當前位置:首頁 » 區塊鏈知識 » 區塊鏈安全性論文

區塊鏈安全性論文

發布時間: 2022-09-05 06:18:10

區塊鏈它是如何安全的

區塊鏈中的安全性來自一些屬性。
1.挖掘塊需要使用資源。
2.每個塊包含之前塊的哈希值。
想像一下,如果攻擊者想要通過改變5個街區之前的交易來改變鏈條。如果他們篡改了塊,則塊的哈希值會發生變化。然後攻擊者必須將指針從下一個塊更改為更改的塊,然後更改下一個塊的哈希值...這將一直持續到鏈的末尾。這意味著塊體在鏈條的後面越遠,其變化的阻力就越大。 實際上,攻擊者必須模擬整個網路的哈希能力,直到鏈的前端。然而,當攻擊者試圖攻擊時,鏈繼續向前移動。如果攻擊者的哈希值低於鏈的其餘部分(<50%),那麼他們將始終追趕並且永遠不會產生最長的鏈。因此,這種類型的區塊鏈可以抵禦攻擊,其中攻擊者的哈希值低於50%。
當攻擊者擁有51%的哈希值時,他們可以使用有效事務列表重寫網路歷史記錄。這是因為他們可以比網路的其他部分更快地重新計算任何塊排序的哈希值,因此它們最終可以保證更長的鏈。51%攻擊的主要危險是雙重花費的可能性。這簡單的意思是攻擊者可以購買一件物品並表明他們已經在區塊鏈上用任意數量的確認付款。一旦他們收到了該物品,他們就可以對區塊鏈進行重新排序,使其不包括發送交易,從而獲得退款。
即使攻擊者擁有>50%的哈希值,攻擊者也只能造成這么大的傷害。他們不能做諸如將錢從受害者的賬戶轉移到他們的賬戶或列印更多硬幣之類的事情。這是因為所有交易都由帳??戶所有者簽署,因此即使他們控制整個網路,也無法偽造帳戶簽名。

❷ 區塊鏈有哪些安全軟肋

區塊鏈有哪些安全軟肋

區塊鏈是比特幣中的核心技術,在無法建立信任關系的互聯網上,區塊鏈技術依靠密碼學和巧妙的分布式演算法,無需藉助任何第三方中心機構的介入,用數學的方法使參與者達成共識,保證交易記錄的存在性、合約的有效性以及身份的不可抵賴性。

區塊鏈技術常被人們提及的特性是去中心化、共識機制等,由區塊鏈引申出來的虛擬數字貨幣是目前全球最火爆的項目之一,正在成就出新的一批億萬級富豪。像幣安交易平台,成立短短幾個月,就被國際知名機構評級市值達400億美金,成為了最富有的一批數字貨幣創業先驅者。但是自從有數字貨幣交易所至今,交易所被攻擊、資金被盜事件層出不窮,且部分數字貨幣交易所被黑客攻擊損失慘重,甚至倒閉。

一、 令人震驚的數字貨幣交易所被攻擊事件

從最早的比特幣,到後來的萊特幣、以太幣,目前已有幾百種數字貨幣。隨著價格的攀升,各種數字貨幣系統被攻擊、數字貨幣被盜事件不斷增加,被盜金額也是一路飆升。讓我們來回顧一下令人震驚的數字貨幣被攻擊、被盜事件。

2014年2月24日,當時世界最大的比特幣交易所運營商Mt.Gox宣布其交易平台的85萬個比特幣已經被盜一空,承擔著超過80%的比特幣交易所的Mt.Gox由於無法彌補客戶損失而申請破產保護。

經分析,原因大致為Mt.Gox存在單點故障結構這種嚴重的錯誤,被黑客用於發起DDoS攻擊:

比特幣提現環節的簽名被黑客篡改並先於正常的請求進入比特幣網路,結果偽造的請求可以提現成功,而正常的提現請求在交易平台中出現異常並顯示為失敗,此時黑客實際上已經拿到提現的比特幣了,但是他繼續在Mt.Gox平台請求重復提現,Mt.Gox在沒有進行事務一致性校驗(對賬)的情況下,重復支付了等額的比特幣,導致交易平台的比特幣被竊取。

2016年8月4日,最大的美元比特幣交易平台Bitfinex發布公告稱,網站發現安全漏洞,導致近12萬枚比特幣被盜,總價值約為7500萬美元。

2018年1月26日,日本的一家大型數字貨幣交易平台Coincheck系統遭遇黑客攻擊,導致時價580億日元、約合5.3億美元的數字貨幣「新經幣」被盜,這是史上最大的數字貨幣盜竊案。

2018年3月7日,世界第二大數字貨幣交易所幣安(Binance)被黑客攻擊的消息讓幣圈徹夜難眠,黑客竟然玩起了經濟學,買空賣空「炒幣」割韭菜。根據幣安公告,黑客的攻擊過程包括:

1) 在長時間里,利用第三方釣魚網站偷盜用戶的賬號登錄信息。黑客通過使用Unicode字元冒充正規Binance網址域名里的部分字母對用戶實施網頁釣魚攻擊。

2) 黑客獲得賬號後,自動創建交易API,之後便靜默潛伏。

3) 3月7日黑客通過盜取的API Key,利用買空賣空的方式,將VIA幣值直接拉暴100多倍,比特幣大跌10%,以全球總計1700萬個比特幣計算,比特幣一夜丟了170億美元。

二、黑客攻擊為什麼能屢屢得手

基於區塊鏈的數字貨幣其火熱行情讓黑客們垂涎不已,被盜金額不斷刷新紀錄,盜竊事件的發生也引發了人們對數字貨幣安全的擔憂,人們不禁要問:區塊鏈技術安全嗎?

隨著人們對區塊鏈技術的研究與應用,區塊鏈系統除了其所屬信息系統會面臨病毒、木馬等惡意程序威脅及大規模DDoS攻擊外,還將由於其特性而面臨獨有的安全挑戰。

1. 演算法實現安全

由於區塊鏈大量應用了各種密碼學技術,屬於演算法高度密集工程,在實現上比較容易出現問題。歷史上有過此類先例,比如NSA對RSA演算法實現埋入缺陷,使其能夠輕松破解別人的加密信息。一旦爆發這種級別的漏洞,可以說構成區塊鏈整個大廈的地基將不再安全,後果極其可怕。之前就發生過由於比特幣隨機數產生器出現問題所導致的比特幣被盜事件,理論上,在簽名過程中兩次使用同一個隨機數,就能推導出私鑰。

