄時需要附帶一條額外的信息。對區塊鏈系統的任何一個節點來說這條額外的信息的獲得都是有成本的,並且只能有一個節點可以獲得。這樣就解決了區塊鏈系統的任何一個節點新添加額外信息時的信息多且亂而無法達成一致的問題。在這里,區塊鏈系統的任何一個節點獲得那條附帶的額外的信息的過程就是著名的工作量證明機制。

        共識機制主要解決區塊鏈系統的數據如何記錄和如何保存的問題。工作量證明機制就是要求區塊鏈系統的節點通過做一定難度的工作得出一個結果的過程。

        區塊鏈系統中某節點生成了一筆新的交易記錄,並且該節點將這筆新的交易記錄向全網廣播。全網各個節點收到這個交易記錄並與其他所有準備打包進區塊的交易記錄共同組成交易記錄列表。在列表內先對所有交易進行兩兩的哈希計算;再對以獲得的哈希值進行哈希計算獲得Merkle樹和Merkle樹的根值;把Merkle樹的根值及其他相關欄位組裝成區塊頭。

        各個節點將區塊頭的80位元組數據加上一個不停的變更的區塊頭隨機數一起進行不停的哈希運算(實際上這是一個雙重哈希運算);不停的將哈希運算結果值與當前網路的目標值做對比,直到哈希運算結果值小於目標值,就獲得了符合要求的哈希值,工作量證明也就完成了。

         分布式的區塊鏈系統是一個動態變化的系統(硬體的運算速度的增長,節點參與網路的程度的變化)。系統的不斷變化必然帶來系統的算力的不斷變化。而算力的變化又會導致通過消耗算力(工作)來獲得符合要求的哈希值的速度的不同。最終的結果會是區塊鏈的增長速度會有巨大的不同。這是一個很大的問題。為了解決這個問題,區塊鏈系統自動根據算力的變化對工作難度進行調整。也就是採用移動平均目標的方法來確定,難度控制為每小時生成區塊的速度為某一個預定的平均數。

        在區塊鏈系統中一個符合要求的哈希值是由N個前導零構成,零的個數取決於網路的難度值。為了使區塊的形成時間控制在大約十分鍾左右,區塊鏈系統採用了固定工作難度的難度演算法。難度值每2016個區塊調整一次零的個數。

        新的難度值是根據前2015個區塊(理論上應該是2016個區塊,由於當初程序編寫時的失誤造成了用2015而不是2016)的出塊時間來計算。

        難度 = 目標值 * 前2015個區塊生成所用的時間 / 1209600 (兩周的秒鍾數)

