區塊鏈加密多少位
『壹』 鍦ㄥ尯鍧楅摼涓涓鑸浣跨敤浠涔堝姞瀵嗙畻娉
鍦ㄥ尯鍧楅摼涓錛屼竴鑸浣跨敤涓ょ嶄富瑕佺殑鍔犲瘑綆楁硶錛
- 鍏閽/縐侀掗鍔犲瘑綆楁硶錛氳繖縐嶅康緇濆姞瀵嗙畻娉曚嬌鐢ㄤ竴瀵瑰叕閽ュ拰縐侀掗銆傚叕閽ュ彲浠ュ叕寮鍒嗗彂錛岃岀侀掗闇瑕佷繚瀵嗐傚彧鏈夋嫢鏈夌侀掗鐨勪漢鎵嶈兘瑙e瘑浣跨敤鍏閽ュ姞瀵嗙殑鏁版嵁銆傝繖縐嶅姞瀵嗘柟娉曡騫挎硾鐢ㄤ簬鏁板瓧絳懼悕鍜岃韓浠介獙璇侊紝鍥犱負瀹冨彲浠ョ『璁ゆ暟鎹鐨勬潵婧愬拰瀹屾暣鎬с傚湪鍖哄潡閾句腑錛岀侀掗鐢ㄤ簬紜璁や氦鏄撹呯殑韜浠斤紝鑰屽叕閽ュ垯琚騫挎挱緇欑綉緇滀腑鐨勫叾浠栬妭鐐逛互楠岃瘉浜ゆ槗鐨勬湁鏁堟ф壈楂樼瑧銆
- RSA綆楁硶錛氳繖鏄涓縐嶅父鐢ㄧ殑鍏閽/縐侀掗鍔犲瘑綆楁硶錛岀敱Ron Rivest銆丄di Shamir 鍜 Leonard Adleman浜1978騫村彂鏄庛傚畠鏄涓縐嶉潪瀵圭О鍔犲瘑綆楁硶錛屼篃灝辨槸璇達紝鐢ㄤ簬鍔犲瘑鐨勫瘑閽ュ拰鐢ㄤ簬瑙e瘑鐨勫瘑閽ユ槸涓嶅悓鐨勩
- ECDSA錛堟き鍦嗘洸綰挎暟瀛楃懼悕綆楁硶錛夛細榪欐槸涓縐嶅熀浜嶳SA綆楁硶鐨勬敼榪涚増錛屼嬌鐢ㄦき鍦嗘洸綰垮瘑鐮佸︼紝浣垮緱絳懼悕榪囩▼鏇村揩閫熶笖鏇村畨鍏ㄣ傚湪鍖哄潡閾句腑錛孍CDSA琚鐢ㄤ簬楠岃瘉浜ゆ槗鐨勬暟瀛楃懼悕銆
鎷撳睍鐭ヨ瘑錛
鍝堝笇鍑芥暟鏄涓縐嶅皢浠繪剰闀垮害鐨勬暟鎹錛堝傛枃鏈銆佹暟瀛楃瓑錛夎漿鎹涓哄滻瀹氶暱搴︼紙閫氬父涓256浣嶆垨512浣嶏級鐨勬憳瑕佺殑鏂規硶銆傚畠浠緙撳惈闈炲父蹇涓旈潪甯稿畨鍏錛屽洜涓烘敼鍙樻暟鎹涓鐨勪竴灝忛儴鍒嗭紙鍗充嬌鏄寰灝忕殑鏀瑰彉錛変細瀵艱嚧鍝堝笇緇撴灉鐨勫彉鍖栭潪甯稿ぇ錛岀敋鑷充笉鍙閫嗐傝繖縐嶇壒鎬т嬌寰楀搱甯屽嚱鏁板湪鍖哄潡閾句腑琚騫挎硾浣跨敤錛屽傚尯鍧楃殑merkle鏍戠粨鏋勩佷氦鏄撶殑鏁板瓧絳懼悕浠ュ強瀵嗙爜瀛﹂挶鍖呯殑瀛樺偍絳夈
姣旂壒甯佸尯鍧楅摼涓昏佷嬌鐢⊿HA-256浣滀負鍏跺搱甯屽嚱鏁幫紝榪欐槸鐢盌avid Chaum鍜孧ayra P. Chilomchik鍦1997騫村紩鍏ョ殑涓縐嶇畻娉曘係HA-256鎻愪緵浜嗕竴縐嶉潪甯稿畨鍏ㄧ殑鏂瑰紡鏉ュ壋寤哄尯鍧楅摼騫剁『淇濅氦鏄撶殑瀹夊叏鎬с傛ゅ栵紝鍖哄潡閾句腑鐨凪erkle鏍戠粨鏋勪篃鏄鍩轟簬SHA-256鐨勫搱甯屽嚱鏁版潵鍒涘緩鐨勩
浠ヤ笂涓ょ嶅姞瀵嗙畻娉曞拰鍝堝笇鍑芥暟鍦ㄥ尯鍧楅摼涓閮芥壆婕旂潃闈炲父閲嶈佺殑瑙掕壊錛屽畠浠淇濊瘉浜嗕氦鏄撶殑瀹夊叏鎬с佸畬鏁存у拰鍖垮悕鎬э紝鍚屾椂涔熺『淇濅簡鍖哄潡閾劇綉緇滅殑鍘諱腑蹇冨寲鍜屼笉鍙綃℃敼鎬с
鍚屾椂錛岀敱浜庡尯鍧楅摼涓鐨勬暟鎹鏄浠ュ尯鍧楃殑褰㈠紡涓嶆柇澧為暱鐨勶紝榪欎簺鍔犲瘑綆楁硶榪樿鐢ㄤ簬鍒涘緩鍖哄潡澶村拰鍖哄潡闂寸殑閾炬帴錛岃繘涓姝ユ彁楂樹簡鍖哄潡閾劇殑鎬ц兘鍜屽畨鍏ㄦс
『貳』 一張圖了解什麼是區塊鏈(五分鍾帶你看懂什麼是區塊鏈)
簡單易懂地介紹什麼是區塊鏈區塊鏈是一種按照時間順序將數據區塊以順序相連的方式組合成的一種鏈式數據結構,並以密碼學方式保證的不可篡改和不可偽造的分布式賬本。廣義來講,區塊鏈技術是利用塊鏈式數據結構來驗證與存儲數據、利用分布式節點共識演算法來生成和更新數據、利用密碼學的方式保證數據傳輸和訪問的安全、利用由自動化腳本代碼組成的智能合約來編程和操作數據的一種全新的分布式基礎架構與計算範式。
比特幣、萊特幣、普銀、以太幣等數字加密貨幣的底層技術都是區塊鏈,他們都只是區塊鏈的一種應用。
什麼是區塊鏈?一幅漫畫讓你看懂(小白必看)
「區塊鏈」一詞其實在早期的密碼學圈子裡,對於比特幣的底層技術就是稱為「比特幣」,英文則用大寫的B開頭的Bitcoin指比特幣這個網路系統或者網路協議。
但是由於大眾的混淆,現在一談起比特幣人們就十分抵觸,認為比特幣就是違法、騙局、傳銷的代名詞,是互聯網金融又一個現象級泡沫!於是乎,人們只好將所有的底層技術(時間戳、工作量證明機制等等等)合並起來,為了跟比特幣區分,重新取了個名字叫Blockchain,翻譯過來就成了「區塊鏈」,這才有了「區塊鏈」一詞的出現。
區塊鏈不是一個單一的技術,而是一系列技術的集合。
那區塊鏈到底應該如何理解呢?我們首先用大家都愛談的戀愛,舉個簡單的例子。建立一個簡單的區塊鏈模型,那麼在這個區塊鏈模型裡面談戀愛將會出現一下情況:
未來所有適齡男女戀愛,結婚的承諾全過程都被其他所有適齡男女共識,兩個人在一起發生的所有故事就會形成區塊。
其他所有男女就是鏈,如果有第三者來插足或自身違背另一半,其他人都能看到,以後就再也找不到對象了。
區塊鏈准確的說就是「全中心」體系,就是鏈上的每個節點都是中心。
試婚男女談戀愛,曬朋友圈,秀恩愛,承諾相愛一生一世並被其他所有適婚男女所知就是區塊鏈的應用。如果有一天某一方違背諾言,不要以為刪除照片就有用,因為樁樁件件都被所有適婚男女記錄在案。
不可刪除,不可更改,這就是區塊鏈技術。
區塊鏈是什麼通俗解釋,一張圖看懂區塊鏈區塊鏈是什麼通俗解釋,一張圖看懂區塊鏈