2. 共識機制安全

當前的區塊鏈技術中已經出現了多種共識演算法機制,最常見的有PoW、PoS、DPos。但這些共識機制是否能實現並保障真正的安全,需要更嚴格的證明和時間的考驗。

3. 區塊鏈使用安全

區塊鏈技術一大特點就是不可逆、不可偽造,但前提是私鑰是安全的。私鑰是用戶生成並保管的,理論上沒有第三方參與。私鑰一旦丟失,便無法對賬戶的資產做任何操作。一旦被黑客拿到,就能轉移數字貨幣。

4. 系統設計安全

像Mt.Gox平台由於在業務設計上存在單點故障,所以其系統容易遭受DoS攻擊。目前區塊鏈是去中心化的,而交易所是中心化的。中心化的交易所,除了要防止技術盜竊外,還得管理好人,防止人為盜竊。

總體來說,從安全性分析的角度,區塊鏈面臨著演算法實現、共識機制、使用及設計上挑戰,同時黑客通過利用系統安全漏洞、業務設計缺陷也可達成攻擊目的。目前,黑客攻擊已經在對區塊鏈系統安全性造成越來越大的影響。

三、如何保證區塊鏈的安全

為了保證區塊鏈系統安全,建議參照NIST的網路安全框架,從戰略層面、一個企業或者組織的網路安全風險管理的整個生命周期的角度出發構建識別、保護、檢測、響應和恢復5個核心組成部分,來感知、阻斷區塊鏈風險和威脅。

除此之外,根據區塊鏈技術自身特點重點關注演算法、共識機制、使用及設計上的安全。

針對演算法實現安全性:一方面選擇採用新的、本身經得起考驗的密碼技術,如國密公鑰演算法SM2等。另一方面對核心演算法代碼進行嚴格、完整測試的同時進行源碼混淆,增加黑客逆向攻擊的難度和成本。

針對共識演算法安全性:PoW中使用防ASIC雜湊函數,使用更有效的共識演算法和策略。

針對使用安全性:對私鑰的生成、存儲進行保護,敏感數據加密存儲。

針對設計安全性:一方面要保證設計的功能盡量完善,如採用私鑰白盒簽名技術,防止病毒、木馬在系統運行過程中提取私鑰;設計私鑰泄露追蹤功能,盡可能減少私鑰泄露後的損失。另一方面,應對某些關鍵業務設計去中心化,防止單點故障攻擊。

❸ 區塊鏈在金融領域的前景分析論文

區塊鏈在金融領域的前景分析論文

區塊鏈技術誕生於2008年,第一個應用是畢特幣。區塊鏈技術使用去中心化共識機制,維護一個完整的、分布式的、不可篡改的賬本資料庫,在無需建立信任關系的前提下,能夠讓區塊鏈中的參與者實現一個統一的賬本系統。2015年,歐美的很多主流金融機構認識到了該技術的應用前景,紛紛探索在金融領域應用區塊鏈技術。國際貨幣基金組織在一份報告中指出「它具有改變財政金融的潛力」,也有人認為區塊鏈技術將會像復式記賬法和股份制一樣深刻改變人類社會。

區塊鏈將使所有個體都有可能成為金融資源配置中的重要節點,也將促進現有金融體系與金融規則的改良,構建共享共贏式的金融發展生態體系。區塊鏈技術的出現是人類信用創造的一次革命,它能讓交易雙方在無需第三方信用中介的情況下開展經濟活動,從而實現低成本的價值轉移。可以說,區塊鏈技術是互聯網時代效率更高的價值交換技術,互聯網由此從傳遞信息的信息互聯網向轉移價值的價值互聯網進化,這有利於傳統金融機構借勢轉型,將內生的業務流程和應用場景互聯網化。

一、區塊鏈的特徵與不足

(一)區塊鏈的主要特徵

(1)去中心。在區塊鏈中,不存在中心化的硬體或管理機構,分布式的結構體系和開源協議讓所有的參與者都參與數據的記錄和驗證,再通過分布式傳播發送給各個節點,每個參與的節點都是「自中心」,權利和義務都是均等的。區塊鏈又不是簡單的去中心,而是多中心或弱中心。當物聯網使所有個體都有可能成為中心節點時,傳統金融中介的中心地位發生改變,從壟斷型、資源優勢型的中心和強中介轉化為開放式平台,成為服務導向式的多中心當中的差異化中心。

(2)去信任。從信任的角度來看,區塊鏈採用一套公開透明的數學演算法,基於協商一致的規范和協議,使所有節點能夠在去信任的環境下自動安全地交換數據。區塊鏈實質上是通過數學方法解決信任問題,所有的規則都以演算法程序的形式表達,參與方不需要知道交易對手的信用水平,不需要第三方機構的交易背書或者擔保驗證,只需要信任共同的演算法,通過演算法為參與者創造信用、產生信任、達成共識。

(3)時間戳。區塊是一段時間內的數據和代碼打包而生成的,下一區塊的頁首包含上一區塊的索引信息,首尾相連便形成了鏈。記錄完整歷史的區塊與可進行完整驗證的鏈,形成了可追朔完整歷史的時間戳,可為每一筆數據提供檢索和查找功能,並可藉助區塊鏈結構追本溯源,逐筆驗證。所以,區塊鏈生成時都加蓋了時間戳,形成不可篡改、不可偽造的資料庫。單個節點上對資料庫的修改是無效的,除非能夠同時控制系統中超過51%的節點,因此區塊鏈的數據可靠性很高。

(4)非對稱加密。區塊鏈使用非對稱加密演算法,即在加密和解密過程中使用一個「密鑰對」,「密鑰對」中的兩個密鑰具有非對稱特點。在區塊鏈的應用場景中,一方面,密鑰是所有參與者可見的公鑰,參與者都可用公鑰來加密一段真實性信息,只有信息擁有者能用私鑰來解密。另一方面,使用私鑰對信息簽名,通過對應的公鑰來驗證簽名,確保信息為真正的持有人發出。非對稱加密將價值交換中的摩擦邊界降到最低,能夠實現透明數據的匿名性,保護個人隱私。

(5)智能合約:由於區塊鏈可實現點對點的價值傳遞,傳遞時可以嵌入相應的編程腳本,通過這種智能合約的方式去處理一些無法預見的交易模式,保證區塊鏈能夠持續生效。這種可編程腳本本質上是眾多指令匯總的列表,實現價值交換時的針對性和條件性,實現價值的特定用途。所以,基於區塊鏈的任何價值交換活動都可通過智能編程的方式對其用途、方向和各種限制條件等做到硬控制,省去了以法律或者合同軟約束的成本。

(二)區塊鏈存在的主要問題

(1)高能耗問題。傳統貨幣銀行學體系中存在不可能三角,即不可能同時達到去中心化、低能耗和高度安全,在區塊鏈構建中也同樣存在不可能三角。比如,在畢特幣的實際應用中,其發展帶來了計算機硬體的快速膨脹,在「挖礦」過程中的主要成本轉移到硬體成本和電力成本等。所以,應用區塊鏈技術實現權益成本收益後,讓其技術功效發揮至最大化成為急需解決的問題。