        這樣通過規定的演算法,區塊鏈系統就保證所有節點計算出的難度值都一致,區塊的形成時間大約一致在十分鍾左右。

      (1)結果不可控制。其依賴機器進行哈希函數的運算來獲得結果;計算結果是一個隨機數;沒有人能直接控制計算的結果。

      (2)計算具有對稱性。就是結果的獲得和結果的驗收需要的工作量是不同的。計算出結果所需要的工作量遠遠大於驗收結果所需要的工作量。

      (3)計算的難度自動控制。為了使區塊的形成時間控制在大約十分鍾左右,區塊鏈系統自動控制了每一個符合要求的哈希獲得為大約在十分鍾左右。

         第一,方法簡單易行。

        第二,系統達成共識容易,節點間不需要太多的信息交換。

        第三,系統比較牢固可靠,任何破壞系統的企圖都需要投入大到得不償失的成本。

        第一,消耗大量的算力,也就是浪費能源和其他資源。

        第二,區塊的確認時間比較長,並且難以縮短。

        第三,新創立的區塊鏈非常容易受到算力攻擊。

        第四,容易產生區塊鏈分叉,穩定的區塊鏈需要多個確認,並且這種狀況可能不斷持續下去。

        第五,算力的逐漸集中導致與去中心化的系統設計基礎的沖突日益明顯。

        權益證明機制是一種工作量證明機制的替代方法,試圖解決工作量計算浪費的問題.目前其成功的應用是點點幣區塊鏈系統。

        權益證明不要求區塊鏈系統的節點完成一定數量的計算工作,而是要求區塊鏈系統的節點對某些數量的錢展示所有權。

        權益證明機制首先應用於點點幣區塊鏈系統中。

        點點幣區塊鏈系統的區塊生成時,節點需要構造一個「錢幣權益」交易,即把自己的一些錢幣和預先設定的獎勵發給自己。進行哈希計算時,哈希值的計算只同交易輸入、一些附加的固定數據以及當前時間(是一個表示自1970年1月1日距離當前時刻的秒數的正數)有關。然後,根據類似工作量證明的要求來檢查這個哈希值是否正確。

        點點幣區塊鏈系統的權益證明機制除了設定了哈希計算難度與交易輸入的「幣齡」成反比外,其與工作量證明機制非常類似。其中,幣齡的定義為交易輸入大小和它存在時間的乘積。權益證明機制中哈希值只和時間和固定的數據有關,因而沒有辦法通過多完成工作來快速獲取它。

       每個點點幣區塊鏈系統的交易的輸出都有一定的幾率來產生有效的正比於幣齡和交易貨幣數量的工作。

        第一,縮短了共識達成的時間。

        第二,不再需要大量消耗能源。

        第一,還是需要哈希計算。

        第二,所有的確認都只是一個概率上的表達,而不是一個確定性的事情,有可能受到其他攻擊影響。

        授權股份證明機制類似於權益證明機制,是比特股BitShares採用的區塊鏈公識演算法。授權股份證明機制是民主選舉和輪流執政相結合方式來確定區塊的產生。

        授權股份證明機制是先由節點選舉若干代理人,由代理人驗證和記賬。其他方面和權益證明機制相似。

        每個節點按其持股比例擁有相應的影響力,51%節點投票的結果將是不可逆且有約束力的。為達到及時而高效的方法達到51%批準的目標。每個節點可以將其投票權授予一名節點。獲票數最多的前100位節點按既定時間表輪流產生區塊。每名節點分配到一個時間段來生產區塊。

        所有的節點將收到等同於一個平均水平的區塊所含交易費的10%作為報酬。

         第一,大幅縮小參與驗證和記賬節點的數量,

         第二,可以快速實現共識驗證。

         主要缺點就是仍然無法擺脫對代幣的依賴。

        在分布式計算上,不同的計算機透過訊息交換,嘗試達成共識;但有時候,系統上協調計算或成員計算機可能因系統錯誤並交換錯的訊息,導致影響最終的系統一致性。

        拜占庭將軍問題就根據錯誤計算機的數量,尋找可能的解決辦法,這無法找到一個絕對的答案,但只可以用來驗證一個機制的有效程度。

        而拜占庭問題的可能解決方法為:

        在 N ≥ 3F + 1 的情況下一致性是可能解決。其中,N為計算機總數,F為有問題計算機總數。信息在計算機間互相交換後,各計算機列出所有得到的信息,以大多數的結果作為解決辦法。

         第一,系統運轉可以擺脫對代幣的依賴,共識各節點由業務的參與方或者監管方組成,安全性與穩定性由業務相關方保證。

         第二,共識的時延大約在2到5秒鍾。

         第三,共識效率高,可滿足高頻交易量的需求。

         第一,當有1/3或以上記賬人停止工作後,系統將無法提供服務;

         第二,當有1/3或以上記賬人聯合作惡,可能系統會出現會留下密碼學證據的分叉。

        小蟻改良了實用拜占庭容錯機制。該機制是由權益來選出記賬人,然後記賬人之間通過拜占庭容錯演算法來達成共識。

        此演算法在PBFT基礎上進行了以下改進:

        第一,將C/S架構的請求響應模式,改進為適合P2P網路的對等節點模式;

        第二,將靜態的共識參與節點改進為可動態進入、退出的動態共識參與節點;

        第三,為共識參與節點的產生設計了一套基於持有權益比例的投票機制,通過投票決定共識參與節點(記賬節點);

        第四,在區塊鏈中引入數字證書,解決了投票中對記賬節點真實身份的認證問題。

        第一,專業化的記賬人;