區塊鏈是最近一個比較火熱的話題,很多人都在討論區塊鏈的問題,最近國內也有一些公司開始用區塊鏈的技術開發了一些產品,區塊鏈是用於比特幣的一種底層技術,這正式因為比特幣的大火讓很多人關注到了比特幣,但有很多人對於區塊鏈是什麼還並不了解,下面就給我來解釋一下區塊鏈。
比特幣是很多人比較關注的數字貨幣,而比特幣的底層技術就是區塊鏈,區塊鏈是一種計算機技術,是一種新型的應用模式。區塊鏈就好比是一個大的資料庫賬本,在這個大的賬本上記錄了所有的交易情況,而記錄這個賬本的人跟傳統的記賬有很大區別,傳統記賬通常是由專門的記賬方進行操作,例如淘寶、天貓是阿里巴巴進行記賬的,微信交易是由騰訊記賬的,而區塊鏈是由全民參與記賬,每個參與記賬的人入手都有一個賬本。
舉例來給大家說明,例如A想找B借款1萬元,B想將錢借給A,但是又擔心A借錢後賴賬不還,因此在借錢時會找第三方的公證人,由公證人幫忙B將這筆賬給記下來,這種就是傳統的記賬方式,靠第三方來獲取信任,記賬的賬本是在第三方手中的,這種記賬方式存在第三方篡改賬本的可能性,而去中心話的意思就是在借款時不需要公證人,不需要依靠第三方來獲取信任,去中心化的形勢就好比B給A借錢時,B拿著大喇叭喊」A找我借了一萬元錢,你們幫我記下賬「這個時候,大家都會拿著自己手上的賬本將這筆賬給記錄下來,每個人都有一個賬本,可以避免賬本被篡改的可能。
什麼是區塊鏈概念?區塊鏈究竟是什麼?三分鍾讀懂!2019年10月25日,新聞聯播傳遞出一個非常重要的信號:國家要大力發展區塊鏈。之後,區塊鏈簡直就是網紅,大街小巷都飄盪著「區塊鏈「的身影。實際上,很多科技企業早已在區塊鏈技術上布局。
盡管說區塊鏈很火,但是很多人對於區塊鏈並不是很了解。
區塊鏈是什麼呢?
我們先看一下度娘是怎麼解釋的。網路顯示:區塊鏈是分布式數據存儲、點對點傳輸、共識機制、加密演算法等計算機技術的新型應用模式。
區塊鏈為什麼會被叫做區塊鏈呢?
區塊鏈是由一個個的區塊鏈接而成,而區塊是一個一個的存儲單元,記錄了各區塊節點的交流信息,區塊很像資料庫的記錄,每次寫入數據,就是創建一個區塊。而隨著信息交流的擴大,一個區塊與一個區塊相繼續,形成的結果就叫區塊鏈。
區塊鏈的特點有哪些呢?
區塊鏈主要有以下幾個方面的特點:
1、去中心化:在區塊鏈的系統中,每一個節點都有同等的權利和義務,這里沒有中心管制。去中心化很好的建立了彼此之前的信任聯系,盡管沒有一個中央管理機構,但是人們之間可以相互協作相互信任。這主要應用了區塊鏈分布式賬本技術。
2、開放性:區塊鏈的數據對所有的人是開放的,除了一些加密的信息不被開放之外,所有人都可以在這里查到數據。
3、獨立性:整個區塊鏈系統不依賴其他第三方,所有節點能夠在系統內自動安全地驗證、交換數據,不需要任何人為的干預。
4、安全性:區塊鏈具有一定的安全性,不可篡改性。因為區塊鏈系統中大家手裡都是一樣的賬本,如果有人想篡改的話,那麼只有在控制了超過51%的記賬節點,才有可能偽造出一條不存在的記錄。當然了,這基本上是不可能的。這主要是源於區塊鏈的核心技術:共識機制,共識機制具備「少數服從多數」以及「人人平等」的特點。
5、匿名性:很多人覺得區塊鏈這么開放,這么透明,是不是我們就沒有隱私了?其實不是,雖然說在區塊鏈中的交易信息是公開透明的,但是賬戶的身份信息是被進行加密的,只有得到了授權,才能訪問。
現在給大家講一個故事,幫助大家更好的理解區塊鏈。
家裡一共三口人,爸爸媽媽和哥哥弟弟。去年的時候,家裡的賬本是由爸爸來負責的,家裡所有的進賬以及支出都是爸爸一個人在負責。
然而雙十一那天,一向節儉的媽媽想在某寶上給自己買一件漂亮的衣衣,一查賬本,發現不對勁兒。按理說除了存銀行和理財的一些錢,家裡的日常消費的的錢的去向都在這個賬本上,但是怎麼看怎麼都不對。有的消費明明沒有,卻被記錄在內。
後來,爸爸主動招供,說是自己忍不住買了一包煙。
後來媽媽改了策略,全家人都記賬,每個月的消費支出大家都記在自己的賬本上。每當家裡產生了一筆交易或者消費的時候,媽媽都會喊一聲,記賬啦,大家就都把交易記載自己的賬本上。這就是去中心化記賬模式,人人都是中心,人人手裡都有賬本。
而之前的爸爸記賬模式就是中心化記賬,如果爸爸一個人想做手腳,很難有人看得出來,而去中心化記賬模式很好的解決了中心化記賬的弊端,如果爸爸想篡改賬本的話,非常難。
比如說,爸爸如果想從賬本里拿點兒錢再偷偷買煙的話,錢的數量是有限的,而想拿錢就得改改賬本,但是光篡改自己的賬本是不行的,他得把包含他在內的三個人的賬本都改掉。而這無疑是比登天還難。
所以,很多次爸爸動了抽煙的念頭之後,但是無奈現狀如此,只得放棄這個念頭。
區塊鏈和比特幣是不是一回事兒呢?
實際上,區塊鏈和比特幣並不是一回事兒,它只是比特幣的底層技術,比特幣是區塊鏈第一個應用的數字貨幣而已。
2008年中本聰第一次提出了區塊鏈的概念,隨後幾年,成為了電子貨幣比特幣的核心組成部分,作為所有交易的公共賬簿。而區塊鏈首先被應用於比特幣。
區塊鏈的緣起是解決信任問題,而且,區塊鏈最成功的一個應用是數字貨幣。比特幣可以說是到目前為止區塊鏈最成功的一個應用。
區塊鏈的應用有哪些?