(2)存儲空間問題。由於區塊鏈記錄系統中自初始信息的每一筆交易信息,並且每個節點都要下載存儲並實時更新數據區塊,所以,每個節點的數據都完全同步的話,網路壓力較大,每個節點的存儲空間容量要求可能會成為制約其發展的關鍵問題。

(3)抗壓能力問題。基於區塊鏈構建的.系統遵循木桶理論,要兼顧所有網路節點中處理速度和網路環境最差的,所以,如果將區塊鏈技術推廣至大規模交易環境下,其整體的抗壓能力還有待驗證。如果每秒產生的交易量超過系統(最弱節點)的設計容納能力,交易就自動進入到隊列進行排隊,帶來不良用戶體驗。

二、區塊鏈在金融領域的應用

(一)金融基礎設施

區塊鏈可能作為互聯網的基礎設施,在很多領域都表現出廣闊的應用前景。在金融行業中,區塊鏈技術將首先影響支付系統、證券結算系統、交易資料庫等金融基礎設施,隨後該技術也會擴及一般性金融業務,比如信用體系、「反洗錢」等。這是因為,基於區塊鏈技術的特點,其將首先切入信任要求高且傳統信任機製成本高的基礎設施領域,過去,基礎設施都是公共產品,而區塊鏈新技術和新制度使更多人有可能參與公共產品供給。未來的互聯網金融是要利用區塊鏈等互聯網技術,改造傳統金融機構的核心生產系統,把金融企業架構在互聯網上。

當前的信息互聯網可統稱為TCP/IP模型,HTTP是應用層中最重要的應用協議。在價值互聯網中,區塊鏈是在應用層里的一個點對點傳輸的協議。它的價值與信息互聯網中HTTP協議的價值是一樣的。區塊鏈的巨大潛力和前景就是可以重構傳統金融業的基礎設施與核心生產系統,而不僅僅停留在APP等應用層面。這是因為,在網路層次,區塊鏈是建立在IP通信協議基礎上的,是建立在分布式網路基礎上的;在數據層面,區塊鏈這一資料庫系統是嶄新的,明顯優於現有金融體系的資料庫;在應用層面,基於區塊鏈的登記結算、清算系統以及智能合約、物聯網能大幅提升效率,區塊鏈上的金融活動是可編程的金融。.

(二)數字的貨幣

從安全、成本等角度看,紙幣被新技術、新產品取代是大勢所趨。數字的貨幣發行、流通體系的建立,對於金融基礎設施建設和經濟發展都是十分必要的。遵循傳統貨幣與數字的貨幣一體化的思路,數字的貨幣的發行、流通和交易應由央行主導,體現便利性和安全性,做到保護隱私與維護社會秩序、打擊違法犯罪行為的平衡,要有利於貨幣政策的有效運行和傳導,要保留貨幣主權的控制力,數字的貨幣是自由可兌換的,同時也是可控的可兌換。

區塊鏈技術在畢特幣上的成功證明了可編程數字的貨幣的可行性。英國央行的研究表明,中央銀行可以考慮發行基於區塊鏈的數字的貨幣,這可增加金融穩定性。數字的貨幣的技術路線可分為基於賬戶和不基於賬戶兩種,也可分層並用而設法共存。區塊鏈技術的特點是分布式簿記,不基於賬戶,而且無法篡改,如果數字的貨幣重點強調保護個人隱私,可選用這一技術。不過,目前區塊鏈佔用的計算資源和存儲資源太多,應對不了現在的交易規模,需要解決這一問題才能得到推廣應用。

(三)自金融

如果從服務的角度、從非貨幣創造角度來看,現代金融都是通過中介機構實現的。互聯網時代,有可能實現去中介化的真正意義上的直接金融。不過,這種可能性還不完全,最主要的原因是目前互聯網金融是在原有金融基礎之上的,無法跳出來,區塊鏈技術提供了一種可能性。區塊鏈可分為公有區塊鏈和私有區塊鏈。公有區塊鏈就是像畢特幣這樣的,認可了協議,就成為區塊鏈的組成部分。私有區塊鏈仍然是要獲得許可的,銀行系統的區塊鏈技術,需要對每一個參與者進行審核。私有區塊鏈非常近似於一種自金融的形態,公有區塊鏈更類似於對私有區塊鏈底層的支持和保障。當區塊鏈技術普遍應用,金融管理技術的第三方化普通呈現,基於區塊鏈技術的自金融就完全成為可能。

三、區塊鏈應用與金融監管

區塊鏈技術是目前唯一無需第三方就可用於記錄和證明交易一致性和公司財務准確性的工具。因此,它可以滿足潛在監管者和公眾對於審計有效性、准確性和時效性的要求,在金融領域有著廣闊的應用前景。但其發展仍受到現行制度的制約。一方面,區塊鏈對現行體制帶來了沖擊,因為其去中心、自治的特性淡化了國家、監管等概念。比如,以畢特幣為代表的數字的貨幣挑戰了國家的貨幣發行權和貨幣政策調控權,導致貨幣當局對數字的貨幣的發展持保守態度。另一方面,監管部門對這項新技術也缺乏充分的認識和預期,法律和制度建立將會嚴重滯後,導致區塊鏈運用缺乏必要的制度規范和法律保護,增大了市場主體的風險。

區塊鏈金融技術一旦在金融業普遍展開以後,監管的去金融屬性化就產生了,監管職能、監管方式和監管手段將會被重新界定。比如,證券借貸、回購和融資融券如能通過區塊鏈交易,監管部門就可考慮利用這個公共賬本的信息對市場中的系統性風險進行監控,不僅高效而且可靠。從宏觀金融視角看,當自金融時代產生以後,貨幣創造和傳導機制以及信用創造格局將會變化。從微觀金融視角看,隨著區塊鏈技術的進一步發展,金融與商業已經難以區分,將超越分業和混業監管的含義,金融監管體系的改革需要從這個視角來探討。

區塊鏈技術帶來的「去中心化」仍需要中心化的部門提供規范和保障支持。監管機構可主動擁抱互聯網金融的新技術,美國證監會委員Kara Stein認為,監管機構需要處於引導位置,利用區塊鏈技術的優勢並快速響應其潛在的弱點。比如,區塊鏈技術希望打破特權和人為操縱,讓計算機演算法實現「信用自由公證」。但從實踐來看,由於缺乏監管,畢特幣等數字的貨幣交易面臨的投機和洗錢風險就很高。因此,區塊鏈技術應用需要監管部門制定相關標准和規范,保證金融創新產品得到合理運用。同時,還要提高消費者權益的保護,加強金融消費權益保護的教育工作,提高消費者的風險防範意識。

;