        第二,可以容忍任何類型的錯誤;

        第三,記賬由多人協同完成,每一個區塊都有最終性,不會分產生區塊鏈分叉;

        第四,演算法的可靠性有嚴格的數學證明來保證;

        第一,當有1/3或以上記賬人停止工作後,區塊鏈系統將無法提供服務;

        第二,當有1/3或以上記賬人聯合作惡,且其它所有的記賬人被恰好分割為兩個網路孤島時,惡意記賬人可以使區塊鏈系統出現分叉,但是會留下密碼學證據;

         瑞波共識機制是全體節點選取出特殊節點組成特殊節點列表,由特殊節點列表內的節點達成共識。

         初始特殊節點列表就像一個俱樂部,要接納一個新成員,必須由51%的該俱樂部會員投票通過。共識遵循這核心成員的51%權力,外部人員則沒有影響力。波共識機制將股東們與其投票權隔開,並因此比其他系統更中心化。

        瑞波共識機制參與共識形成的只有特殊節點,大大的減少了共識形成的時間。在實踐中,瑞波區塊鏈系統達成共識需要3-6秒鍾,遠遠快於比特幣區塊鏈系統的10分鍾。同時瑞波區塊鏈系統對並發交易的處理達到每秒數萬筆,而比特幣區塊鏈系統只有每秒7筆。

瑞波共識機制處理節點意見分歧的方式也是不同的。瑞波的信任節點對於新區塊的創造進行協商的時間是區塊鏈更新前。先協商,達成共識後再對區塊鏈進行更新。

由於瑞波共識機制的共識是由特殊節點達成的,普通節點並不需要維護一個完整的歷史賬本。各個節點可以根據自己的業務需要選擇同步同步完整的歷史賬本或者任意最近幾步的賬本。這也意味著對存儲空間和網路流量需求的減少。

瑞波共識機製取消了挖坑的發行貨幣機制,採用了原生貨幣(1000億枚)的方式發幣,從而大量的避免了挖礦的天量能耗。

H. 區塊鏈技術發展現狀與展望

區塊鏈技術發展現狀與展望
區塊鏈技術起源於2008年由化名為 「中本聰」 (Satoshi Nakamoto)的學者在密碼學郵件組發表的奠基性論文《比特幣:一種點對點電子現金系統》。近兩年來,區塊鏈技術的研究與應用呈現出爆發式增長態勢,被認為是繼大型機、個人電腦、互聯網、移動/社交網路之後計算範式的第五次顛覆式創新,是人類信用進化史上繼血親信用、貴金屬信用、央行紙幣信用之後的第四個里程碑。區塊鏈技術是下一代雲計算的雛形,有望像互聯網一樣徹底重塑人類社會活動形態,並實現從目前的信息互聯網向價值互聯網的轉變。區塊鏈的技術特點