區塊鏈的應用其實很廣泛,除了數字貨幣,比特幣未來的應用還是非常廣泛的,區塊鏈技術目前已在不同行業得到了廣泛的應用。如商品溯源、版權保護與交易、支付清算、物聯網、數字營銷、醫療等,推動不同行業快速進入「區塊鏈+」時代。
1、支付清算:區塊鏈可摒棄中轉銀行的角色,實現點到點支付,減少中轉費用,加速資金利用率。
2、商品追溯:比如我們在某寶上買一件衣服,我們可以看到這件衣服的前世今生。
3、證券交易:傳統的證券交易需要經過四大機構協調工作,效率低、成本高。區塊鏈技術可獨立地完成一條龍式服務。
4、供應鏈:將區塊鏈技術引入供應鏈系統,系統內部同步信息、可做到對各個環節把控,更好的完成分工協作,便於事後追責。
5、知識產權:版權上鏈,我們的攝影作品、音樂作品、文學作品等都會成為我們的信息,信息所有權將得以確認,成為我們的財產。
漫畫圖解什麼是區塊鏈漫畫圖解:什麼是區塊鏈
什麼是區塊鏈?
區塊鏈,英文Blockchain,本質上是一種去中心化的分布式資料庫。任何人只要架設自己的伺服器,接入區塊鏈網路,都可以成為這個龐大網路的一個節點。
區塊鏈既然本質是資料庫,裡面究竟存儲了什麼東西呢?讓我們來了解一下區塊鏈的基本單元:區塊(Block)。
一個區塊分為兩大部分:
1.區塊頭
區塊頭裡面存儲著區塊的頭信息,包含上一個區塊的哈希值(PreHash),本區塊體的哈希值(Hash),以及時間戳(TimeStamp)等等。
2.區塊體
區塊體存儲著這個區塊的詳細數據(Data),這個數據包含若干行記錄,可以是交易信息,也可以是其他某種信息。
剛才提及的哈希值又是什麼意思呢?
想必大家都聽說過MD5,MD5就是典型的哈希演算法,可以把一串任意長度的明文轉化成一串固定長度(128bit)的字元串,這個字元串就是哈希值。
而在我們的區塊鏈中,採用的是一種更為復雜的哈希演算法,叫做SHA256。最新的數據信息(比如交易記錄)經過一系列復雜的計算,最終會通過這個哈希演算法轉化成了長度為256bit的哈希值字元串,也就是區塊頭當中的Hash,格式如下:
區塊與Hash是一一對應的,Hash可以當做是區塊的唯一標識。
不同的區塊之間是如何進行關聯的呢?依靠Hash和PreHash來關聯。每一個區塊的PreHash和前一個區塊的Hash值是相等的。
為什麼要計算區塊的哈希值呢?
既然區塊鏈是一個鏈狀結構,就必然存在鏈條的頭節點(第一個區塊)和尾節點(最後一個區塊)。一旦有人計算出區塊鏈最新數據信息的哈希值,相當於對最新的交易記錄進行打包,新的區塊會被創建出來,銜接在區塊鏈的末尾。
新區塊頭的Hash就是剛剛計算出的哈希值,PreHash等於上一個區塊的Hash。區塊體的Data存儲的是打包前的交易記錄,這部分數據信息已經變得不可修改。
這個計算Hash值,創建新區塊的過程就叫做挖礦。
用於進行海量計算的伺服器,叫做礦機。
操作計算的工作人員,叫做礦工。
計算哈希值究竟難在哪裡?咱們來做一個最粗淺的解釋,哈希值計算的公式如下:
Hash=SHA-256(最後一個區塊的Hash+新區塊基本信息+交易記錄信息+隨機數)
其中,交易記錄信息也是一串哈希值,它的計算涉及到一個數據結構MerkleTree。有興趣的小夥伴可以查閱相關資料,我們暫時不做展開介紹。
這里關鍵的計算難點在於隨機數的生成。猥瑣的區塊鏈發明者為了增大Hash的計算難度,要求Hash結果的前72bit必須都是0,這個幾率實在是太小太小。
由於(最後一個區塊的Hash+新區塊基本信息+交易記錄信息)是固定的,所以能否獲得符合要求的Hash,完全取決於隨機數的值。挖礦者必須經過海量計算,反復生成隨機數進行「撞大運」一般的嘗試,才有可能得到正確的Hash,從而挖礦成功。
同時,區塊頭內還包含著一個動態的難度系數,當全世界的硬體計算能力越來越快的時候,區塊鏈的難度系數也會水漲船高,使得全網平均每10分鍾才能產生出一個新區塊。
小夥伴們明白挖礦有多麼難了吧?需要補充的是,不同的區塊鏈應用在細節上是不同的,這里所描述的挖礦規則是以比特幣為例。
區塊鏈的應用
比特幣(BitCoin)的概念最初由中本聰於2008年提出,而後根據這一思路設計發布了開源軟體以及建構其上的P2P網路。比特幣是一種P2P形式的數字貨幣。點對點的傳輸意味著一個去中心化的支付系統。
什麼是P2P網路呢?
傳統的貨幣都是由中央銀行統一發行,所有的個人儲蓄也是由銀行統一管理,這是典型的中心化系統。
而比特幣則是部署在一個全世界眾多對等節點組成的去中心化網路之上。每一個節點都有資格對這種數字貨幣進行記錄和發行。
至於比特幣底層的數據存儲,正是基於了區塊鏈技術。比特幣的每一筆交易,都對應了區塊體數據中的一行,簡單的示意如下:
交易記錄的每一行都包含時間戳、交易明細、數字簽名。
表格中只是為了方便理解。實際存儲的交易明細是匿名的,只會記錄支付方和收款方的錢包地址。
至於數字簽名呢,可以理解為每一條單筆交易的防偽標識,由非對稱加密演算法所生成。
接下來說一說比特幣礦工的獎勵:
比特幣協議規定,挖到新區塊的礦工將獲得獎勵,從2008年起是50個比特幣,然後每4年減半,目前2018年是12.5個比特幣。流通中新增的比特幣都是這樣誕生的,也難怪大家對挖掘比特幣的工作如此趨之若鶩!