❹ 區塊鏈論文精讀——Pixel: Multi-signatures for Consensus

論文主要提出了一種針對共識機制PoS的多重簽名演算法Pixel。

所有基於PoS的區塊鏈以及允許的區塊鏈均具有通用結構,其中節點運行共識子協議,以就要添加到分類賬的下一個區塊達成共識。這樣的共識協議通常要求節點檢查阻止提議並通過對可接受提議進行數字簽名來表達其同意。當一個節點從特定塊上的其他節點看到足夠多的簽名時,會將其附加到其分類帳視圖中。

由於共識協議通常涉及成千上萬的節點,為了達成共識而共同努力,因此簽名方案的效率至關重要。此外,為了使局外人能夠有效地驗證鏈的有效性,簽名應緊湊以進行傳輸,並應快速進行驗證。已發現多重簽名對於此任務特別有用,因為它們使許多簽名者可以在公共消息上創建緊湊而有效的可驗證簽名。

補充知識: 多重簽名
是一種數字簽名。在數字簽名應用中,有時需要多個用戶對同一個文件進行簽名和認證。比如,一個公司發布的聲明中涉及財務部、開發部、銷售部、售後服務部等部門,需要得到這些部門簽名認可,那麼,就需要這些部門對這個聲明文件進行簽名。能夠實現多個用戶對同一文件進行簽名的數字簽名方案稱作多重數字簽名方案。
多重簽名是數字簽名的升級,它讓區塊鏈相關技術應用到各行各業成為可能。 在實際的操作過程中,一個多重簽名地址可以關聯n個私鑰,在需要轉賬等操作時,只要其中的m個私鑰簽名就可以把資金轉移了,其中m要小於等於n,也就是說m/n小於1,可以是2/3, 3/5等等,是要在建立這個多重簽名地址的時候確定好的。

本文提出了Pixel簽名方案,這是一種基於配對的前向安全多簽名方案,可用於基於PoS的區塊鏈,可大幅節省帶寬和存儲要求。為了支持總共T個時間段和一個大小為N的委員會,多重簽名僅包含兩個組元素,並且驗證僅需要三對配對,一個乘冪和N -1個乘法。像素簽名幾乎與BLS多重簽名一樣有效,而且還滿足前向安全性。此外,就像在BLS多簽名中一樣,任何人都可以非交互地將單個簽名聚合到一個多簽名中。

有益效果:
為了驗證Pixel的設計,將Pixel的Rust實施的性能與以前的基於樹的前向安全解決方案進行了比較。展示了如何將Pixel集成到任何PoS區塊鏈中。接下來,在Algorand區塊鏈上評估Pixel,表明它在存儲,帶寬和塊驗證時間方面產生了顯著的節省。我們的實驗結果表明,Pixel作為獨立的原語並在區塊鏈中使用是有效的。例如,與一組128位安全級別的N = 1500個基於樹的前向安全簽名(對於T = 232)相比,可以認證整個集合的單個Pixel簽名要小2667倍,並且可以被驗證快40倍。像素簽名將1500次事務的Algorand塊的大小減少了約35%,並將塊驗證時間減少了約38%。

對比傳統BLS多重簽名方案最大的區別是BLS並不具備前向安全性。

對比基於樹的前向安全簽名,基於樹的前向安全簽名可滿足安全性,但是其構造的簽名太大,驗證速度有待提升。 本文設計減小了簽名大小、降低了驗證時間。

補充知識: 前向安全性
是密碼學中通訊協議的安全屬性,指的是長期使用的主密鑰泄漏不會導致過去的會話密鑰泄漏。前向安全能夠保護過去進行的通訊不受密碼或密鑰在未來暴露的威脅。如果系統具有前向安全性,就可以保證在主密鑰泄露時歷史通訊的安全,即使系統遭到主動攻擊也是如此。

構建基於分層身份的加密(HIBE)的前向安全簽名,並增加了在同一消息上安全地聚合簽名以及生成沒有可信集的公共參數的能力。以實現:
1、生成與更新密鑰
2、防止惡意密鑰攻擊的安全性
3、無效的信任設置

對於常見的後攻擊有兩種變體:
1、短程變體:對手試圖在共識協議達成之前破壞委員會成員。解決:通過假設攻擊延遲長於共識子協議的運行時間來應對短距離攻擊。
2、遠程變體:通過分叉選擇規則解決。
前向安全簽名為這兩種攻擊提供了一種干凈的解決方案,而無需分叉選擇規則或有關對手和客戶的其他假設。(說明前向安全簽名的優勢)。

應用於許可的區塊鏈共識協議(例如PBFT)也是許多許可鏈(例如Hyperledger)的核心,在這些區塊鏈中,只有經過批準的方可以加入網路。我們的簽名方案可以類似地應用於此設置, 以實現前向保密性,減少通信帶寬並生成緊湊的塊證書。

傳統Bellare-Miner 模型,消息空間M的前向安全簽名方案FS由以下演算法組成:
1、Setup
pp ←Setup(T), pp為各方都同意的公共參數,Setup(T)表示在T時間段內對於固定參數的分布設置。

2、Key generation
(pk,sk1) ←Kg
簽名者在輸入的最大時間段T上運行密鑰生成演算法,以為第一時間段生成公共驗證密鑰pk和初始秘密簽名密鑰sk1。

3、Key update
skt+1←Upd(skt) 簽名者使用密鑰更新演算法將時間段t的秘密密鑰skt更新為下一個周期的skt + 1。該方案還可以為任何t0> t提供 「快速轉發」更新演算法 skt0←$ Upd0(skt,t0),該演算法比重復應用Upd更有效。

4、Signing
σ ←Sign(skt,M),在輸入當前簽名密鑰skt消息m∈M時,簽名者使用此演算法來計算簽名σ。

5、Verification
b ← Vf(pk,t,M,σ)任何人都可以通過運行驗證演算法來驗證消息M在公共密鑰pk下的時間段t內的簽名M的簽名,該演算法返回1表示簽名有效,否則返回0。

1、依靠非對稱雙線性組來提高效率,我們的簽名位於G2×G1中而不是G2 ^2中。這樣,就足以給出公共參數到G1中(然後我們可以使用散列曲線實例化而無需信任設置),而不必生成「一致的」公共參數(hi,h0 i)=(gxi 1,gxi 2)∈G1× G2。

2、密鑰生成演算法,公鑰pk更小,參數設置提升安全性。

除了第3節中的前向安全簽名方案的演算法外,密鑰驗證模型中的前向安全多重簽名方案FMS還具有密鑰生成,該密鑰生成另外輸出了公鑰的證明π。
新增Key aggregation密鑰匯總、Signature aggregation簽名匯總、Aggregate verification匯總驗證。滿足前向安全的多重簽名功能的前提下也證明了其正確性和安全性。