區塊鏈具有去中心化、時序數據、集體維護、可編程和安全可信等特點。 去中心化:區塊鏈數據的驗證、記賬、存儲、維護和傳輸等過程均是基於分布式系統結構,採用純數學方法而不是中心機構來建立分布式節點間的信任關系,從而形成去中心化的可信任的分布式系統; 時序數據:區塊鏈採用帶有時間戳的鏈式區塊結構存儲數據,從而為數據增加了時間維度,具有極強的可驗證性和可追溯性; 集體維護:區塊鏈系統採用特定的經濟激勵機制來保證分布式系統中所有節點均可參與數據區塊的驗證過程(如比特幣的「挖礦」過程),並通過共識演算法來選擇特定的節點將新區塊添加到區塊鏈; 可編程:區塊鏈技術可提供靈活的腳本代碼系統,支持用戶創建高級的智能合約、貨幣或其它去中心化應用; 安全可信:區塊鏈技術採用非對稱密碼學原理對數據進行加密,同時藉助分布式系統各節點的工作量證明等共識演算法形成的強大算力來抵禦外部攻擊、保證區塊鏈數據不可篡改和不可偽造,因而具有較高的安全性。區塊鏈與比特幣 比特幣是迄今為止最為成功的區塊鏈應用場景,區塊鏈技術為比特幣系統解決了數字加密貨幣領域長期以來所必需面對的雙重支付問題和拜占庭將軍問題。與傳統中心機構(如中央銀行)的信用背書機制不同的是,比特幣區塊鏈形成的是軟體定義的信用,這標志著中心化的國家信用向去中心化的演算法信用的根本性變革。近年來,比特幣憑借其先發優勢,目前已經形成體系完備的涵蓋發行、流通和金融衍生市場的生態圈與產業鏈,這也是其長期占據絕大多數數字加密貨幣市場份額的主要原因。區塊鏈的發展脈絡與趨勢
區塊鏈技術是具有普適性的底層技術框架,可以為金融、經濟、科技甚至政治等各領域帶來深刻變革。按照目前區塊鏈技術的發展脈絡,區塊鏈技術將會經歷以可編程數字加密貨幣體系為主要特徵的區塊鏈1.0模式,以可編程金融系統為主要特徵的區塊鏈2.0模式和以可編程社會為主要特徵的區塊鏈3.0模式。然而,上述模式實際上是平行而非演進式發展的,區塊鏈1.0模式的數字加密貨幣體系仍然遠未成熟,距離其全球貨幣一體化的願景實際上更遠、更困難。目前,區塊鏈領域已經呈現出明顯的技術和產業創新驅動的發展態勢,相關學術研究嚴重滯後、亟待跟進。區塊鏈的基礎模型與關鍵技術
一般說來,區塊鏈系統由數據層、網路層、共識層、激勵層、合約層和應用層組成。其中,數據層封裝了底層數據區塊以及相關的數據加密和時間戳等技術;網路層則包括分布式組網機制、數據傳播機制和數據驗證機制等;共識層主要封裝網路節點的各類共識演算法;激勵層將經濟因素集成到區塊鏈技術體系中來,主要包括經濟激勵的發行機制和分配機制等;合約層主要封裝各類腳本、演算法和智能合約,是區塊鏈可編程特性的基礎;應用層則封裝了區塊鏈的各種應用場景和案例。該模型中,基於時間戳的鏈式區塊結構、分布式節點的共識機制、基於共識算力的經濟激勵和靈活可編程的智能合約是區塊鏈技術最具代表性的創新點。區塊鏈技術的應用場景
區塊鏈技術不僅可以成功應用於數字加密貨幣領域,同時在經濟、金融和社會系統中也存在廣泛的應用場景。根據區塊鏈技術應用的現狀,本文將區塊鏈目前的主要應用籠統地歸納為數字貨幣、數據存儲、數據鑒證、金融交易、資產管理和選舉投票共六個場景:數字貨幣:以比特幣為代表,本質上是由分布式網路系統生成的數字貨幣,其發行過程不依賴特定的中心化機構。數據存儲:區塊鏈的高冗餘存儲、去中心化、高安全性和隱私保護等特點使其特別適合存儲和保護重要隱私數據,以避免因中心化機構遭受攻擊或許可權管理不當而造成的大規模數據丟失或泄露。