區塊鏈的優勢和劣勢
區塊鏈的優勢:
1.去中心化
區塊鏈不依賴於某個中心節點,整個系統的數據由全網所有對等節點共同維護,都可以進行數據的存儲和檢驗。這樣一來,除非攻擊者黑掉全網半數以上的節點,否則整個系統是不會遭到破壞的。
2.信息不可篡改
區塊內的數據是無法被篡改的。一旦數據遭到篡改哪怕一丁點,整個區塊對應的哈希值就會隨之改變,不再是一個有效的哈希值,後面鏈接的區塊也會隨之斷裂。
區塊鏈的劣勢:
1.過度消耗能源
想要生成一個新的區塊,必須要大量伺服器資源進行大量無謂的嘗試性計算,嚴重耗費電能。
2.信息的網路延遲
以比特幣為例,任何一筆交易數據都需要同步到其他所有節點,同步過程中難免會受到網路傳輸延遲的影響,帶來較長的耗時。
幾點補充:
1.本漫畫部分內容參考了阮一峰的博文《區塊鏈入門教程》,感謝這位大神的科普。
2.由於篇幅有限,關於MerkleTree和非對稱加密的知識暫時沒有展開細講,有興趣的小夥伴們可以查閱資料進行更深一步的學習。
『叄』 區塊鏈錢包怎麼注冊
Metamask手機端:手把手教你注冊以太坊錢包第一步:前面幾個安全提示,向下滾動到最底部表示全部閱讀,一步一步點擊「接受」就行了
2.下面是創建一個8位數的密碼,每次打開MetaMask可能都需要,如果忘記了密碼,可以用助記詞找回錢包
3.接下來是顯示的助記詞,可以直接點擊「我已妥善保存」,最好還是保存一下,以備不時之需。這里也可以不保存,之後在設置裡面,顯示助記詞,也能找到。
4.之後就進去了MetaMask錢包主頁面
5.點擊右上角小圓圈,點擊創建賬戶,可以創建更多的賬戶地址(所有創建的地址都可以通過剛剛的12個助記詞導入,比如你創建了10個地址,下次導入的時候初始顯示1個地址,你在點擊9次創建賬戶,之前的10個地址賬戶就完全不變的找回來了)
6.如果你在官方錢包,imtoken錢包,myetherwallet錢包已有賬戶可以導入,方法和創建錢包差不多
7.點擊「發送」,輸入你想轉賬的以太地址和數量,就可以轉賬了。(交易數據可以不填)
8.交易費限制,和氣體價格可以設置一下(如果不在乎交易時間,氣體價格可以設置低一些,如果想快速交易,氣體價格設高一些,如果是發送代幣或者部署合約,交易費限制建議填高一些以免交易氣體gas不足),之後點擊提交,就成功轉賬了。
9.成功發送交易後,會顯示交易概況。
10.點擊賬戶旁邊的三個小點,點擊「通過Etherscan查看賬戶"可以查看區塊鏈瀏覽器的詳情。
11、點擊三個點,點擊導出私鑰,可以導出該地址私鑰。
12、.點擊右上角三條杠,點擊設置,再點擊助記詞,可以查看你的助記詞,助記詞非常重要。
13.點擊添加代幣,可以添加其它基於以太坊的發幣,輸入縮寫即可。
14.如果沒有搜索到你需要的代幣,可以通過合約地址自動添加,輸入合約地址,代幣符號,小數位精度即可添加。
冷錢包怎麼創建簡便生成冷錢包,需要工具:手機+內存卡。
步驟如下:
第1步:找一部不用的手機或專門用作錢包的手機,手機恢復出廠設置;
第2步:斷開手機網路;
第3步:安裝imtoken錢包;
第4步:用imtoken錢包創建錢包;
第5步:將私鑰備份至內存卡,手抄好助記詞多重備份,並導出錢包地址。
拓展資料:
一、冷錢包好處
冷錢包永不聯網,不能被網路訪問,因而避免了黑客盜取私鑰的風險,相比熱錢包更安全。
價值投資者,把冷錢包放進保險櫃,避免放在交易所,時不時「手賤"操作一把。
當然,如果需要經常用來交易或頻繁交易的,當資產較大的時候,冷熱錢包配合使用,經常需要交易的用熱錢包儲存;無需進程交易的,用冷錢包儲存。
二、冷錢包《Coldwallet),與熱錢包相對應,也稱離線錢包或者斷網錢包,區塊鏈錢包種類之一,意指網路不能訪問到用戶私鑰的錢包。
冷錢包通常依靠「冷設備(不聯網的電腦、手機等〉確保比特幣私鑰的安全,運用二維碼通信讓私鑰不觸網,避免了被黑客盜取私鑰的風險,但是也可能面臨物理安全風險(比如電腦丟失,損壞等〉。
三、基本概念
錢包就是存儲和使用數字貨幣的工具,一個幣對應一個錢包。用來存儲幣種,或者"交易幣種。
比特幣錢包使用戶可以檢查、存儲、花費其持有的比特幣,其形式多種多樣,功能可繁可簡,它可以是遵守比特幣協議運行的各種工具,如電腦客戶端、手機客戶端、網站服務、專用設備,也可以只是存儲著比特幣私密密鑰的介質,如一張紙、一段暗號、一個U盤、一個文本文檔,因為只要掌握比特幣的私密密鑰,就可以處置其對應地址中包含的比特幣。比特幣無法存入一般的銀行賬戶,交易只能在比特幣網路上進行,使用前需下載客戶端或接入線上網路。
冷錢包是指由提供區塊鏈數字資產安全存儲解決方案的信息技術公司研發的比特幣存儲技術。庫神冷錢包集數字貨幣存儲、多重交易密碼設置、發布最新行情與資訊、提供硬分叉解決方案等功能於一身,且運用二維碼通信讓私鑰永不觸網,能有效防止黑客竊取。
操作環境:產品型號:華為mate30系統版本:EMUI10
蘋果手機如何創建區塊鏈錢包下載Kcash,即可創建
_還只話闃_Phone。iPhone是蘋果公司(AppleInc.)發布搭載iOS操作系統的系列智能手機。截至2021年9月,蘋果公司(AppleInc.)已發布32款手機產品,初代:iPhone,最新版本:iPhone13mini,iPhone13,iPhone13Pro,iPhone24ProMax。
區塊鏈地址怎麼加錢包指引1.下載TP錢包,然後填加一條公鏈,你領哪家公鏈的空投就添加哪家的公鏈!
2.你需要哪條公鏈,就創建哪條公鏈的錢包,按要求填寫就行!
3.創建完錢包,你就有了公鏈地址了!
4.然後看項目需要哪個地址,復制你公鏈的地址,按要求留下地址即可!
5.參加完活動留了地址後,你還需要添加這個幣種的合約到錢包,這樣你的錢包才會顯示這個幣,否則默認是不顯示的!
6.操作完以上幾步,你就耐心等待即可,有些直接不會到賬,剩下的不是時時到賬,因為得收集地址統一打幣等等!如果區塊鏈擁堵,那就需要更長的時間!
領空投需要一個公鏈的地址,公鏈地址有火幣生態鏈HECO,幣安智能鏈BSC等等,不同鏈上的幣,就留不同鏈的地址!
如何注冊trc20錢包
先找到trc20這個軟體的app或者網址進行下載安裝,下載安裝以後就可以開始注冊了,首先點進去,然後輸入手機號進行驗證,驗證成功以後就可以設置密碼了密碼設置成功以後就注冊完成了。
拓展資料:加密領域高度認可波場USDT-TRC20的原因有哪些呢?
1.穩定幣作為支付網路將具有越來越多的應用場景。其實改變早已發生了,只是許多人還不自知——很多商鋪、個人、企業已經開始將波場版USDT作為支付手段,取代SWIFT。
2.波場具有轉賬速度快、低手續費、高吞吐量等特點,可極大程度增強以太坊、比特幣的用戶體驗。整個波場穩定幣的流通量突破了141億美元,今後不排除到達200億甚至300億美元體量的可能。業內越來越多的人會使用穩定幣作為支付工具,相信未來也會有機構和銀行使用穩定幣網路進行清算。
區塊鏈加密數字貨幣交易所/商城/游戲平台如何實現USDT-TRC20錢包接入?
1.據悉,很多平台對區塊鏈底層技術積累甚淺,接入區塊鏈實現充幣、提幣耗時耗力,影響業務正常開展,且平台方現有接入方案不規范,「盜幣」事故時有發生。
2.當然,困難不止於外部環境,內部環境往往成為被忽略的重要因素。比如項目方現有接入方案操作復雜,過度依賴內部技術人員,管理人員難以介入資產掌控,導致「內鬼」事件時有發生,一旦發生往往陷入損失慘重、難以釐清的困局。
除此之外,USDT-TRC20利用智能合約完成在波場鏈上的發行、持有、轉賬,完全公開透明,秒級到賬,這些都極大地降低了用戶的信任成本,提升了用戶轉賬穩定幣的安全保障。正是TRC20-USDT顯而易見的優勢加劇了投資者對於穩定幣的選擇。
虛擬幣歸集地址提幣地址一種是注冊區塊鏈錢包時生成的,一種是交易所為用戶自動生成的。你想把幣提出去,就需要填寫提幣地址,按照提幣步驟、根據提示來填寫就行了。下面就以MetaMask錢包為例,給大家介紹一下提幣地址的生成:
點擊以太坊官網推薦的錢包MetaMask,MetaMask錢包可以滿足大部分用戶包括礦工的需求,但是它需要與瀏覽器配合才能使用,對於新手而言,可以選擇手機端的錢包APP。
這些錢包在下載時,務必去找官方網站下載,對那些廣告推廣連接,不明來歷的軟體商店,不要輕易去下載,否則會被盜幣或者遇上釣魚網站。下載好錢包軟體之後,打開APP,點擊「創建錢包」之類的選項,按照系統提示,一步一步注冊就可以了,請一定記住密碼,因為如果是去中心化的錢包,密碼將無法找回。
所以錢包備份必不可少,錢包備份一般是備份助記詞、密鑰和keystore,錢包創建好之後,APP顯示的那一連串字元就是錢包地址了,這個ETH錢包可以用來轉賬,儲存資產或者去領空投,收集糖果。
希望對你有幫助.