1、PoS在後繼損壞中得到保護
後繼損壞:後驗證的節點對之前的共識驗證狀態進行攻擊破壞。
在許多用戶在同一條消息上傳播許多簽名(例如交易塊)的情況下,可以將Pixel應用於所有這些區塊鏈中,以防止遭受後繼攻擊並潛在地減少帶寬,存儲和計算成本。

2、Pixel整合
為了對區塊B進行投票,子協議的每個成員使用具有當前區塊編號的Pixel簽署B。當我們看到N個委員會成員在同一塊B上簽名的集合時,就達成了共識,其中N是某個固定閾值。最後,我們將這N個簽名聚合為單個多重簽名Σ,而對(B,Σ)構成所謂的 區塊證書 ,並將區塊B附加到區塊鏈上。

3、注冊公共密鑰
希望參與共識的每個用戶都需要注冊一個參與簽名密鑰。用戶首先採樣Pixel密鑰對並生成相應的PoP。然後,用戶發出特殊交易(在她的消費密鑰下簽名), 注冊新的參與密鑰 。交易包括PoP。選擇在第r輪達成協議的PoS驗證者,檢查(a)特殊交易的有效性和(b)PoP的有效性。如果兩項檢查均通過,則 使用新的參與密鑰更新用戶的帳戶 。從這一點來看,如果選中,則用戶將使用Pixel登錄塊。
即不斷更換自己的參與密鑰,實現前向安全性。

4、傳播和聚集簽名
各個委員會的簽名將通過網路傳播,直到在同一塊B上看到N個委員會成員的簽名為止。請注意,Pixel支持非互動式和增量聚合:前者意味著簽名可以在廣播後由任何一方聚合,而無需與原始簽名者,而後者意味著我們可以將新簽名添加到多重簽名中以獲得新的多重簽名。實際上,這意味著傳播的節點可以對任意數量的委員會簽名執行中間聚合並傳播結果,直到形成塊證書為止。或者,節點可以在將塊寫入磁碟之前聚合所有簽名。也就是說,在收到足夠的區塊證明票後,節點可以將N個委員會成員的簽名聚集到一個多重簽名中,然後將區塊和證書寫入磁碟。

5、密鑰更新
在區塊鏈中使用Pixel時,時間對應於共識協議中的區塊編號或子步驟。將時間與區塊編號相關聯時,意味著所有符合條件的委員會成員都應在每次形成新區塊並更新輪回編號時更新其Pixel密鑰。

在Algorand 項目上進行實驗評估,與Algorand項目自帶的防止後腐敗攻擊的解決方案BM-Ed25519以及BLS多簽名解決方案做對比。

存儲空間上:

節省帶寬:
Algorand使用基於中繼的傳播模型,其中用戶的節點連接到中繼網路(具有更多資源的節點)。如果在傳播過程中沒有聚合,則中繼和常規節點的帶寬像素節省來自較小的簽名大小。每個中繼可以服務數十個或數百個節點,這取決於它提供的資源。

節省驗證時間

❺ 區塊鏈技術發展現狀與展望

區塊鏈技術發展現狀與展望
區塊鏈技術起源於2008年由化名為 「中本聰」 (Satoshi Nakamoto)的學者在密碼學郵件組發表的奠基性論文《比特幣:一種點對點電子現金系統》。近兩年來,區塊鏈技術的研究與應用呈現出爆發式增長態勢,被認為是繼大型機、個人電腦、互聯網、移動/社交網路之後計算範式的第五次顛覆式創新,是人類信用進化史上繼血親信用、貴金屬信用、央行紙幣信用之後的第四個里程碑。區塊鏈技術是下一代雲計算的雛形,有望像互聯網一樣徹底重塑人類社會活動形態,並實現從目前的信息互聯網向價值互聯網的轉變。區塊鏈的技術特點