數據鑒證:區塊鏈數據帶有時間戳、由共識節點共同驗證和記錄、不可篡改和偽造,這些特點使得區塊鏈可廣泛應用於各類數據公證和審計場景。例如,區塊鏈可以永久地安全存儲由政府機構核發的各類許可證、登記表、執照、證明、認證和記錄等。金融交易:區塊鏈技術與金融市場應用有非常高的契合度。區塊鏈可以在去中心化系統中自發地產生信用,能夠建立無中心機構信用背書的金融市場,從而在很大程度上實現了「金融脫媒」;同時利用區塊鏈自動化智能合約和可編程的特點,能夠極大地降低成本和提高效率。資產管理:區塊鏈能夠實現有形和無形資產的確權、授權和實時監控。無形資產管理方面已經廣泛應用於知識產權保護、域名管理、積分管理等領域;有形資產管理方面則可結合物聯網技術形成「數字智能資產」,實現基於區塊鏈的分布式授權與控制。選舉投票:區塊鏈可以低成本高效地實現政治選舉、企業股東投票等應用,同時基於投票可廣泛應用於博彩、預測市場和社會製造等領域。區塊鏈技術的現存問題
安全性威脅是區塊鏈迄今為止所面臨的最重要的問題。其中,基於PoW共識過程的區塊鏈主要面臨的是51%攻擊問題,即節點通過掌握全網超過51%的算力就有能力成功篡改和偽造區塊鏈數據。其他問題包括新興計算技術破解非對稱加密機制的潛在威脅和隱私保護問題等。 區塊鏈效率也是制約其應用的重要因素。區塊鏈要求系統內每個節點保存一份數據備份,這對於日益增長的海量數據存儲來說是極為困難的。雖然輕量級節點可部分解決此問題,但適用於更大規模的工業級解決方案仍有待研發。比特幣區塊鏈目前每秒僅能處理7筆交易,且交易確認時間一般為10分鍾,這極大地限制了區塊鏈在大多數金融系統高頻交易場景中的應用。 PoW共識過程高度依賴區塊鏈網路節點貢獻的算力,這些算力主要用於解決SHA256哈希和隨機數搜索,除此之外並不產生任何實際社會價值,因而一般意義上認為這些算力資源是被「浪費」掉了,同時被浪費掉的還有大量的電力資源。如何能有效匯集分布式節點的網路算力來解決實際問題,是區塊鏈技術需要解決的重要問題。 區塊鏈網路作為去中心化的分布式系統,其各節點在交互過程中不可避免地會存在相互競爭與合作的博弈關系,例如比特幣礦池的區塊截留攻擊博弈等。區塊鏈共識過程本質上是眾包過程,如何設計激勵相容的共識機制,使得去中心化系統中的自利節點能夠自發地實施區塊數據的驗證和記賬工作,並提高系統內非理性行為的成本以抑制安全性攻擊和威脅,是區塊鏈有待解決的重要科學問題。智能合約與區塊鏈技術
智能合約是一組情景-應對型的程序化規則和邏輯,是部署在區塊鏈上的去中心化、可信共享的程序代碼。通常情況下,智能合約經各方簽署後,以程序代碼的形式附著在區塊鏈數據(例如一筆比特幣交易)上,經P2P網路傳播和節點驗證後記入區塊鏈的特定區塊中。智能合約封裝了預定義的若干狀態及轉換規則、觸發合約執行的情景(如到達特定時間或發生特定事件等)、特定情景下的應對行動等。區塊鏈可實時監控智能合約的狀態,並通過核查外部數據源、確認滿足特定觸發條件後激活並執行合約。 智能合約對於區塊鏈技術來說具有重要的意義。一方面,智能合約是區塊鏈的激活器,為靜態的底層區塊鏈數據賦予了靈活可編程的機制和演算法,並為構建區塊鏈2.0和3.0時代的可編程金融系統與社會系統奠定了基礎;另一方面,智能合約的自動化和可編程特性使其可封裝分布式區塊鏈系統中各節點的復雜行為,成為區塊鏈構成的虛擬世界中的軟體代理機器人,這有助於促進區塊鏈技術在各類分布式人工智慧系統中的應用,使得基於區塊鏈技術構建各類去中心化應用(Decentralized application, Dapp)、去中心化自治組織(Decentralized Autonomous Organization, DAO)、去中心化自治公司(Decentralized Autonomous Corporation, DAC)甚至去中心化自治社會(Decentralized Autonomous Society, DAS)成為可能。 