『肆』 如何找到區塊鏈的密碼,區塊鏈的密鑰是什麼
【深度知識】區塊鏈之加密原理圖示(加密,簽名)先放一張以太坊的架構圖:
在學習的過程中主要是採用單個模塊了學習了解的,包括P2P,密碼學,網路,協議等。直接開始總結:
秘鑰分配問題也就是秘鑰的傳輸問題,如果對稱秘鑰,那麼只能在線下進行秘鑰的交換。如果在線上傳輸秘鑰,那就有可能被攔截。所以採用非對稱加密,兩把鑰匙,一把私鑰自留,一把公鑰公開。公鑰可以在網上傳輸。不用線下交易。保證數據的安全性。
如上圖,A節點發送數據到B節點,此時採用公鑰加密。A節點從自己的公鑰中獲取到B節點的公鑰對明文數據加密,得到密文發送給B節點。而B節點採用自己的私鑰解密。
2、無法解決消息篡改。
如上圖,A節點採用B的公鑰進行加密,然後將密文傳輸給B節點。B節點拿A節點的公鑰將密文解密。
1、由於A的公鑰是公開的,一旦網上黑客攔截消息,密文形同虛設。說白了,這種加密方式,只要攔截消息,就都能解開。
2、同樣存在無法確定消息來源的問題,和消息篡改的問題。
如上圖,A節點在發送數據前,先用B的公鑰加密,得到密文1,再用A的私鑰對密文1加密得到密文2。而B節點得到密文後,先用A的公鑰解密,得到密文1,之後用B的私鑰解密得到明文。
1、當網路上攔截到數據密文2時,由於A的公鑰是公開的,故可以用A的公鑰對密文2解密,就得到了密文1。所以這樣看起來是雙重加密,其實最後一層的私鑰簽名是無效的。一般來講,我們都希望簽名是簽在最原始的數據上。如果簽名放在後面,由於公鑰是公開的,簽名就缺乏安全性。
2、存在性能問題,非對稱加密本身效率就很低下,還進行了兩次加密過程。
如上圖,A節點先用A的私鑰加密,之後用B的公鑰加密。B節點收到消息後,先採用B的私鑰解密,然後再利用A的公鑰解密。
1、當密文數據2被黑客攔截後,由於密文2隻能採用B的私鑰解密,而B的私鑰只有B節點有,其他人無法機密。故安全性最高。
2、當B節點解密得到密文1後,只能採用A的公鑰來解密。而只有經過A的私鑰加密的數據才能用A的公鑰解密成功,A的私鑰只有A節點有,所以可以確定數據是由A節點傳輸過來的。
經兩次非對稱加密,性能問題比較嚴重。
基於以上篡改數據的問題,我們引入了消息認證。經過消息認證後的加密流程如下:
當A節點發送消息前,先對明文數據做一次散列計算。得到一個摘要,之後將照耀與原始數據同時發送給B節點。當B節點接收到消息後,對消息解密。解析出其中的散列摘要和原始數據,然後再對原始數據進行一次同樣的散列計算得到摘要1,比較摘要與摘要1。如果相同則未被篡改,如果不同則表示已經被篡改。
在傳輸過程中,密文2隻要被篡改,最後導致的hash與hash1就會產生不同。
無法解決簽名問題,也就是雙方相互攻擊。A對於自己發送的消息始終不承認。比如A對B發送了一條錯誤消息,導致B有損失。但A抵賴不是自己發送的。
在(三)的過程中,沒有辦法解決交互雙方相互攻擊。什麼意思呢?有可能是因為A發送的消息,對A節點不利,後來A就抵賴這消息不是它發送的。
為了解決這個問題,故引入了簽名。這里我們將(二)-4中的加密方式,與消息簽名合並設計在一起。
在上圖中,我們利用A節點的私鑰對其發送的摘要信息進行簽名,然後將簽名+原文,再利用B的公鑰進行加密。而B得到密文後,先用B的私鑰解密,然後對摘要再用A的公鑰解密,只有比較兩次摘要的內容是否相同。這既避免了防篡改問題,有規避了雙方攻擊問題。因為A對信息進行了簽名,故是無法抵賴的。
為了解決非對稱加密數據時的性能問題,故往往採用混合加密。這里就需要引入對稱加密,如下圖:
在對數據加密時,我們採用了雙方共享的對稱秘鑰來加密。而對稱秘鑰盡量不要在網路上傳輸,以免丟失。這里的共享對稱秘鑰是根據自己的私鑰和對方的公鑰計算出的,然後適用對稱秘鑰對數據加密。而對方接收到數據時,也計算出對稱秘鑰然後對密文解密。
以上這種對稱秘鑰是不安全的,因為A的私鑰和B的公鑰一般短期內固定,所以共享對稱秘鑰也是固定不變的。為了增強安全性,最好的方式是每次交互都生成一個臨時的共享對稱秘鑰。那麼如何才能在每次交互過程中生成一個隨機的對稱秘鑰,且不需要傳輸呢?
那麼如何生成隨機的共享秘鑰進行加密呢?
對於發送方A節點,在每次發送時,都生成一個臨時非對稱秘鑰對,然後根據B節點的公鑰和臨時的非對稱私鑰可以計算出一個對稱秘鑰(KA演算法-KeyAgreement)。然後利用該對稱秘鑰對數據進行加密,針對共享秘鑰這里的流程如下:
對於B節點,當接收到傳輸過來的數據時,解析出其中A節點的隨機公鑰,之後利用A節點的隨機公鑰與B節點自身的私鑰計算出對稱秘鑰(KA演算法)。之後利用對稱秘鑰機密數據。
對於以上加密方式,其實仍然存在很多問題,比如如何避免重放攻擊(在消息中加入Nonce),再比如彩虹表(參考KDF機制解決)之類的問題。由於時間及能力有限,故暫時忽略。
那麼究竟應該採用何種加密呢?
