比特幣加密演算法安全嗎
① 高中生如何理解比特幣加密演算法
加密演算法是數字貨幣的基石,比特幣的公鑰體系採用橢圓曲線演算法來保證交易的安全性。這是因為要攻破橢圓曲線加密就要面對離散對數難題,目前為止還沒有找到在多項式時間內解決的辦法,在演算法所用的空間足夠大的情況下,被認為是安全的。本文不涉及高深的數學理論,希望高中生都能看懂。
密碼學具有久遠的歷史,幾乎人人都可以構造出加解密的方法,比如說簡單地循環移位。古老或簡單的方法需要保密加密演算法和秘鑰。但是從歷史上長期的攻防斗爭來看,基於加密方式的保密並不可靠,同時,長期以來,秘鑰的傳遞也是一個很大的問題,往往面臨秘鑰泄漏或遭遇中間人攻擊的風險。
上世紀70年代,密碼學迎來了突破。Ralph C. Merkle在1974年首先提出非對稱加密的思想,兩年以後,Whitfield Diffie和Whitfield Diffie兩位學者以單向函數和單向暗門函數為基礎提出了具體的思路。隨後,大量的研究和演算法涌現,其中最為著名的就是RSA演算法和一系列的橢圓曲線演算法。
無論哪一種演算法,都是站在前人的肩膀之上,主要以素數為研究對象的數論的發展,群論和有限域理論為基礎。內容加密的秘鑰不再需要傳遞,而是通過運算產生,這樣,即使在不安全的網路中進行通信也是安全的。密文的破解依賴於秘鑰的破解,但秘鑰的破解面臨難題,對於RSA演算法,這個難題是大數因式分解,對於橢圓曲線演算法,這個難題是類離散對數求解。兩者在目前都沒有多項式時間內的解決辦法,也就是說,當位數增多時,難度差不多時指數級上升的。
那麼加解密如何在公私鑰體系中進行的呢?一句話,通過在一個有限域內的運算進行,這是因為加解密都必須是精確的。一個有限域就是一個具有有限個元素的集合。加密就是在把其中一個元素映射到另一個元素,而解密就是再做一次映射。而有限域的構成與素數的性質有關。
前段時間,黎曼猜想(與素數定理關系密切)被熱炒的時候,有一位區塊鏈項目的技術總監說橢圓曲線演算法與素數無關,不受黎曼猜想證明的影響,就完全是瞎說了。可見區塊鏈項目內魚龍混雜,確實需要好好洗洗。
比特幣及多數區塊鏈項目採用的公鑰體系都是橢圓曲線演算法,而非RSA。而介紹橢圓曲線演算法之前,了解一下離散對數問題對其安全性的理解很有幫助。
先來看一下 費馬小定理 :
原根 定義:
設(a, p)=1 (a與p互素),滿足
的最下正整數 l,叫作a模p的階,模p階為(最大值)p-1的整數a叫作模p的原根。
兩個定理:
基於此,我們可以看到,{1, 2, 3, … p-1} 就是一個有限域,而且定義運算 gi (mod p), 落在這個有限域內,同時,當i取0~p-2的不同數時,運算結果不同。這和我們在高中學到的求冪基本上是一樣的,只不過加了一層求模運算而已。
另一點需要說明的是,g的指數可以不限於0~p-2, 其實可以是所有自然數,但是由於
所以,所有的函數值都是在有限域內,而且是連續循環的。
離散對數定義:
設g為模p的原根,(a,p) = 1,
我們稱 i 為a(對於模p的原根g)的指數,表示成:
這里ind 就是 index的前3個字母。
這個定義是不是和log的定義很像?其實這也就是我們高中學到的對數定義的擴展,只不過現在應用到一個有限域上。
但是,這與實數域上的對數計算不同,實數域是一個連續空間,其上的對數計算有公式和規律可循,但往往很難做到精確。我們的加密體系裡需要精確,但是在一個有限域上的運算極為困難,當你知道冪值a和對數底g,求其離散對數值i非常困難。
當選擇的素數P足夠大時,求i在時間上和運算量上變得不可能。因此我們可以說i是不能被計算出來的,也就是說是安全的,不能被破解的。
比特幣的橢圓曲線演算法具體而言採用的是 secp256k1演算法。網上關於橢圓曲線演算法的介紹很多,這里不做詳細闡述,大家只要知道其實它是一個三次曲線(不是一個橢圓函數),定義如下:
那麼這里有參數a, b;取值不同,橢圓曲線也就不同,當然x, y 這里定義在實數域上,在密碼體系裡是行不通的,真正採用的時候,x, y要定義在一個有限域上,都是自然數,而且小於一個素數P。那麼當這個橢圓曲線定義好後,它反應在坐標系中就是一些離散的點,一點也不像曲線。但是,在設定的有限域上,其各種運算是完備的。也就是說,能夠通過加密運算找到對應的點,通過解密運算得到加密前的點。
同時,與前面講到的離散對數問題一樣,我們希望在這個橢圓曲線的離散點陣中找到一個有限的子群,其具有我們前面提到的遍歷和循環性質。而我們的所有計算將使用這個子群。這樣就建立好了我們需要的一個有限域。那麼這里就需要子群的階(一個素數n)和在子群中的基點G(一個坐標,它通過加法運算可以遍歷n階子群)。
根據上面的描述,我們知道橢圓曲線的定義包含一個五元祖(P, a, b, G, n, h);具體的定義和概念如下:
P: 一個大素數,用來定義橢圓曲線的有限域(群)
a, b: 橢圓曲線的參數,定義橢圓曲線函數
G: 循環子群中的基點,運算的基礎
n: 循環子群的階(另一個大素數,< P )
h:子群的相關因子,也即群的階除以子群的階的整數部分。
好了,是時候來看一下比特幣的橢圓曲線演算法是一個怎樣的橢圓曲線了。簡單地說,就是上述參數取以下值的橢圓曲線:
橢圓曲線定義了加法,其定義是兩個點相連,交與圖像的第三點的關於x軸的對稱點為兩個點的和。網上這部分內容已經有很多,這里不就其細節進行闡述。
但細心的同學可能有個疑問,離散對數問題的難題表現在求冪容易,但求其指數非常難,然而,橢圓曲線演算法中,沒有求冪,只有求乘積。這怎麼體現的是離散對數問題呢?
其實,這是一個定義問題,最初橢圓曲線演算法定義的時候把這種運算定義為求和,但是,你只要把這種運算定義為求積,整個體系也是沒有問題的。而且如果定義為求積,你會發現所有的操作形式上和離散對數問題一致,在有限域的選擇的原則上也是一致的。所以,本質上這還是一個離散對數問題。但又不完全是簡單的離散對數問題,實際上比一般的離散對數問題要難,因為這里不是簡單地求數的離散對數,而是在一個自定義的計算上求類似於離散對數的值。這也是為什麼橢圓曲線演算法採用比RSA所需要的(一般2048位)少得多的私鑰位數(256位)就非常安全了。