區塊鏈和智能合約技術的主要發展趨勢是由自動化向智能化方向演化。現存的各類智能合約及其應用的本質邏輯大多仍是根據預定義場景的「 IF-THEN」類型的條件響應規則,能夠滿足目前自動化交易和數據處理的需求。未來的智能合約應具備根據未知場景的「 WHAT-IF」推演、計算實驗和一定程度上的自主決策功能,從而實現由目前「自動化」合約向真正的「智能」合約的飛躍。區塊鏈驅動的平行社會
近年來,基於CPSS(Cyber-Physical-SocialSystems)的平行社會已現端倪,其核心和本質特徵是虛實互動與平行演化。區塊鏈是實現CPSS平行社會的基礎架構之一,其主要貢獻是為分布式社會系統和分布式人工智慧研究提供了一套行之有效的去中心化的數據結構、交互機制和計算模式,並為實現平行社會奠定了堅實的數據基礎和信用基礎。 就數據基礎而言,管理學家愛德華戴明曾說過:除了上帝,所有人必須以數據說話。然而在中心化社會系統中,數據通常掌握在政府和大型企業等「少數人」手中,為少數人「說話」,其公正性、權威性甚至安全性可能都無法保證。區塊鏈數據則通過高度冗餘的分布式節點存儲,掌握在「所有人」手中,能夠做到真正的「數據民主」。就信用基礎而言,中心化社會系統因其高度工程復雜性和社會復雜性而不可避免地會存在「默頓系統」的特性,即不確定性、多樣性和復雜性,社會系統中的中心機構和規則制定者可能會因個體利益而出現失信行為;區塊鏈技術有助於實現軟體定義的社會系統,其基本理念就是剔除中心化機構、將不可預測的行為以智能合約的程序化代碼形式提前部署和固化在區塊鏈數據中,事後不可偽造和篡改並自動化執行,從而在一定程度上能夠將「默頓」社會系統轉化為可全面觀察、可主動控制、可精確預測的「牛頓」社會系統。 ACP(人工社會Artificial Societies、計算實驗Computational Experiments和平行執行ParallelExecution)方法是迄今為止平行社會管理領域唯一成體系化的、完整的研究框架,是復雜性科學在新時代平行社會環境下的邏輯延展和創新。 ACP方法可以自然地與區塊鏈技術相結合,實現區塊鏈驅動的平行社會管理。首先,區塊鏈的P2P 組網、分布式共識協作和基於貢獻的經濟激勵等機制本身就是分布式社會系統的自然建模,其中每個節點都將作為分布式系統中的一個自主和自治的智能體(agent)。隨著區塊鏈生態體系的完善,區塊鏈各共識節點和日益復雜與自治的智能合約將通過參與各種形式的Dapp,形成特定組織形式的DAC和DAO,最終形成DAS,即ACP中的人工社會。其次,智能合約的可編程特性使得區塊鏈可進行各種「 WHAT-IF」 類型的虛擬實驗設計、場景推演和結果評估,通過這種計算實驗過程獲得並自動或半自動地執行最優決策。最後,區塊鏈與物聯網等相結合形成的智能資產使得聯通現實物理世界和虛擬網路空間成為可能,並可通過真實和人工社會系統的虛實互動和平行調諧實現社會管理和決策的協同優化。不難預見,未來現實物理世界的實體資產都登記為鏈上智能資產的時候,就是區塊鏈驅動的平行社會到來之時。