區塊鏈具有去中心化、時序數據、集體維護、可編程和安全可信等特點。 去中心化:區塊鏈數據的驗證、記賬、存儲、維護和傳輸等過程均是基於分布式系統結構,採用純數學方法而不是中心機構來建立分布式節點間的信任關系,從而形成去中心化的可信任的分布式系統; 時序數據:區塊鏈採用帶有時間戳的鏈式區塊結構存儲數據,從而為數據增加了時間維度,具有極強的可驗證性和可追溯性; 集體維護:區塊鏈系統採用特定的經濟激勵機制來保證分布式系統中所有節點均可參與數據區塊的驗證過程(如比特幣的「挖礦」過程),並通過共識演算法來選擇特定的節點將新區塊添加到區塊鏈; 可編程:區塊鏈技術可提供靈活的腳本代碼系統,支持用戶創建高級的智能合約、貨幣或其它去中心化應用; 安全可信:區塊鏈技術採用非對稱密碼學原理對數據進行加密,同時藉助分布式系統各節點的工作量證明等共識演算法形成的強大算力來抵禦外部攻擊、保證區塊鏈數據不可篡改和不可偽造,因而具有較高的安全性。區塊鏈與比特幣 比特幣是迄今為止最為成功的區塊鏈應用場景,區塊鏈技術為比特幣系統解決了數字加密貨幣領域長期以來所必需面對的雙重支付問題和拜占庭將軍問題。與傳統中心機構(如中央銀行)的信用背書機制不同的是,比特幣區塊鏈形成的是軟體定義的信用,這標志著中心化的國家信用向去中心化的演算法信用的根本性變革。近年來,比特幣憑借其先發優勢,目前已經形成體系完備的涵蓋發行、流通和金融衍生市場的生態圈與產業鏈,這也是其長期占據絕大多數數字加密貨幣市場份額的主要原因。區塊鏈的發展脈絡與趨勢
區塊鏈技術是具有普適性的底層技術框架,可以為金融、經濟、科技甚至政治等各領域帶來深刻變革。按照目前區塊鏈技術的發展脈絡,區塊鏈技術將會經歷以可編程數字加密貨幣體系為主要特徵的區塊鏈1.0模式,以可編程金融系統為主要特徵的區塊鏈2.0模式和以可編程社會為主要特徵的區塊鏈3.0模式。然而,上述模式實際上是平行而非演進式發展的,區塊鏈1.0模式的數字加密貨幣體系仍然遠未成熟,距離其全球貨幣一體化的願景實際上更遠、更困難。目前,區塊鏈領域已經呈現出明顯的技術和產業創新驅動的發展態勢,相關學術研究嚴重滯後、亟待跟進。區塊鏈的基礎模型與關鍵技術
一般說來,區塊鏈系統由數據層、網路層、共識層、激勵層、合約層和應用層組成。其中,數據層封裝了底層數據區塊以及相關的數據加密和時間戳等技術;網路層則包括分布式組網機制、數據傳播機制和數據驗證機制等;共識層主要封裝網路節點的各類共識演算法;激勵層將經濟因素集成到區塊鏈技術體系中來,主要包括經濟激勵的發行機制和分配機制等;合約層主要封裝各類腳本、演算法和智能合約,是區塊鏈可編程特性的基礎;應用層則封裝了區塊鏈的各種應用場景和案例。該模型中,基於時間戳的鏈式區塊結構、分布式節點的共識機制、基於共識算力的經濟激勵和靈活可編程的智能合約是區塊鏈技術最具代表性的創新點。區塊鏈技術的應用場景
區塊鏈技術不僅可以成功應用於數字加密貨幣領域,同時在經濟、金融和社會系統中也存在廣泛的應用場景。根據區塊鏈技術應用的現狀,本文將區塊鏈目前的主要應用籠統地歸納為數字貨幣、數據存儲、數據鑒證、金融交易、資產管理和選舉投票共六個場景:數字貨幣:以比特幣為代表,本質上是由分布式網路系統生成的數字貨幣,其發行過程不依賴特定的中心化機構。數據存儲:區塊鏈的高冗餘存儲、去中心化、高安全性和隱私保護等特點使其特別適合存儲和保護重要隱私數據,以避免因中心化機構遭受攻擊或許可權管理不當而造成的大規模數據丟失或泄露。數據鑒證:區塊鏈數據帶有時間戳、由共識節點共同驗證和記錄、不可篡改和偽造,這些特點使得區塊鏈可廣泛應用於各類數據公證和審計場景。例如,區塊鏈可以永久地安全存儲由政府機構核發的各類許可證、登記表、執照、證明、認證和記錄等。金融交易:區塊鏈技術與金融市場應用有非常高的契合度。區塊鏈可以在去中心化系統中自發地產生信用,能夠建立無中心機構信用背書的金融市場,從而在很大程度上實現了「金融脫媒」;同時利用區塊鏈自動化智能合約和可編程的特點,能夠極大地降低成本和提高效率。資產管理:區塊鏈能夠實現有形和無形資產的確權、授權和實時監控。無形資產管理方面已經廣泛應用於知識產權保護、域名管理、積分管理等領域;有形資產管理方面則可結合物聯網技術形成「數字智能資產」,實現基於區塊鏈的分布式授權與控制。選舉投票:區塊鏈可以低成本高效地實現政治選舉、企業股東投票等應用,同時基於投票可廣泛應用於博彩、預測市場和社會製造等領域。區塊鏈技術的現存問題
安全性威脅是區塊鏈迄今為止所面臨的最重要的問題。其中,基於PoW共識過程的區塊鏈主要面臨的是51%攻擊問題,即節點通過掌握全網超過51%的算力就有能力成功篡改和偽造區塊鏈數據。其他問題包括新興計算技術破解非對稱加密機制的潛在威脅和隱私保護問題等。 區塊鏈效率也是制約其應用的重要因素。區塊鏈要求系統內每個節點保存一份數據備份,這對於日益增長的海量數據存儲來說是極為困難的。雖然輕量級節點可部分解決此問題,但適用於更大規模的工業級解決方案仍有待研發。比特幣區塊鏈目前每秒僅能處理7筆交易,且交易確認時間一般為10分鍾,這極大地限制了區塊鏈在大多數金融系統高頻交易場景中的應用。 PoW共識過程高度依賴區塊鏈網路節點貢獻的算力,這些算力主要用於解決SHA256哈希和隨機數搜索,除此之外並不產生任何實際社會價值,因而一般意義上認為這些算力資源是被「浪費」掉了,同時被浪費掉的還有大量的電力資源。如何能有效匯集分布式節點的網路算力來解決實際問題,是區塊鏈技術需要解決的重要問題。 區塊鏈網路作為去中心化的分布式系統,其各節點在交互過程中不可避免地會存在相互競爭與合作的博弈關系,例如比特幣礦池的區塊截留攻擊博弈等。區塊鏈共識過程本質上是眾包過程,如何設計激勵相容的共識機制,使得去中心化系統中的自利節點能夠自發地實施區塊數據的驗證和記賬工作,並提高系統內非理性行為的成本以抑制安全性攻擊和威脅,是區塊鏈有待解決的重要科學問題。智能合約與區塊鏈技術
智能合約是一組情景-應對型的程序化規則和邏輯,是部署在區塊鏈上的去中心化、可信共享的程序代碼。通常情況下,智能合約經各方簽署後,以程序代碼的形式附著在區塊鏈數據(例如一筆比特幣交易)上,經P2P網路傳播和節點驗證後記入區塊鏈的特定區塊中。智能合約封裝了預定義的若干狀態及轉換規則、觸發合約執行的情景(如到達特定時間或發生特定事件等)、特定情景下的應對行動等。區塊鏈可實時監控智能合約的狀態,並通過核查外部數據源、確認滿足特定觸發條件後激活並執行合約。 智能合約對於區塊鏈技術來說具有重要的意義。一方面,智能合約是區塊鏈的激活器,為靜態的底層區塊鏈數據賦予了靈活可編程的機制和演算法,並為構建區塊鏈2.0和3.0時代的可編程金融系統與社會系統奠定了基礎;另一方面,智能合約的自動化和可編程特性使其可封裝分布式區塊鏈系統中各節點的復雜行為,成為區塊鏈構成的虛擬世界中的軟體代理機器人,這有助於促進區塊鏈技術在各類分布式人工智慧系統中的應用,使得基於區塊鏈技術構建各類去中心化應用(Decentralized application, Dapp)、去中心化自治組織(Decentralized Autonomous Organization, DAO)、去中心化自治公司(Decentralized Autonomous Corporation, DAC)甚至去中心化自治社會(Decentralized Autonomous Society, DAS)成為可能。 區塊鏈和智能合約技術的主要發展趨勢是由自動化向智能化方向演化。現存的各類智能合約及其應用的本質邏輯大多仍是根據預定義場景的「 IF-THEN」類型的條件響應規則,能夠滿足目前自動化交易和數據處理的需求。未來的智能合約應具備根據未知場景的「 WHAT-IF」推演、計算實驗和一定程度上的自主決策功能,從而實現由目前「自動化」合約向真正的「智能」合約的飛躍。區塊鏈驅動的平行社會
近年來,基於CPSS(Cyber-Physical-SocialSystems)的平行社會已現端倪,其核心和本質特徵是虛實互動與平行演化。區塊鏈是實現CPSS平行社會的基礎架構之一,其主要貢獻是為分布式社會系統和分布式人工智慧研究提供了一套行之有效的去中心化的數據結構、交互機制和計算模式,並為實現平行社會奠定了堅實的數據基礎和信用基礎。 就數據基礎而言,管理學家愛德華戴明曾說過:除了上帝,所有人必須以數據說話。然而在中心化社會系統中,數據通常掌握在政府和大型企業等「少數人」手中,為少數人「說話」,其公正性、權威性甚至安全性可能都無法保證。區塊鏈數據則通過高度冗餘的分布式節點存儲,掌握在「所有人」手中,能夠做到真正的「數據民主」。就信用基礎而言,中心化社會系統因其高度工程復雜性和社會復雜性而不可避免地會存在「默頓系統」的特性,即不確定性、多樣性和復雜性,社會系統中的中心機構和規則制定者可能會因個體利益而出現失信行為;區塊鏈技術有助於實現軟體定義的社會系統,其基本理念就是剔除中心化機構、將不可預測的行為以智能合約的程序化代碼形式提前部署和固化在區塊鏈數據中,事後不可偽造和篡改並自動化執行,從而在一定程度上能夠將「默頓」社會系統轉化為可全面觀察、可主動控制、可精確預測的「牛頓」社會系統。 ACP(人工社會Artificial Societies、計算實驗Computational Experiments和平行執行ParallelExecution)方法是迄今為止平行社會管理領域唯一成體系化的、完整的研究框架,是復雜性科學在新時代平行社會環境下的邏輯延展和創新。 ACP方法可以自然地與區塊鏈技術相結合,實現區塊鏈驅動的平行社會管理。首先,區塊鏈的P2P 組網、分布式共識協作和基於貢獻的經濟激勵等機制本身就是分布式社會系統的自然建模,其中每個節點都將作為分布式系統中的一個自主和自治的智能體(agent)。隨著區塊鏈生態體系的完善,區塊鏈各共識節點和日益復雜與自治的智能合約將通過參與各種形式的Dapp,形成特定組織形式的DAC和DAO,最終形成DAS,即ACP中的人工社會。其次,智能合約的可編程特性使得區塊鏈可進行各種「 WHAT-IF」 類型的虛擬實驗設計、場景推演和結果評估,通過這種計算實驗過程獲得並自動或半自動地執行最優決策。最後,區塊鏈與物聯網等相結合形成的智能資產使得聯通現實物理世界和虛擬網路空間成為可能,並可通過真實和人工社會系統的虛實互動和平行調諧實現社會管理和決策的協同優化。不難預見,未來現實物理世界的實體資產都登記為鏈上智能資產的時候,就是區塊鏈驅動的平行社會到來之時。