主要還是基於要傳輸的數據的安全等級來考量。不重要的數據其實做好認證和簽名就可以,但是很重要的數據就需要採用安全等級比較高的加密方案了。
密碼套件是一個網路協議的概念。其中主要包括身份認證、加密、消息認證(MAC)、秘鑰交換的演算法組成。
在整個網路的傳輸過程中,根據密碼套件主要分如下幾大類演算法:
秘鑰交換演算法:比如ECDHE、RSA。主要用於客戶端和服務端握手時如何進行身份驗證。
消息認證演算法:比如SHA1、SHA2、SHA3。主要用於消息摘要。
批量加密演算法:比如AES,主要用於加密信息流。
偽隨機數演算法:例如TLS1.2的偽隨機函數使用MAC演算法的散列函數來創建一個主密鑰——連接雙方共享的一個48位元組的私鑰。主密鑰在創建會話密鑰(例如創建MAC)時作為一個熵來源。
在網路中,一次消息的傳輸一般需要在如下4個階段分別進行加密,才能保證消息安全、可靠的傳輸。
握手/網路協商階段:
在雙方進行握手階段,需要進行鏈接的協商。主要的加密演算法包括RSA、DH、ECDH等
身份認證階段:
身份認證階段,需要確定發送的消息的來源來源。主要採用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA簽名)等。
消息加密階段:
消息加密指對發送的信息流進行加密。主要採用的加密方式包括DES、RC4、AES等。
消息身份認證階段/防篡改階段:
主要是保證消息在傳輸過程中確保沒有被篡改過。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。
ECC:EllipticCurvesCryptography,橢圓曲線密碼編碼學。是一種根據橢圓上點倍積生成公鑰、私鑰的演算法。用於生成公私秘鑰。
ECDSA:用於數字簽名,是一種數字簽名演算法。一種有效的數字簽名使接收者有理由相信消息是由已知的發送者創建的,從而發送者不能否認已經發送了消息(身份驗證和不可否認),並且消息在運輸過程中沒有改變。ECDSA簽名演算法是ECC與DSA的結合,整個簽名過程與DSA類似,所不一樣的是簽名中採取的演算法為ECC,最後簽名出來的值也是分為r,s。主要用於身份認證階段。
ECDH:也是基於ECC演算法的霍夫曼樹秘鑰,通過ECDH,雙方可以在不共享任何秘密的前提下協商出一個共享秘密,並且是這種共享秘鑰是為當前的通信暫時性的隨機生成的,通信一旦中斷秘鑰就消失。主要用於握手磋商階段。
ECIES:是一種集成加密方案,也可稱為一種混合加密方案,它提供了對所選擇的明文和選擇的密碼文本攻擊的語義安全性。ECIES可以使用不同類型的函數:秘鑰協商函數(KA),秘鑰推導函數(KDF),對稱加密方案(ENC),哈希函數(HASH),H-MAC函數(MAC)。
ECC是橢圓加密演算法,主要講述了按照公私鑰怎麼在橢圓上產生,並且不可逆。ECDSA則主要是採用ECC演算法怎麼來做簽名,ECDH則是採用ECC演算法怎麼生成對稱秘鑰。以上三者都是對ECC加密演算法的應用。而現實場景中,我們往往會採用混合加密(對稱加密,非對稱加密結合使用,簽名技術等一起使用)。ECIES就是底層利用ECC演算法提供的一套集成(混合)加密方案。其中包括了非對稱加密,對稱加密和簽名的功能。
metacharset="utf-8"
這個先訂條件是為了保證曲線不包含奇點。
所以,隨著曲線參數a和b的不斷變化,曲線也呈現出了不同的形狀。比如:
所有的非對稱加密的基本原理基本都是基於一個公式K=kG。其中K代表公鑰,k代表私鑰,G代表某一個選取的基點。非對稱加密的演算法就是要保證該公式不可進行逆運算(也就是說G/K是無法計算的)。*
ECC是如何計算出公私鑰呢?這里我按照我自己的理解來描述。
我理解,ECC的核心思想就是:選擇曲線上的一個基點G,之後隨機在ECC曲線上取一個點k(作為私鑰),然後根據kG計算出我們的公鑰K。並且保證公鑰K也要在曲線上。*
那麼kG怎麼計算呢?如何計算kG才能保證最後的結果不可逆呢?這就是ECC演算法要解決的。
首先,我們先隨便選擇一條ECC曲線,a=-3,b=7得到如下曲線:
在這個曲線上,我隨機選取兩個點,這兩個點的乘法怎麼算呢?我們可以簡化下問題,乘法是都可以用加法表示的,比如22=2+2,35=5+5+5。那麼我們只要能在曲線上計算出加法,理論上就能算乘法。所以,只要能在這個曲線上進行加法計算,理論上就可以來計算乘法,理論上也就可以計算k*G這種表達式的值。
曲線上兩點的加法又怎麼算呢?這里ECC為了保證不可逆性,在曲線上自定義了加法體系。
現實中,1+1=2,2+2=4,但在ECC演算法里,我們理解的這種加法體系是不可能。故需要自定義一套適用於該曲線的加法體系。
ECC定義,在圖形中隨機找一條直線,與ECC曲線相交於三個點(也有可能是兩個點),這三點分別是P、Q、R。
那麼P+Q+R=0。其中0不是坐標軸上的0點,而是ECC中的無窮遠點。也就是說定義了無窮遠點為0點。
同樣,我們就能得出P+Q=-R。由於R與-R是關於X軸對稱的,所以我們就能在曲線上找到其坐標。
P+R+Q=0,故P+R=-Q,如上圖。
以上就描述了ECC曲線的世界裡是如何進行加法運算的。
從上圖可看出,直線與曲線只有兩個交點,也就是說直線是曲線的切線。此時P,R重合了。
也就是P=R,根據上述ECC的加法體系,P+R+Q=0,就可以得出P+R+Q=2P+Q=2R+Q=0
於是乎得到2P=-Q(是不是與我們非對稱演算法的公式K=kG越來越近了)。
於是我們得出一個結論,可以算乘法,不過只有在切點的時候才能算乘法,而且只能算2的乘法。
假若2可以變成任意個數進行想乘,那麼就能代表在ECC曲線里可以進行乘法運算,那麼ECC演算法就能滿足非對稱加密演算法的要求了。
那麼我們是不是可以隨機任何一個數的乘法都可以算呢?答案是肯定的。也就是點倍積計算方式。
選一個隨機數k,那麼k*P等於多少呢?
我們知道在計算機的世界裡,所有的都是二進制的,ECC既然能算2的乘法,那麼我們可以將隨機數k描述成二進制然後計算。假若k=151=10010111
由於2P=-Q所以這樣就計算出了kP。這就是點倍積演算法。所以在ECC的曲線體系下是可以來計算乘法,那麼以為這非對稱加密的方式是可行的。
至於為什麼這樣計算是不可逆的。這需要大量的推演,我也不了解。但是我覺得可以這樣理解:
我們的手錶上,一般都有時間刻度。現在如果把1990年01月01日0點0分0秒作為起始點,如果告訴你至起始點為止時間流逝了整1年,那麼我們是可以計算出現在的時間的,也就是能在手錶上將時分秒指針應該指向00:00:00。但是反過來,我說現在手錶上的時分秒指針指向了00:00:00,你能告訴我至起始點算過了有幾年了么?
ECDSA簽名演算法和其他DSA、RSA基本相似,都是採用私鑰簽名,公鑰驗證。只不過演算法體系採用的是ECC的演算法。交互的雙方要採用同一套參數體系。簽名原理如下:
在曲線上選取一個無窮遠點為基點G=(x,y)。隨機在曲線上取一點k作為私鑰,K=k*G計算出公鑰。
簽名過程:
生成隨機數R,計算出RG.
根據隨機數R,消息M的HASH值H,以及私鑰k,計算出簽名S=(H+kx)/R.