I. 區塊鏈幾大共識機制及優缺點

首先,沒有一種共識機制是完美無缺的,各共識機制都有其優缺點,有些共識機制是為解決一些特定的問題而生。
1.pow( Proof of Work)工作量證明
一句話介紹:乾的越多,收的越多。
依賴機器進行數學運算來獲取記賬權,資源消耗相比其他共識機制高、可監管性弱,同時每次達成共識需要全網共同參與運算,性能效率比較低,容錯性方面允許全網50%節點出錯。
優點:
1)演算法簡單,容易實現;
2)節點間無需交換額外的信息即可達成共識;
3)破壞系統需要投入極大的成本;
缺點:
1)浪費能源;
2)區塊的確認時間難以縮短;
3)新的區塊鏈必須找到一種不同的散列演算法,否則就會面臨比特幣的算力攻擊;
4)容易產生分叉,需要等待多個確認;
5)永遠沒有最終性,需要檢查點機制來彌補最終性;
2.POS Proof of Stake,權益證明
一句話介紹:持有越多,獲得越多。
主要思想是節點記賬權的獲得難度與節點持有的權益成反比,相對於PoW,一定程度減少了數學運算帶來的資源消耗,性能也得到了相應的提升,但依然是基於哈希運算競爭獲取記賬權的方式,可監管性弱。該共識機制容錯性和PoW相同。它是Pow的一種升級共識機制,根據每個節點所佔代幣的比例和時間,等比例的降低挖礦難度,從而加快找隨機數的速度
優點:在一定程度上縮短了共識達成的時間;不再需要大量消耗能源挖礦。
缺點:還是需要挖礦,本質上沒有解決商業應用的痛點;所有的確認都只是一個概率上的表達,而不是一個確定性的事情,理論上有可能存在其他攻擊影響。例如,以太坊的DAO攻擊事件造成以太坊硬分叉,而ETC由此事件出現,事實上證明了此次硬分叉的失敗。
DPOS與POS原理相同,只是選了一些「人大代表」。
BitShares社區首先提出了DPoS機制。
與PoS的主要區別在於節點選舉若干代理人,由代理人驗證和記賬。其合規監管、性能、資源消耗和容錯性與PoS相似。類似於董事會投票,持幣者投出一定數量的節點,代理他們進行驗證和記賬。
DPoS的工作原理為:
去中心化表示每個股東按其持股比例擁有影響力,51%股東投票的結果將是不可逆且有約束力的。其挑戰是通過及時而高效的方法達到51%批准。為達到這個目標,每個股東可以將其投票權授予一名代表。獲票數最多的前100位代表按既定時間表輪流產生區塊。每名代表分配到一個時間段來生產區塊。所有的代表將收到等同於一個平均水平的區塊所含交易費的10%作為報酬。如果一個平均水平的區塊含有100股作為交易費,一名代表將獲得1股作為報酬。
網路延遲有可能使某些代表沒能及時廣播他們的區塊,而這將導致區塊鏈分叉。然而,這不太可能發生,因為製造區塊的代表可以與製造前後區塊的代表建立直接連接。建立這種與你之後的代表(也許也包括其後的那名代表)的直接連接是為了確保你能得到報酬。
該模式可以每30秒產生一個新區塊,並且在正常的網路條件下區塊鏈分叉的可能性極其小,即使發生也可以在幾分鍾內得到解決。
成為代表:
成為一名代表,你必須在網路上注冊你的公鑰,然後分配到一個32位的特有標識符。然後該標識符會被每筆交易數據的「頭部」引用。
授權選票:
每個錢包有一個參數設置窗口,在該窗口裡用戶可以選擇一個或更多的代表,並將其分級。一經設定,用戶所做的每筆交易將把選票從「輸入代表」轉移至「輸出代表」。一般情況下,用戶不會創建特別以投票為目的的交易,因為那將耗費他們一筆交易費。但在緊急情況下,某些用戶可能覺得通過支付費用這一更積極的方式來改變他們的投票是值得的。
保持代表誠實:
每個錢包將顯示一個狀態指示器,讓用戶知道他們的代表表現如何。如果他們錯過了太多的區塊,那麼系統將會推薦用戶去換一個新的代表。如果任何代表被發現簽發了一個無效的區塊,那麼所有標准錢包將在每個錢包進行更多交易前要求選出一個新代表。
抵抗攻擊:
在抵抗攻擊上,因為前100名代表所獲得的權力權是相同的,每名代表都有一份相等的投票權。因此,無法通過獲得超過1%的選票而將權力集中到一個單一代表上。因為只有100名代表,可以想像一個攻擊者對每名輪到生產區塊的代表依次進行拒絕服務攻擊。幸運的是,由於事實上每名代表的標識是其公鑰而非IP地址,這種特定攻擊的威脅很容易被減輕。這將使確定DDOS攻擊目標更為困難。而代表之間的潛在直接連接,將使妨礙他們生產區塊變得更為困難。