❻ 區塊鏈如何保證使用安全

區塊鏈項目(尤其是公有鏈)的一個特點是開源。通過開放源代碼,來提高項目的可信性,也使更多的人可以參與進來。但源代碼的開放也使得攻擊者對於區塊鏈系統的攻擊變得更加容易。近兩年就發生多起黑客攻擊事件,近日就有匿名幣Verge(XVG)再次遭到攻擊,攻擊者鎖定了XVG代碼中的某個漏洞,該漏洞允許惡意礦工在區塊上添加虛假的時間戳,隨後快速挖出新塊,短短的幾個小時內謀取了近價值175萬美元的數字貨幣。雖然隨後攻擊就被成功制止,然而沒人能夠保證未來攻擊者是否會再次出擊。

當然,區塊鏈開發者們也可以採取一些措施

一是使用專業的代碼審計服務,

二是了解安全編碼規范,防患於未然。

密碼演算法的安全性

隨著量子計算機的發展將會給現在使用的密碼體系帶來重大的安全威脅。區塊鏈主要依賴橢圓曲線公鑰加密演算法生成數字簽名來安全地交易,目前最常用的ECDSA、RSA、DSA 等在理論上都不能承受量子攻擊,將會存在較大的風險,越來越多的研究人員開始關注能夠抵抗量子攻擊的密碼演算法。

當然,除了改變演算法,還有一個方法可以提升一定的安全性:

參考比特幣對於公鑰地址的處理方式,降低公鑰泄露所帶來的潛在的風險。作為用戶,尤其是比特幣用戶,每次交易後的余額都採用新的地址進行存儲,確保有比特幣資金存儲的地址的公鑰不外泄。

共識機制的安全性

當前的共識機制有工作量證明(Proof of Work,PoW)、權益證明(Proof of Stake,PoS)、授權權益證明(Delegated Proof of Stake,DPoS)、實用拜占庭容錯(Practical Byzantine Fault Tolerance,PBFT)等。

PoW 面臨51%攻擊問題。由於PoW 依賴於算力,當攻擊者具備算力優勢時,找到新的區塊的概率將會大於其他節點,這時其具備了撤銷已經發生的交易的能力。需要說明的是,即便在這種情況下,攻擊者也只能修改自己的交易而不能修改其他用戶的交易(攻擊者沒有其他用戶的私鑰)。

在PoS 中,攻擊者在持有超過51%的Token 量時才能夠攻擊成功,這相對於PoW 中的51%算力來說,更加困難。

在PBFT 中,惡意節點小於總節點的1/3 時系統是安全的。總的來說,任何共識機制都有其成立的條件,作為攻擊者,還需要考慮的是,一旦攻擊成功,將會造成該系統的價值歸零,這時攻擊者除了破壞之外,並沒有得到其他有價值的回報。

對於區塊鏈項目的設計者而言,應該了解清楚各個共識機制的優劣,從而選擇出合適的共識機制或者根據場景需要,設計新的共識機制。

智能合約的安全性

智能合約具備運行成本低、人為干預風險小等優勢,但如果智能合約的設計存在問題,將有可能帶來較大的損失。2016 年6 月,以太坊最大眾籌項目The DAO 被攻擊,黑客獲得超過350 萬個以太幣,後來導致以太坊分叉為ETH 和ETC。

對此提出的措施有兩個方面:

一是對智能合約進行安全審計,

二是遵循智能合約安全開發原則。

智能合約的安全開發原則有:對可能的錯誤有所准備,確保代碼能夠正確的處理出現的bug 和漏洞;謹慎發布智能合約,做好功能測試與安全測試,充分考慮邊界;保持智能合約的簡潔;關注區塊鏈威脅情報,並及時檢查更新;清楚區塊鏈的特性,如謹慎調用外部合約等。

數字錢包的安全性

數字錢包主要存在三方面的安全隱患:第一,設計缺陷。2014 年底,某簽報因一個嚴重的隨機數問題(R 值重復)造成用戶丟失數百枚數字資產。第二,數字錢包中包含惡意代碼。第三,電腦、手機丟失或損壞導致的丟失資產。

應對措施主要有四個方面:

一是確保私鑰的隨機性;

二是在軟體安裝前進行散列值校驗,確保數字錢包軟體沒有被篡改過;

三是使用冷錢包;