將消息M,RG,S發送給接收方。
簽名驗證過程:
接收到消息M,RG,S
根據消息計算出HASH值H
根據發送方的公鑰K,計算HG/S+xK/S,將計算的結果與RG比較。如果相等則驗證成功。
公式推論:
HG/S+xK/S=HG/S+x(kG)/S=(H+xk)/GS=RG
在介紹原理前,說明一下ECC是滿足結合律和交換律的,也就是說A+B+C=A+C+B=(A+C)+B。
這里舉一個WIKI上的例子說明如何生成共享秘鑰,也可以參考AliceAndBob的例子。
Alice與Bob要進行通信,雙方前提都是基於同一參數體系的ECC生成的公鑰和私鑰。所以有ECC有共同的基點G。
生成秘鑰階段:
Alice採用公鑰演算法KA=ka*G,生成了公鑰KA和私鑰ka,並公開公鑰KA。
Bob採用公鑰演算法KB=kb*G,生成了公鑰KB和私鑰kb,並公開公鑰KB。
計算ECDH階段:
Alice利用計算公式Q=ka*KB計算出一個秘鑰Q。
Bob利用計算公式Q'=kb*KA計算出一個秘鑰Q'。
共享秘鑰驗證:
Q=kaKB=ka*kb*G=ka*G*kb=KA*kb=kb*KA=Q'
故雙方分別計算出的共享秘鑰不需要進行公開就可採用Q進行加密。我們將Q稱為共享秘鑰。
在以太坊中,採用的ECIEC的加密套件中的其他內容:
1、其中HASH演算法採用的是最安全的SHA3演算法Keccak。
2、簽名演算法採用的是ECDSA
3、認證方式採用的是H-MAC
4、ECC的參數體系採用了secp256k1,其他參數體系參考這里
H-MAC全程叫做Hash-.其模型如下:
在以太坊的UDP通信時(RPC通信加密方式不同),則採用了以上的實現方式,並擴展化了。
首先,以太坊的UDP通信的結構如下:
其中,sig是經過私鑰加密的簽名信息。mac是可以理解為整個消息的摘要,ptype是消息的事件類型,data則是經過RLP編碼後的傳輸數據。
其UDP的整個的加密,認證,簽名模型如下:
區塊鏈密碼演算法是怎樣的?
區塊鏈作為新興技術受到越來越廣泛的關注,是一種傳統技術在互聯網時代下的新的應用,這其中包括分布式數據存儲技術、共識機制和密碼學等。隨著各種區塊鏈研究聯盟的創建,相關研究得到了越來越多的資金和人員支持。區塊鏈使用的Hash演算法、零知識證明、環簽名等密碼演算法:
Hash演算法
哈希演算法作為區塊鏈基礎技術,Hash函數的本質是將任意長度(有限)的一組數據映射到一組已定義長度的數據流中。若此函數同時滿足:
(1)對任意輸入的一組數據Hash值的計算都特別簡單;
(2)想要找到2個不同的擁有相同Hash值的數據是計算困難的。
滿足上述兩條性質的Hash函數也被稱為加密Hash函數,不引起矛盾的情況下,Hash函數通常指的是加密Hash函數。對於Hash函數,找到使得被稱為一次碰撞。當前流行的Hash函數有MD5,SHA1,SHA2,SHA3。
比特幣使用的是SHA256,大多區塊鏈系統使用的都是SHA256演算法。所以這里先介紹一下SHA256。
1、SHA256演算法步驟
STEP1:附加填充比特。對報文進行填充使報文長度與448模512同餘(長度=448mod512),填充的比特數范圍是1到512,填充比特串的最高位為1,其餘位為0。
STEP2:附加長度值。將用64-bit表示的初始報文(填充前)的位長度附加在步驟1的結果後(低位位元組優先)。
STEP3:初始化緩存。使用一個256-bit的緩存來存放該散列函數的中間及最終結果。
STEP4:處理512-bit(16個字)報文分組序列。該演算法使用了六種基本邏輯函數,由64步迭代運算組成。每步都以256-bit緩存值為輸入,然後更新緩存內容。每步使用一個32-bit常數值Kt和一個32-bitWt。其中Wt是分組之後的報文,t=1,2,...,16。
STEP5:所有的512-bit分組處理完畢後,對於SHA256演算法最後一個分組產生的輸出便是256-bit的報文。
作為加密及簽名體系的核心演算法,哈希函數的安全性事關整個區塊鏈體系的底層安全性。所以關注哈希函數的研究現狀是很有必要的。
2、Hash函的研究現狀
2004年我國密碼學家王小雲在國際密碼討論年會(CRYPTO)上展示了MD5演算法的碰撞並給出了第一個實例(CollisionsforhashfunctionsMD4,MD5,HAVAL-128andRIPEMD,rumpsessionofCRYPTO2004,,EuroCrypt2005)。該攻擊復雜度很低,在普通計算機上只需要幾秒鍾的時間。2005年王小雲教授與其同事又提出了對SHA-1演算法的碰撞演算法,不過計算復雜度為2的63次方,在實際情況下難以實現。
2017年2月23日谷歌安全博客上發布了世界上第一例公開的SHA-1哈希碰撞實例,在經過兩年的聯合研究和花費了巨大的計算機時間之後,研究人員在他們的研究網站SHAttered上給出了兩個內容不同,但是具有相同SHA-1消息摘要的PDF文件,這就意味著在理論研究長期以來警示SHA-1演算法存在風險之後,SHA-1演算法的實際攻擊案例也浮出水面,同時也標志著SHA-1演算法終於走向了生命的末期。
NIST於2007年正式宣布在全球范圍內徵集新的下一代密碼Hash演算法,舉行SHA-3競賽。新的Hash演算法將被稱為SHA-3,並且作為新的安全Hash標准,增強現有的FIPS180-2標准。演算法提交已於2008年10月結束,NIST分別於2009年和2010年舉行2輪會議,通過2輪的篩選選出進入最終輪的演算法,最後將在2012年公布獲勝演算法。公開競賽的整個進程仿照高級加密標准AES的徵集過程。2012年10月2日,Keccak被選為NIST競賽的勝利者,成為SHA-3。
Keccak演算法是SHA-3的候選人在2008年10月提交。Keccak採用了創新的的「海綿引擎」散列消息文本。它設計簡單,方便硬體實現。Keccak已可以抵禦最小的復雜度為2n的攻擊,其中N為散列的大小。它具有廣泛的安全邊際。目前為止,第三方密碼分析已經顯示出Keccak沒有嚴重的弱點。
KangarooTwelve演算法是最近提出的Keccak變種,其計算輪次已經減少到了12,但與原演算法比起來,其功能沒有調整。
零知識證明
在密碼學中零知識證明(zero-knowledgeproof,ZKP)是一種一方用於向另一方證明自己知曉某個消息x,而不透露其他任何和x有關的內容的策略,其中前者稱為證明者(Prover),後者稱為驗證者(Verifier)。設想一種場景,在一個系統中,所有用戶都擁有各自全部文件的備份,並利用各自的私鑰進行加密後在系統內公開。假設在某個時刻,用戶Alice希望提供給用戶Bob她的一部分文件,這時候出現的問題是Alice如何讓Bob相信她確實發送了正確的文件。一個簡單地處理辦法是Alice將自己的私鑰發給Bob,而這正是Alice不希望選擇的策略,因為這樣Bob可以輕易地獲取到Alice的全部文件內容。零知識證明便是可以用於解決上述問題的一種方案。零知識證明主要基於復雜度理論,並且在密碼學中有廣泛的理論延伸。在復雜度理論中,我們主要討論哪些語言可以進行零知識證明應用,而在密碼學中,我們主要討論如何構造各種類型的零知識證明方案,並使得其足夠優秀和高效。