優點:大幅縮小參與驗證和記賬節點的數量,可以達到秒級的共識驗證。
缺點:整個共識機制還是依賴於代幣,很多商業應用是不需要代幣存在的。
3.PBFT :Practical Byzantine Fault Tolerance,實用拜占庭容錯
介紹:在保證活性和安全性(liveness & safety)的前提下提供了(n-1)/3的容錯性。
在分布式計算上,不同的計算機透過訊息交換,嘗試達成共識;但有時候,系統上協調計算機(Coordinator / Commander)或成員計算機 (Member /Lieutanent)可能因系統錯誤並交換錯的訊息,導致影響最終的系統一致性。
拜占庭將軍問題就根據錯誤計算機的數量,尋找可能的解決辦法,這無法找到一個絕對的答案,但只可以用來驗證一個機制的有效程度。
而拜占庭問題的可能解決方法為:
在 N ≥ 3F + 1 的情況下一致性是可能解決。其中,N為計算機總數,F為有問題計算機總數。信息在計算機間互相交換後,各計算機列出所有得到的信息,以大多數的結果作為解決辦法。
1)系統運轉可以脫離幣的存在,pbft演算法共識各節點由業務的參與方或者監管方組成,安全性與穩定性由業務相關方保證。
2)共識的時延大約在2~5秒鍾,基本達到商用實時處理的要求。
3)共識效率高,可滿足高頻交易量的需求。
缺點:
1)當有1/3或以上記賬人停止工作後,系統將無法提供服務;
2)當有1/3或以上記賬人聯合作惡,且其它所有的記賬人被恰好分割為兩個網路孤島時,惡意記賬人可以使系統出現分叉,但是會留下密碼學證據
下面說兩個國產的吧~
4.dBFT: delegated BFT 授權拜占庭容錯演算法
介紹:小蟻採用的dBFT機制,是由權益來選出記賬人,然後記賬人之間通過拜占庭容錯演算法來達成共識。
此演算法在PBFT基礎上進行了以下改進:
將C/S架構的請求響應模式,改進為適合P2P網路的對等節點模式;
將靜態的共識參與節點改進為可動態進入、退出的動態共識參與節點;
為共識參與節點的產生設計了一套基於持有權益比例的投票機制,通過投票決定共識參與節點(記賬節點);
在區塊鏈中引入數字證書,解決了投票中對記賬節點真實身份的認證問題。
優點:
1)專業化的記賬人;
2)可以容忍任何類型的錯誤;
3)記賬由多人協同完成,每一個區塊都有最終性,不會分叉;
4)演算法的可靠性有嚴格的數學證明;
缺點:
1)當有1/3或以上記賬人停止工作後,系統將無法提供服務;
2)當有1/3或以上記賬人聯合作惡,且其它所有的記賬人被恰好分割為兩個網路孤島時,惡意記賬人可以使系統出現分叉,但是會留下密碼學證據;
以上總結來說,dBFT機制最核心的一點,就是最大限度地確保系統的最終性,使區塊鏈能夠適用於真正的金融應用場景。
5.POOL驗證池
基於傳統的分布式一致性技術,加上數據驗證機制。
優點:不需要代幣也可以工作,在成熟的分布式一致性演算法(Pasox、Raft)基礎上,實現秒級共識驗證。
缺點:去中心化程度不如bictoin;更適合多方參與的多中心商業模式。

熱點內容
我的世界怎麼開啟連鎖挖礦教程 發布:2025-01-08 23:59:20 瀏覽:970
比特幣轉賬慢 發布:2025-01-08 23:24:52 瀏覽:390
比特幣多頭爆倉 發布:2025-01-08 23:20:40 瀏覽:736
區塊鏈啟動會標語 發布:2025-01-08 23:19:53 瀏覽:306
ltc美元價格 發布:2025-01-08 23:16:02 瀏覽:742
btc向btb轉變 發布:2025-01-08 22:38:05 瀏覽:826
一張顯卡挖礦一天能挖多少錢 發布:2025-01-08 22:25:43 瀏覽:521
圖蟲螞蟻區塊鏈有什麼用 發布:2025-01-08 22:20:31 瀏覽:299
挖電子幣的礦 發布:2025-01-08 22:19:05 瀏覽:523
騰訊區塊鏈游久 發布:2025-01-08 22:10:12 瀏覽:339