四是對私鑰進行備份。

❼ 區塊鏈的安全法則

區塊鏈的安全法則,即第一法則:
存儲即所有
一個人的財產歸屬及安全性,從根本上來說取決於財產的存儲方式及定義權。在互聯網世界裡,海量的用戶數據存儲在平台方的伺服器上,所以,這些數據的所有權至今都是個迷,一如你我的社交ID歸誰,難有定論,但用戶數據資產卻推高了平台的市值,而作為用戶,並未享受到市值紅利。區塊鏈世界使得存儲介質和方式的變化,讓資產的所有權交付給了個體。
拓展資料
區塊鏈系統面臨的風險不僅來自外部實體的攻擊,也可能有來自內 部參與者的攻擊,以及組件的失效,如軟體故障。因此在實施之前,需 要制定風險模型,認清特殊的安全需求,以確保對風險和應對方案的准 確把握。
1. 區塊鏈技術特有的安全特性
● (1) 寫入數據的安全性
在共識機制的作用下,只有當全網大部分節點(或多個關鍵節點)都 同時認為這個記錄正確時,記錄的真實性才能得到全網認可,記錄數據才 允許被寫入區塊中。
● (2) 讀取數據的安全性
區塊鏈沒有固有的信息讀取安全限制,但可以在一定程度上控制信 息讀取,比如把區塊鏈上某些元素加密,之後把密鑰交給相關參與者。同時,復雜的共識協議確保系統中的任何人看到的賬本都是一樣的,這是防 止雙重支付的重要手段。
● (3) 分布式拒絕服務(DDOS)
攻擊抵抗 區塊鏈的分布式架構賦予其點對點、多冗餘特性,不存在單點失效的問題,因此其應對拒絕服務攻擊的方式比中心化系統要靈活得多。即使一個節點失效,其他節點不受影響,與失效節點連接的用戶無法連入系統, 除非有支持他們連入其他節點的機制。
2. 區塊鏈技術面臨的安全挑戰與應對策略
● (1) 網路公開不設防
對公有鏈網路而言,所有數據都在公網上傳輸,所有加入網路的節點 可以無障礙地連接其他節點和接受其他節點的連接,在網路層沒有做身份驗證以及其他防護。針對該類風險的應對策略是要求更高的私密性並謹慎控制網路連接。對安全性較高的行業,如金融行業,宜採用專線接入區塊鏈網路,對接入的連接進行身份驗證,排除未經授權的節點接入以免數據泄漏,並通過協議棧級別的防火牆安全防護,防止網路攻擊。
● (2) 隱私
公有鏈上交易數據全網可見,公眾可以跟蹤這些交易,任何人可以通過觀察區塊鏈得出關於某事的結論,不利於個人或機構的合法隱私保護。 針對該類風險的應對策略是:
第一,由認證機構代理用戶在區塊鏈上進行 交易,用戶資料和個人行為不進入區塊鏈。
第二,不採用全網廣播方式, 而是將交易數據的傳輸限制在正在進行相關交易的節點之間。
第三,對用 戶數據的訪問採用許可權控制,持有密鑰的訪問者才能解密和訪問數據。
第四,採用例如「零知識證明」等隱私保護演算法,規避隱私暴露。
● (3) 算力
使用工作量證明型的區塊鏈解決方案,都面臨51%算力攻擊問題。隨 著算力的逐漸集中,客觀上確實存在有掌握超過50%算力的組織出現的可 能,在不經改進的情況下,不排除逐漸演變成弱肉強食的叢林法則。針對 該類風險的應對策略是採用演算法和現實約束相結合的方式,例如用資產抵 押、法律和監管手段等進行聯合管控。

❽ 為什麼說區塊鏈很安全

因為每個塊包含它自己的哈希值和前一個塊的哈希值,更改一個哈希值將使其餘的區塊鏈無效。
如果有區塊鏈方面的問題,歡迎私聊咨詢~~~~~

❾ 區塊鏈如何提高安全性和數據共享

針對現有區塊鏈技術的安全特性和缺點,需要圍繞物理、數據、應用系統、加密、風控等方面構建安全體系,整體提升區塊鏈系統的安全性能。
1、物理安全
運行區塊鏈系統的網路和主機應處於受保護的環境,其保護措施根據具體業務的監管要求不同,可採用不限於VPN專網、防火牆、物理隔離等方法,對物理網路和主機進行保護。
2、數據安全
區塊鏈的節點和節點之間的數據交換,原則上不應明文傳輸,例如可採用非對稱加密協商密鑰,用對稱加密演算法進行數據的加密和解密。數據提供方也應嚴格評估數據的敏感程度、安全級別,決定數據是否發送到區塊鏈,是否進行數據脫敏,並採用嚴格的訪問許可權控制措施。
3、應用系統安全
應用系統的安全需要從身份認證、許可權體系、交易規則、防欺詐策
略等方面著手,參與應用運行的相關人員、交易節點、交易數據應事前受控、事後可審計。以金融區塊鏈為例,可採用容錯能力更強、抗欺詐性和性能更高的共識演算法,避免部分節點聯合造假。
4、密鑰安全
對區塊鏈節點之間的通信數據加密,以及對區塊鏈節點上存儲數據加密的密鑰,不應明文存在同一個節點上,應通過加密機將私鑰妥善保存。在密鑰遺失或泄漏時,系統可識別原密鑰的相關記錄,如帳號控制、通信加密、數據存儲加密等,並實施響應措施使原密鑰失效。密鑰還應進行嚴格的生命周期管理,不應為永久有效,到達一定的時間周期後需進行更換。
5、風控機制
對系統的網路層、主機操作、應用系統的數據訪問、交易頻度等維度,應有周密的檢測措施,對任何可疑的操作,應進行告警、記錄、核查,如發現非法操作,應進行損失評估,在技術和業務層面進行補救,加固安全措施,並追查非法操作的來源,杜絕再次攻擊。

文章來源:中國區塊鏈技術和應用發展白皮書

熱點內容
區塊鏈和虛擬貨幣區別 發布:2024-11-17 20:15:04 瀏覽:656
雲尊幣最新挖礦 發布:2024-11-17 19:51:35 瀏覽:670
比特幣感恩節 發布:2024-11-17 19:45:24 瀏覽:147
全球擁有比特幣最多的人 發布:2024-11-17 19:44:35 瀏覽:989
有macd的幣圈看盤軟體 發布:2024-11-17 19:44:27 瀏覽:189
一btc多少人民幣 發布:2024-11-17 19:30:26 瀏覽:382
區塊雲super挖礦 發布:2024-11-17 19:30:25 瀏覽:869
usdt怎麼那麼便宜 發布:2024-11-17 19:23:18 瀏覽:436
以太坊賣成usdt委託操作 發布:2024-11-17 19:19:48 瀏覽:299
幣圈k線圖怎麼看漲跌前景 發布:2024-11-17 19:10:16 瀏覽:520