環簽名群簽名
1、群簽名
在一個群簽名方案中,一個群體中的任意一個成員可以以匿名的方式代表整個群體對消息進行簽名。與其他數字簽名一樣,群簽名是可以公開驗證的,且可以只用單個群公鑰來驗證。群簽名一般流程:
(1)初始化,群管理者建立群資源,生成對應的群公鑰(GroupPublicKey)和群私鑰(GroupPrivateKey)群公鑰對整個系統中的所有用戶公開,比如群成員、驗證者等。
(2)成員加入,在用戶加入群的時候,群管理者頒發群證書(GroupCertificate)給群成員。
(3)簽名,群成員利用獲得的群證書簽署文件,生成群簽名。
(4)驗證,同時驗證者利用群公鑰僅可以驗證所得群簽名的正確性,但不能確定群中的正式簽署者。
(5)公開,群管理者利用群私鑰可以對群用戶生成的群簽名進行追蹤,並暴露簽署者身份。
2、環簽名
2001年,Rivest,shamir和Tauman三位密碼學家首次提出了環簽名。是一種簡化的群簽名,只有環成員沒有管理者,不需要環成員間的合作。環簽名方案中簽名者首先選定一個臨時的簽名者集合,集合中包括簽名者。然後簽名者利用自己的私鑰和簽名集合中其他人的公鑰就可以獨立的產生簽名,而無需他人的幫助。簽名者集合中的成員可能並不知道自己被包含在其中。
環簽名方案由以下幾部分構成:
(1)密鑰生成。為環中每個成員產生一個密鑰對(公鑰PKi,私鑰SKi)。
(2)簽名。簽名者用自己的私鑰和任意n個環成員(包括自己)的公鑰為消息m生成簽名a。
(3)簽名驗證。驗證者根據環簽名和消息m,驗證簽名是否為環中成員所簽,如果有效就接收,否則丟棄。
環簽名滿足的性質:
(1)無條件匿名性:攻擊者無法確定簽名是由環中哪個成員生成,即使在獲得環成員私鑰的情況下,概率也不超過1/n。
(2)正確性:簽名必需能被所有其他人驗證。
(3)不可偽造性:環中其他成員不能偽造真實簽名者簽名,外部攻擊者即使在獲得某個有效環簽名的基礎上,也不能為消息m偽造一個簽名。
3、環簽名和群簽名的比較
(1)匿名性。都是一種個體代表群體簽名的體制,驗證者能驗證簽名為群體中某個成員所簽,但並不能知道為哪個成員,以達到簽名者匿名的作用。
(2)可追蹤性。群簽名中,群管理員的存在保證了簽名的可追
『伍』 區塊鏈的加密技術
數字加密技能是區塊鏈技能使用和開展的關鍵。一旦加密辦法被破解,區塊鏈的數據安全性將受到挑戰,區塊鏈的可篡改性將不復存在。加密演算法分為對稱加密演算法和非對稱加密演算法。區塊鏈首要使用非對稱加密演算法。非對稱加密演算法中的公鑰暗碼體制依據其所依據的問題一般分為三類:大整數分化問題、離散對數問題和橢圓曲線問題。第一,引進區塊鏈加密技能加密演算法一般分為對稱加密和非對稱加密。非對稱加密是指集成到區塊鏈中以滿意安全要求和所有權驗證要求的加密技能。非對稱加密通常在加密和解密進程中使用兩個非對稱暗碼,稱為公鑰和私鑰。非對稱密鑰對有兩個特點:一是其間一個密鑰(公鑰或私鑰)加密信息後,只能解密另一個對應的密鑰。第二,公鑰可以向別人揭露,而私鑰是保密的,別人無法通過公鑰計算出相應的私鑰。非對稱加密一般分為三種首要類型:大整數分化問題、離散對數問題和橢圓曲線問題。大整數分化的問題類是指用兩個大素數的乘積作為加密數。由於素數的出現是沒有規律的,所以只能通過不斷的試算來尋找解決辦法。離散對數問題類是指基於離散對數的困難性和強單向哈希函數的一種非對稱分布式加密演算法。橢圓曲線是指使用平面橢圓曲線來計算一組非對稱的特殊值,比特幣就採用了這種加密演算法。非對稱加密技能在區塊鏈的使用場景首要包含信息加密、數字簽名和登錄認證。(1)在信息加密場景中,發送方(記為A)用接收方(記為B)的公鑰對信息進行加密後發送給
B,B用自己的私鑰對信息進行解密。比特幣交易的加密就屬於這種場景。(2)在數字簽名場景中,發送方A用自己的私鑰對信息進行加密並發送給B,B用A的公鑰對信息進行解密,然後確保信息是由A發送的。(3)登錄認證場景下,客戶端用私鑰加密登錄信息並發送給伺服器,伺服器再用客戶端的公鑰解密認證登錄信息。請注意上述三種加密計劃之間的差異:信息加密是公鑰加密和私鑰解密,確保信息的安全性;數字簽名是私鑰加密,公鑰解密,確保了數字簽名的歸屬。認證私鑰加密,公鑰解密。以比特幣體系為例,其非對稱加密機制如圖1所示:比特幣體系一般通過調用操作體系底層的隨機數生成器生成一個256位的隨機數作為私鑰。比特幣的私鑰總量大,遍歷所有私鑰空間獲取比特幣的私鑰極其困難,所以暗碼學是安全的。為便於辨認,256位二進制比特幣私鑰將通過SHA256哈希演算法和Base58進行轉化,構成50個字元長的私鑰,便於用戶辨認和書寫。比特幣的公鑰是私鑰通過Secp256k1橢圓曲線演算法生成的65位元組隨機數。公鑰可用於生成比特幣交易中使用的地址。生成進程是公鑰先通過SHA256和RIPEMD160哈希處理,生成20位元組的摘要成果(即Hash160的成果),再通過SHA256哈希演算法和Base58轉化,構成33個字元的比特幣地址。公鑰生成進程是不可逆的,即私鑰不能從公鑰推導出來。比特幣的公鑰和私鑰通常存儲在比特幣錢包文件中,其間私鑰最為重要。丟掉私鑰意味著丟掉相應地址的所有比特幣財物。在現有的比特幣和區塊鏈體系中,現已依據實踐使用需求衍生出多私鑰加密技能,以滿意多重簽名等愈加靈敏雜亂的場景。
『陸』 區塊鏈是什麼,如何簡單理解區塊鏈技術
區塊鏈 是什麼
區塊鏈就是通過點對點的傳輸、進行加密演算法的新型技術,區塊鏈中有無數個點,每個點代表一個用戶,點和點之間發生了交易,交易記錄就會直接上傳到區塊中,區塊中的數據按照時間先後順序鏈接起來就是區塊鏈。
1、區塊鏈又叫分布式賬本,賬本中記錄著所有節點的交易記錄,每個節點都需要維護區塊鏈的發展,監督交易是否合法,也可以一起為交易作證。
2、加密技術,區塊鏈中的交易信息是公開的,但是個人信息是用過加密演算法的,不用擔心個人信息泄露,在個人授權的情況下,對方才可以查詢到個人信息,保障了個人信息的安全性。
3、共識機制,區塊鏈的每個節點都是相互信任的,每個用戶都可以放心交易,因為數據不能篡改,每條交易都必須是合法的,不會有造假的可能。
4、智能合約,區塊鏈技術應用的場景中,可以通過智能匹配,比如保險理賠可以實行自動化理賠。
如何簡單理解區塊鏈技術
區塊鏈技術可以這樣理解,小黑和小白都是區塊鏈中的節點,小黑向小白 借錢 了1000元,這就是一筆交易,數據會存儲在區塊中,這時候小白廣播對所有人說小黑向他借錢了1000元,小黑也廣播說自己向小白借錢了1000元,所有人都聽到了這個信息,到了還款日,小黑說並沒有向小白借錢1000元,這時候所有人聽到後出來給小白作證,說小黑確實是借錢了1000元。
上文舉例中,小黑和小白就相當於區塊鏈的兩個節點,借錢就是交易,只要交易就會產生交易數據,直接上傳到區塊中,區塊中的數據是公開的,不僅自己可以看到,區塊鏈中的所有人都可以看到,這樣就能保證小黑不會違約說自己沒有借錢,區塊的所有人都會監督小黑來還錢,來保障了交易合法性,保障了每個節點之間是相互信任。